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METHODOLOGY

Stability enhancement of clinical grade 
multipotent mesenchymal stromal cell‑based 
products
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Francesc Gòdia4* and Joaquim Vives1,2,5* 

Abstract 

Background:  Successful delivery of cell-based therapeutics into patients is compromised by their short shelf-life 
upon release from production facilities due to the living nature of the active component that rapidly loses viability, 
and therefore its properties. In this context, the use of appropriate additives may contribute to the stabilisation of the 
cellular component within specifications for a longer time until administration.

Results:  In the present study, we evaluated the effect of different formulations on the stability of viability, identity, 
and potency of clinical grade multipotent mesenchymal stromal cells in suspension, both electrolyte solution and 
protein content were found to impact on their shelf-life. Particularly cryopreservation of cells in a Plasmalyte 148 
supplemented with 2% (w/v) AlbIX (a yeast-derived recombinant albumin) and 10% (v/v) dimethyl sulfoxide, and final 
formulation post-thawing in Plasmalyte 148 supplemented with 2% (w/v) AlbIX enabling prolonged stability from 
24 h up to 72 h in optimal conditions. Further investigation on the mechanisms of action involved revealed a delay of 
apoptosis progression into late stage when AlbIX was present.

Conclusions:  The use of optimal formulations for each cell type of interest is crucial to extend the shelf life of cell-
based pharmaceuticals and contribute to solve logistical challenges. We demonstrated that the use of Plasmalyte 148 
supplemented with 2% (w/v) AlbIX resulted in superior stability of multipotent mesenchymal stromal cells without 
affecting their identity and multipotency.

Keywords:  Multipotent mesenchymal stromal cell, Potency assay, Cellular therapy, Cell culture, Logistics, Apoptosis, 
Stability assessment, Quality compliance
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Background
Over the last decade, research and development on 
cell-based medicines has undergone a sharp rise bring-
ing with it the necessity of building up a new market of 
reagents and materials to supply the new clinical appli-
cations [1]. However, the use of living cells as an active 
ingredient poses great challenges, particularly because 

of their short shelf-life in the final product formulation, 
which is seriously affected by the rapid loss of viability, 
within hours from product release [2]. As an alternative 
to freshly prepared products, cryopreservation allows 
for the banking of cells thus postponing their expiration. 
However, freeze/thawing cycles may (A) impact on the 
safety and efficacy of cells, (B) lead to low cell recovery 
yields, and (C) post-thawing stability still remains a chal-
lenge, since shelf-life of the reconstituted product will fall 
out of specifications within hours, alike to fresh products. 
This situation hinders logistics and limits the geographi-
cal range for delivery and therefore the widespread use 
of such therapies. It also requires the conditioning of 
cells into the final formulation, quality controls, product 
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release and shipping need to be performed very rapidly, 
in a coordinated manner with patients, physicians and 
surgery room personnel for immediate administration.

In this context, the biological properties of multipotent 
mesenchymal stromal cells (MSC) are of great interest to 
be used in a wide range of clinical applications, such as 
tissue regeneration or the management of immunological 
disorders, due to (a) their potential to differentiate into 
other specialised cell types, (b) their ability to respond to 
local signalling cues and affect the microenvironment; 
and (c) their capacity to modulate immune response [3]. 
Remarkably, ex vivo expansion of homogeneous popula-
tions of MSC up to large numbers is feasible within an 
acceptable time frame and cost, following relatively sim-
ple cell culture strategies, therefore making possible to 
manufacture MSC-based medicinal products in compli-
ance with regulatory and quality requirements for clinical 
use [4].

The selection of excipients plays a key role in the main-
tenance of critical quality attributes (CQA) of the final 
product. This step is even more critical for cell therapy 
products with human albumin as one of the most popu-
lar additives. Human albumin is the most ubiquitous pro-
tein in blood and it is present in many tissues and body 
compartments, acting both as a buffer and as a reservoir 
for numerous smaller entities such as metals, hormones, 
fatty acids and toxins [5]. In this sense, albumin shuttles 
such molecules from tissues of high to low concentra-
tion. Additionally, albumin also constitutes about 75% of 
the colloidal oncotic pressure of blood and the single free 
cysteine of albumin (at position 34) makes up most of the 
reducing equivalents present in blood. All these proper-
ties are traits which are functional in employing albumin 
as a long-established ingredient of cell-culture media, 
facilitating growth of many cell types, but also allowing 
for high viability rates upon cryopreservation and final 
formulation of cell-based therapeutics, thus contributing 
as a tool to overcome challenges in manufacturing, for-
mulation and handling. Historically, albumin has been 
used in the context of serum, which can be successfully 
removed from cell culture media and substituted by the 
addition of albumin. One major handicap of using plasma 
derived albumin is its limited availability, associated to 
volunteer donations, with only few countries allowing 
economical compensation. In addition the variation in 
worldwide diets affecting plasma pools can lead to vari-
ations in albumin batches and inconsistencies when set-
ting up worldwide medical products that use plasma 
derived albumin. Production of recombinant albumin 
by means of biotechnological platforms could help cir-
cumventing such limitation. In recent years, the posi-
tive properties of albumin in cell culture have, in some 
instances been expanded to its use in cryopreservation, 

or formulation buffers for stem cell therapies. Recombi-
nant human albumin offers a safe solution for optimized 
cell performance and as an animal and human compo-
nent-free product it provides regulatory benefits while 
improving cell viability and controlling batch-to-batch 
consistency.

Herein we investigated the impact of main compo-
nents of the final formulation on MSC-based products, 
based on International Conference on Harmonisation 
of Technical Requirements for Registration of Pharma-
ceuticals for Human Use (ICH) and European Medicine 
Agency (EMA) recommendations [6, 7], in which the 
performance of GMP-grade recombinant human albu-
min and human serum albumin (HSA) as stabiliser of 
CQA was evaluated using clinical grade Bone Marrow 
(BM)-derived MSC, aiming at developing longer stability, 
highly viable, better performing final formulations.

Results
Selection of an electrolyte solution
In a first set of experiments, ex  vivo expanded clinical 
grade MSC were resuspended in different formulations 
of isotonic electrolyte solutions (namely, 5% glucoside 
solution, Ringer lactate solution, and Plasmalyte 148) 
supplemented with 2% (w/v) HSA in syringes at a final 
concentration of 7.5 × 106 ± 0.9 × 106 MSC/mL in a final 
volume of 4.9 ± 0.2 mL (Table 1). Cell viability was main-
tained over 70% in all conditions within the first 23 h, in 
compliance with predetermined specifications (Table 2). 
Thereon viability rates dropped in all conditions, none-
theless, Plasmalyte 148 was the solution gaving superior 
results followed by Ringer lactate and glucoside solution 
(74.7%, 68.6%, and 53.3%, respectively) (Fig. 1a, b). Cellu-
lar phenotype was determined daily without observing an 
alteration of MSC identity or differences between groups 
along time in any of the tested conditions (Table 3). Given 
these results, Plasmalyte 148 was selected as the electro-
lyte solution for subsequent experiments.

Table 1  Summary of  conditions tested in  the  assessment 
of the effect of electrolyte solutions and albumins on MSC

Different formulations were generated considering potential effects on fresh 
and cryopreserved products

MSC product Electrolyte solution Albumin type (w/v)

Fresh

Ringer lactate 2% HSA

Glucoside 2% HSA

 Cryopreserved Plasmalyte 148 2% and 5% HSA

Plasmalyte 148 2% and 5% AlbIX

Plasmalyte 148 2% and 5% Recombumin Alpha
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Effect of albumins on stability of fresh MSC
In the next series of experiments, the effect of recombi-
nant (AlbIX and Recombumin Alpha) and serum-derived 
(HSA) albumin supplementation on MSC’s stability was 
assessed in a stability study performed at 2–8  °C with 
freshly prepared cellular suspensions. Viability and cell 
recovery were determined in samples taken from syringes 
containing 6.5 × 106 MSC/mL in a final volume of 2.8 mL: 
2  mL cell suspension of Plasmalyte 148 supplemented 
with 2% (w/v) albumin, and additional 0.8 mL of air vol-
ume (to facilitate homogenisation at each time point due 
to the sedimentation of cells in high concentrated sus-
pensions). All conditions showed similar high viability 
rates within the first 44  h (98.5 ± 0.5%, 99.1 ± 0.3% and 
99.1 ± 0.2%, for AlbIX, Recombumin Alpha, and HSA, 
respectively) and no significant differences observed.

Effect of albumins on MSC post‑thawing stability
Since freeze/thaw cycles commonly lead to low cells 
recovery, we studied next whether supplementation 

with yeast-derived recombinant albumins performed 
better than HSA on the stability of cells subjected to 
cryopreservation. For this purpose, MSC cultures were 
first scaled up and cryopreserved with 10% DMSO in 
Plasmalyte 148 supplemented with 2% or 5% (w/v) 
of each one of the albumins under examination. Then 
cells were thawed using the same supplement and con-
centration employed in the cryosolution. At 0  h, all 
albumin samples gave similar results, however by 24 h 
AlbIX was showing an improvement in viability. This 
was even more evident at 48  h with AlbIX still show-
ing a viability of 92.9%. Recombumin Alpha, the other 
recombinant albumin, had reduced viability to 59.1% 
while HSA had the lowest viability at 40.7%. Interest-
ingly, the use of higher albumin concentration, at 5% 
(w/v) showed a detrimental effect on cellular viability, 
particularly at late time points (Fig. 2).

In order to confirm these observations, we repeated 
the experiment using only 2% (w/v) AlbIX and HSA 
conditions in triplicates, analysed MSC identity and 
multipotency, and extended the follow up time period 
to 72 h. Remarkably, AlbIX contributed to preserve cell 
viability above 70% up to 72 h, which represents a sig-
nificant increase of the product shelf-life as compared 
to standard conditions using HSA (Fig. 3a). Despite of 
the reduction of viability and total cell number over 
time, MSC maintained unaltered phenotype with 
time in both experimental conditions, as revealed by 
expression of CD73, CD90 and CD105, while lacking 
expression of CD31 and CD45 and having low level 
expression of HLA-DR (Fig.  3b, c). They also retained 
their multipotentiality and ability to differentiate into 
fat, cartilage and bone lineages (Fig. 3d and Additional 
file 1: Table S1).

Table 2  Specifications for  the  release of  clinical grade 
BM-MSC for clinical use

Specifications in accordance to Phase I/II clinical trial (EudraCT No. 2010-024041-
78). *HLA-DR levels only as informative parameter

Critical quality attribute Acceptance criteria

Viability ≥ 70%

Identity  ≥ 95% CD105, CD73, CD90
≤ 5% CD45 and CD31
≤ 20% *HLA-DR

Potency Osteogenic, chondrogenic 
and adipogenic potential 
in vitro

Fig. 1  Effect of different electrolyte solutions on the stability of MSC in a syringe. Evolution of cell viability (%) (a) and cell recovery (b) along time at 
room temperature using 5% glucoside solution, Ringer lactate solution, and Viaflo plasmalyte 148 supplemented with 2% (w/v) HSA. One sample 
per condition and time point was tested in duplicates. HSA, human serum albumin; MSC, multipotent mesenchymal stromal cells
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Effect of albumins on MSC under stressing conditions
Next, we performed a series of experiments to interro-
gate whether the beneficial effect observed was restricted 
either to the cryopreservation stage or the after thawing 
period, or both. To do this, cells were cryopreserved in 
the presence of 2% (w/v) albumins (either AlbIX or HSA) 
and thawed using solutions supplemented with one of 
the albumins. Therefore, four different experimental 
conditions were generated, and all possible combina-
tions with regards to supplementation of “cryosolution” 
and”thawing solution” were created (that is, HSA:HSA, 
AlbIX:HSA, HSA:AlbIX, AlbIX:AlbIX). The biggest drop 
in cell viability was observed immediately after thawing 
for the reference condition (HSA:HSA) and the most 
favourable conditions were those in which cells were both 
cryopreserved and thawed in solutions supplemented 
with AlbIX (Fig. 4a).

Immediately after thawing, all conditions tested (that 
is, HSA:HSA, AlbIX:HSA, HSA:AlbIX, AlbIX:AlbIX) 
supported viability values higher than 50%, thus fall-
ing within specifications (Table 2). However, significant 
differences were observed between the viability of cells 
before freezing and post-thawing (Fig.  4a). Interest-
ingly, the more the cells were in contact with AlbIX, 
the higher the viability, with the AlbIX:AlbIX condition 

the one resulting in the highest viability post-thawing 
as compared to viability in HSA:HSA, AlbIX:HSA, and 
HSA:AlbIX conditions (85.2 ± 1.9% vs. 60.8 ± 9.7%, 
74.9 ± 3.7%, and 77.6 ± 5.3%, respectively).

Thereon, viability was evaluated daily until day 3. 
Provided that different percentages of viability were 
observed at time point 0  h for each condition, data 
were normalized to initial values in order to evalu-
ate the variation of viability over time thus facilitating 
cross comparison. Conditions were compared accord-
ing to the type of albumin used in the cryopreservation 
solution. In this regard, HSA:AlbIX conditions showed 
higher percentage of viability all than HSA:HSA over 
time (Fig.  4b). Although no significant differences in 
viability between conditions cryopreserved with HSA 
were observed immediately after thawing, a signifi-
cant difference in viability appeared from the 48 h time 
point (p < 0.001 at both t = 48 and 72 h). In the second 
set of conditions, using AlbIX as a supplement in the 
cryopreservation step, the use of AlbIX:AlbIX showed 
higher viability with time compared to AlbIX:HSA, a 
difference that became statistically significant at the 
72 h time point (p < 0.05) (Fig. 4c).

Fig. 2  Effect of albumin type and concentration on the viability of cryopreserved MSC. Cryopreserved MSC were thawed using either one of 
the albumins at the concentrations (w/v) stated in the image. One cell line was used for all conditions tested. HSA, human serum albumin; MSC, 
multipotent mesenchymal stromal cells; PI, propidium iodide
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Taking all the stability results together, it is evident that 
the more AlbIX is used in both stages of cryopreserva-
tion and thawing, the lowest reduction in viability with 
time is observed (Fig. 4d).

Apoptosis studies
In order to rule out potential mechanisms involved in 
the protection of cells by albumins, the apoptotic state 
was determined in HSA:HSA and AlbIX:AlbIX condi-
tions.. Immediately after thawing, no significant dif-
ferences were observed with regards to the percentage 

of early and late apoptotic cells between HSA:HSA and 
AlbIX:AlbIX. However, a significant difference was 
observed in early apoptotic cell number from the 24  h 
time point (Fig.  5a, b). Interestingly, the percentage of 
early apoptotic cells in HSA:HSA condition remained low 
whereas the AbIX:AlbIX condition showed a higher per-
centage that was clearly significant at the 72 h time point 
(p < 0.001). This observation correlated with an increase 
of the cell percentage in late apoptosis in the HSA:HSA 
condition as opposed to very low percentage of cells in 
the AlbIX:AlbIX condition, which was significantly lower 

Fig. 3  Retention of viability, phenotypic profile and multipotentiality of MSC after cryopreservation in the presence of either HSA or recombinant 
albumin. a Post-thawing stability assessed by flow cytometry showing the mean of the percentage of viability (%) along the stability follow up time 
using HSA (in black) or AlbIX (in grey) additives (n = 6 cell lines), percentage of reduction and results of ANOVA Tukey Multiple comparison test are 
showed; Phenotypic characterisation of MSC at times 0 and 72 h. Finally, in b, in vitro differentiation assays were performed to confirm osteogenic, 
adipogenic and chondrogenic potential of MSC and the outcome of each differentiation were assessed by specific stainings: alkaline phosphatase 
(ALP) and Alizarin Red (AR) for bone tissue, Oil Red O for fat; and Safranin O, for cartilage
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from the 48 h time point (p < 0.001 at 48 h and p < 0.001 
at 72 h) (Fig. 5b). In summary, the increased number of 
early apoptotic cells and reduced number of late apop-
totic cells in AlbIX:AlbIX compared to HSA:HSA may 

suggest that supplementation with AlbIX slows down the 
progression of apoptosis, with less cells entering in late 
apoptosis.

Fig. 4  Impact of albumin supplementation when used as cryoprotectant, or additive, or both. Cryopreservation of MSC was performed using either 
AlbIX or HSA and followed by thawing and conditioning with either one of the two albumins generating the 4 possible combinations (HSA:HSA, 
HSA:AlbIX, AlbIX:AlbIX, and AlbIX:HSA). Viability pre- and post-cryopreservation shows higher viability rates in samples supplemented with AlbIX 
(a). Viability of all four conditions were followed up for 72 h (b). Data resulting from these experiments have been grouped according to the 
cryoprotectant used, either HSA (c) or AlbIX (d). In e, viability reduction is presented for all conditions along time, namely: control (HSA:HSA), as a 
cryoprotectant (AlbIX:HSA), as a stabilizer post-thawing (HSA:AlbIX), or both (AlbIX:AlbIX)

Fig. 5  Analyses of apoptosis of cryopreserved MSC. Conditions tested were HSA:HSA and AlbIX:AlbIX and demonstrated that cryopreservation and 
post-thawing conditioning with Plasmalyte 148 supplemented with AlbIX extended the shelf-life of hMSC by preserving cells in the early apoptotic 
stage. Bars represent the percentage of early (a) and late (b) apoptotic cells for HSA and AlbIX cryopreservation conditions (n = 3 cell lines), ANOVA 
parametric Sidak’s multiple comparison tests were performed
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Discussion
Advances in the development of living cell-based thera-
pies poses several challenges in the development of bio-
processes and product formulation due to the fragile 
nature of the drug substance [8]. Consequently, develop-
ers strive to understand and control all steps of the entire 
value chain design (from harvesting, upstream culture 
and cell preservation, to cell therapy administration) 
in order to define optimal conditions that enhance cell 
viability and reduce batch-to-batch variability, which are 
key for ensuring the quality of MSC-based products [9]. 
Cryopreservation is a crucial step for commercial stem 
cell therapies as it alleviates the need for a continued pro-
cess thus allowing for flexibility [10]. Indeed, cryopreser-
vation of MSC for banking off-the-shelf products and 
making them immediately available to patients is neces-
sary in order to avoid a dependence on preparation time 
for each dose, allowing for quality control and product 
standardisation with multiple doses of the same, regu-
latory approved cell preparation. As an example of this, 
Prochymal is a cryopreserved cell-based medicine, whose 
drug substance is composed of ex  vivo cultured adult 
human MSC suspension using 10% DMSO and 5% HSA 
in Plasma-Lyte A produced in large batches up to 10,000 
doses expanded from a single donor [11]. Disappointing 
results of the Phase III study for Prochymal could possi-
bly be related to freezing and thawing protocols, which 
could affect both MSC viability and functionality. Indeed 
Moll and collaborators demonstrated recently that criti-
cal quality attributes of MSC were altered upon freeze/
thaw cycles [12], which was later supported by mechanis-
tic studies showing that heat shock responses of MSC to 
cryopreservation were responsible of such observations 
[13].

Remarkably our experiments demonstrated that 
increasing the concentration of albumin from 2 to 5% 
(w/v) was not required for optimal cell stabilisation. In 
contrast, enhanced viability was observed when yeast-
derived recombinant albumin was used instead of HSA. 
The advantage of albumin in cryopreservation is prob-
ably affected by purity and source, and this may explain 
why recombinant albumin prevented MSC from pro-
gressing into late stages of apoptosis upon thawing com-
pared to using HSA. Since albumin is a carrier of many 
compounds present in the blood, these will be found in 
HSA from plasma but not in yeast-derived recombinant 
albumins. Therefore, slight changes in the structure and 
composition of albumins can affect their properties as 
excipients, leading to substantial changes in the inter-
action between cells and excipients and consequently 
affecting the stability of the final product.

From a regulatory perspective, switching the HSA 
initially proposed for a Phase I/II clinical trial to a 

recombinant albumin is a relevant modification that 
must be validated to demonstrate that each step in the 
manufacturing process results in a product falling within 
acceptable specifications on a consistent basis [6, 7, 14]. 
Our data show that using yeast-derived recombinant 
instead of plasma-derived albumin does not jeopard-
ise the viability, identity and potency of the final prod-
uct, and allows for a final product that contains only 
MSC without supplementation with any other human 
component.

Conclusions
Critical quality attributes of MSC resuspended in a solu-
tion composed of 2% (w/v) AlbIX in Plasmalyte 148 
electrolyte solution were maintained for at least 72  h 
post-thawing at 4–8  °C, thus improving its shelf-life as 
compared to formulations using HSA that dropped below 
70% viability after 24 h. Moreover, the mode of action of 
AlbIX protection relates to the prevention of cells from 
progressing into late apoptosis.

Methods
Cells and cell culture
Clinical grade BM-MSC were produced within the con-
text of a clinical trial (EudraCT No. 2010-024041-78) 
with appropriate donor informed consent for use in 
research [15]. Cells were further expanded in  vitro up 
to sufficient numbers by using Dulbecco’s Modified 
Eagle’s Medium (DMEM, Gibco) supplemented with 10% 
human serum B (hSerB; Banc de Sang i Teixits) contain-
ing 2 mM glutamine in T-flasks and CellSTACKS (Cell-
STACKs (Corning Incorporated Life Sciences) at 1 × 103 
to 3.5 × 103 cells/cm2 seeding density [16]. All cultures 
were maintained at 37  °C and 5% CO2 in humidified 
incubators.

Experimental design
The effect of electrolyte solutions (5% glucoside solution, 
Grifols; Ringer lactate, Fresenius Kabi; and Viaflo Plasm-
alyte 148, Baxter) and albumins (recombinant albumins: 
AlbIX® and Recombumin® Alpha, from Albumedix; and 
HSA: Albutein, from Grifols) were used to evaluate their 
effect on the preservation of CQA in MSC, including cell 
recovery, viability, identity and potency, both pre- and 
post-thawing, to assess the stability of the final reconsti-
tuted cellular product (Table 1).

Cells were cryopreserved in a solution composed of 
Dulbecco’s Phosphate-Buffered Saline (DPBS; Gibco) 
supplemented with 10% (v/v) dimethyl sulfoxide (DMSO; 
OriGen Biomedical, Austin, TX, USA) and 2% (w/v) 
human serum albumin (HSA; Grifols, Barcelona, Spain), 
by applying a controlled freezing rate of 1  °C/min in a 
Mr. Frosty device (Nalgene, Rochester, NY, USA) kept in 
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a − 80 °C freezer for 24 h before storage at − 196 °C in a 
liquid nitrogen tank until further use [17]. On the day of 
thawing, cells were rapidly thawed in a 37 °C water bath, 
then slowly diluted 1:10 using pre-cooled thawing solu-
tion consisting of 2% (w/v) albumin in Plasmalyte 148. 
DMSO was washout by centrifugation at 340g for 10 min. 
Finally, each experimental condition for assessing stabil-
ity was created by resuspending in Plasmalyte 148 sup-
plemented with 2% (w/v) of either one of the albumins 
and set up 10 in mL syringes.

Differentiation assays
Specific StemPro differentiation media (Gibco) were used 
for the osteogenic, chondrogenic and adipogenic induc-
tion of undifferentiated MSC cultures in  vitro. Safranin 
O (Sigma), Oil Red O (Sigma), Alkaline Phosphatase 
(Takara Bio Inc.), and Alizarin Red (Sigma) stainings 
were performed for the determination of the outcome of 
the differentiation assays [18, 19].

Cell count, viability and apoptosis
Cells were counted either by following the Trypan blue 
dye exclusion methods or by using Perfect-Count Micro-
spheres (Cytognos) in a FACSCalibur cytometer (Bec-
ton–Dickinson). Viability was determined using the 
7-Amino-Actinomycin D (7-AAD, BD Biosciences) 
exclusion method and expressed as a percentage (%) of 
total cells. Data were analyzed with the CellQuest Pro 
(Becton–Dickinson) software. Occurrence of apoptosis 
and the apoptotic stage (either early or late apoptosis) 
was determined on a NC3000™ Nucleocounter (Chem-
ometec, Copenhagen, Denmark) using a double staining 
procedure with Annexin V and propidium iodide (PI), 
following the manufacturer’s instructions. Early apopto-
sis stage is characterized by the translocation phosphati-
dylserine (PS) in the cell membrane, which was detected 
by Annexin V specific binding to PS. Later on in the 
apoptosis progression, membrane intergrity loss occurs 
which in this study was detected by the penetration of 
the impermanent dye PI additionaly to the Annexin V.

Phenotype assessment
Immunophenotypic characterization of BM-MSC was 
performed using the following antibodies: mouse anti-
human CD45-fluorescein isothiocyanate (CD45-FITC, 
HI30, BD Pharmingen), anti-human CD105-phycoeryth-
rin (CD105-PE, 43A4E1, Miltenyi Biotec), anti-human 
HLA-DR-FITC (L243, BD Biosciences), anti-human 
CD90 PE (F15-42-1-5, Beckman Coulter), mouse anti-
human CD31-FITC (WM59, BD Pharmingen) and 
mouse anti-human CD73 PE (AD2, BD Pharmingen). 
Cells were stained for 15  min at room temperature, 
washed and resuspended in phosphate-buffered saline 

(PBS; Invitrogen). Non-specific cell staining was ruled 
out by using mouse immunoglobulin isotype controls 
(BD Pharmingen). Acquisition was done using a FACS-
Calibur and data were analyzed with the CellQuest Pro 
software.

Data analysis
Descriptive data were expressed as mean ± standard 
deviation. ANOVA multiple comparison tests were used 
to determine differences between experimental condi-
tions taking into account all parameters. Statistical sig-
nificance was set at: *p < 0.05; **p < 0.01; ***p < 0.001; and 
****p < 0.0001.

Additional file

Additional file 1: Table S1. Differentiation potential of MSC. The potential 
to differentiate into the chondrogenic, adipogenic and osteogenic line‑
ages is maintained with the use of both AlbIX and HSA supplements after 
a freeze/thaw cycle. The symbols represent the graduation of the staining 
as: − = no differentiation; + = low, ++ = medium, and +++ = high. 
NP = Not performed; ALP = Alkaline Phosphatase; AR = Alizarin Red).
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