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Abstract 

Background:  Multiple myeloma (MM) is a cancer of terminally differentiated plasma that is part of a spectrum of 
blood diseases. The role of the micro-environment is crucial for MM clonal evolution.

Methods:  This paper describes the analysis carried out on a limited number of genes automatically extracted by a 
nonnegative matrix factorization (NMF) based approach from gene expression profiles of bone marrow fibroblasts of 
patients with monoclonal gammopathy of undetermined significance (MGUS) and MM.

Results:  Automatic exploration through NMF, combined with a motivated post-processing procedure and a path-
ways analysis of extracted genes, allowed to infer that a functional switch is required to lead fibroblasts to acquire 
pro-tumorigenic activity in the progression of the disease from MGUS to MM.

Conclusion:  The extracted biologically relevant genes may be representative of the considered clinical conditions 
and may contribute to a deeper understanding of tumor behavior.
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Background
Myeloma multiple (MM) is an incurable disease that 
affects B cells, characterized by the presence of a mono-
clonal component of plasma cells (PC) in the bone mar-
row, immunodeficiency, hematopoietic suppression and 
bone lesions. It accounts for 1% of all cancers and 10% 
of all haematological malignancies [1]. The growth, infil-
tration and “homing” of the myeloma cells, as for other 
cancers, depend on their dynamical interaction with 
the micro-environment [2]. The bone marrow micro-
environment contains a heterogeneous population of 

cells: hematopoietic stem cells (HSC), stem cells of the 
bone mesenchymal (BMSCs), vascular endothelial cells 
and nerve fibres. The BMSCs give rise to a variety of cell 
types: osteoblasts and osteocytes, adipocytes, chondro-
cytes and fibroblasts. Certain types of cancers such as 
adenocarcinoma of the prostate, breast, kidney or lung 
uses the bone micro-environment as the site of metasta-
sis being this a rich source of growth factors and signaling 
[3, 4]; on the other hand, for blood cancers, such as MM, 
the bone marrow is necessary for survival [5]. Indeed, 
the bone marrow niche appears to play an important 
role in differentiation, migration, proliferation, survival, 
and drug resistance of the malignant plasma cells provid-
ing the preclinical evidences for targeting MM cells and 
BMSC as an antitumor strategy in this disease [6]. In the 
evolution of MM disease, the increase in the monoclonal 
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component of PCs in the bone marrow micro-environ-
ment deeply changes homeostasis and interaction with 
stromal cells. Growth and survival of PCs increases 
through deregulation of autocrine and paracrine path-
ways mediated by growth factors, cytokines, angiogenic 
factors, mRNAs and miRNAs exchanged with exosomes 
produced by the various stromal components [7–9] and 
all aberrant stimuli promotes bone destruction [10, 11].

In myeloma study an interesting area of research con-
cerns the understanding of the transformation from 
precancerous condition [i.e. monoclonal gammopathy 
of undetermined significance (MGUS)] to a malignant 
form of the disease. Since MM has a progression of the 
MGUS clinical condition at a rate of 1% per year of the 
patients considered [1], the genetic aberrations observed 
in MGUS are considered to be primary events and once 
the MGUS clone has been established, immortalization 
is not enough to promote myeloma progression. In con-
trast, events in the MM stages that were absent in MGUS 
are probably secondary events leading to tumor progres-
sion [12]. The key questions to be answered in this pro-
cess are: “why does a clone in MGUS become aggressive 
in some patients while remaining stable in others”; also 
“is the different clone behavior dictated by genomic fea-
tures or is it the result of a plasma cells dialogue and their 
micro-environment?” The evolving genetic and micro-
environmental changes reflect into the progression of 
the disease. There are concomitant changes in the micro-
environment, with a balanced shift between tumor-pro-
moting cells and cancer-suppressing cells, which occur 
simultaneously with genetic changes in the plasma cell. 
How these two situations intertwine to mediate myeloma 
progression is unclear [12].

Studies on the bone marrow stromal component have 
underlined its important role in the progression of mye-
loma disease [6, 13, 14]. In solid tumors, it has long been 
known that in the tumor micro-environment cells are 
selected as the “activated fibroblasts” (CAFs) [15] that 
modulate and affect the behaviour of neoplastic cells in 
order to promote or inhibit growth. These pleiotropic 
functions highlight the inherent plasticity of fibroblasts; 
hence learning to the mechanisms that promote them 
provide new ways to understand and act therapeutically 
in malignant tumors [16–18]. The CAF is essential in 
the growth of the primary tumor and in the formation of 
metastases and it has been observed that in bone marrow 
it has a role in plasma cell dyscrasias such as MGUS and 
MM [19–21].

In the light of recent biological studies, the identifica-
tion of genes potentially involved into the development 
of MM can facilitate the understanding of the disease 
etiology and contribute to the advancement of diag-
nostic tools and clinical research knowledge. However, 

the automatic extraction of valuable knowledge from 
microarray data is very challenging since thousands of 
genes are involved, but only a limited number of sam-
ples is available. From a mathematical point of view, 
this problem is characterized by high data dimension-
ality. Mathematical methods based on matrix decom-
position techniques could be used to explore gene 
expression data to automatically extract informative 
patterns to be further investigated from a biological 
point of view. Particularly, dimensionality reduction 
methods have many applications in bioinformatics and 
computational biology since these algorithms act on 
microarray data reducing the high dimensional gene 
space (n) to a lower dimensional ( r << n ) gene com-
ponent space, which is representative of some latent 
information embedded into the original data [22, 23]. 
Moreover, dimensionality reduction mechanisms can 
be used as the first step in classification procedure to 
help in extracting attribute or dimension which are 
considered highly relevant with respect to a given class 
[24–26]. Nonnegative matrix factorizations (NMFs) 
are data reduction and exploration algorithms which 
emerge in literature panorama as useful tools for ana-
lysing gene expression data because of their inher-
ently non-negativity property [27–30]. NMF methods 
exhibit a number of properties, being able to (i) find 
sets of genes co-operating in a relatively tightly regu-
lated manner [31]; (ii) recognize potential relationships 
in large biological data samples and link genes to these 
patterns [28, 32]; (iii) uncover distinct genomic sub-
types in cancer patients [33]. Differently from classical 
techniques for dimensionality reduction, such as PCA 
or SVD, which contain both positive and negative val-
ues in the decomposed factor matrices, NMF is able 
to decompose data matrices with factors only contain-
ing non-negative values, representing in this way the 
original data by only additive, not subtractive, combi-
nations of the basis vectors (metagenes). This parts-
based representation of NMF is appealing because it 
reflects the intuitive notion of combining parts to form 
a whole and could better uncover meaningful biologi-
cal interpretation of data matrix [27, 28, 34, 35]. In this 
study, we developed a NMF-based approach to mine 
the genetic expression of fibroblasts of patients with 
MGUS and MM for automatically extracting genes that 
can be associated with the activation of bone marrow 
fibroblasts in MM patients. The NMF-based extraction 
method together with an ad hoc designed post-pro-
cessing procedure allowed to extract from a large set 
of fibroblast genes very few genes which underwent to 
biological functional analysis. The interpretable knowl-
edge obtained thanks to the synergic use of mathemati-
cal and biological data analysis complement existing 
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biological hypothesis on a certain influence of fibro-
blasts that have acquired tumorigenic properties in the 
progression of the disease from MGUS to MM.

Methods
Patients and samples processing
Eighteen patients fulfilling the International Myeloma 
Working Group diagnostic criteria for MM (n = 10) and 
MGUS (n = 8) were studied at diagnosis [1]. The MM 
patients (8 male, 2 female) were staged as IIA (n = 3), 
IIIA (n = 7); the M-component was Ig G (n = 5), Ig A (n 
= 2), and k (n = 8) or � (n = 2) [36]. The MGUS patients 
(6 male, 2 female) were Ig G (n = 6) or Ig A (n = 2). The 
study was approved by the local ethics committee of the 
University of Bari Medical School, Italy, and all patients 
gave their informed consent in accordance with the Dec-
laration of Helsinki (https​://www.wma.net). Fibroblasts 
isolated from each of 18 patients were distinctly used in 
all experiments [20]. Table 1 summarizes clinical param-
eters of the bone marrow donors. Briefly, bone marrow 
aspirates were centrifuged on ficoll-Hypaque gradient 
centrifugation, and the separated mono-nuclear cells 
were left to adhere to 25-cm2 polystyrene flasks in com-
plete medium (RPMI-1640 medium supplemented with 
10% fetal calf serum (FCS) and 1% glutamine) for 24 h in 
culture conditions.

Adherent cells were stromal cells were harvested in 
trypsin/ethylenediaminetetraacetate (EDTA) solution 
(0.05/0.02% in phosphate-buffered saline, [PBS]), washed 
twice with PBS, suspended in FCS-free medium (SFM), 
and immune-depleted of macrophages and possible 
residual plasma cells by a 30-min incubation in CD14 
(a monocyte-macrophage marker) plus CD38 (a plasma 
cell and hematopoietic cell marker) monoclonal antibody 
(MoAb) coated flasks (Immuno-tech, Coulter). The fibro-
blasts were separated using anti-fibroblast micro-beads 
and their positive fraction wss collected bone marrow 
fibroblasts purified are grown in 75 cm2 flask at 3 °C, 5% 
CO2 in DMEM containing 10% fetal calf serum (FCS), 
100  U/ml penicillin and streptomicin (Euroclone UK) 
and they were used within a 12-h interval; that is, only 
from the samples that, thanks to the number of fibro-
blasts, reached 80% confluence for RNA extraction.

RNA isolation and label protocol
Total RNA was extracted following the standard Trizol 
protocol (Thermo fisher Scientific). RNA quantification 
and quality control was performed by Experion RNA 
STN-SENS Analysis on EXPERION automated electro-
phoresis station (Bio-Rad Laboratories). Aliquot of total 
RNA (1 μg) was retro-transcribed and labelled using the 
Amino Allyl MessageAmp® II aRNA Amplification Kit 
(Ambion) according to manufacturer’s protocol. Before 
hybridization, the Cy3 and Cy5 (GE Healthcare-Amer-
sham) labelled samples were combined and dried in a 
speed vac. To the dried sample 330  μl of hybridization 
buffer were added. The samples were denatured for 5 
min at 65 °C, snap cooled on ice for 1 min. The solution 
was pipetted onto the microarray MICROMAX glass 
slide SuperChip I (Cat No. MPS696) provided by Perki-
nElmer Life Sciences Inc, placed in a hybridization cham-
ber and the cover slip was placed carefully. Hybridization 
reaction was performed overnight in a sealed chamber 
(Corning® hybridization chambers, Sigma) at 42  °C in a 
high-precision Techne Hybridizer Oven HB-1D (Barlow-
orld Scientific Techne). Pre and post-hybridization wash-
ing were performed according to the protocol described 
in Molecular Cloning a Laboratory Manual [37].

Scan protocol and data processing
Fluorescence signals were detected by analysing the 
microarrays in a VersArray ChipReader® 5  μm dual 
confocal laser scanner, with VersArray ChipReader 
v3.1 software (Bio-Rad Life Sciences Division); for each 
microarray slide, two images were produced by illuminat-
ing the array at 635 nm (excitation of Cy5) and 532 nm 
(Cy3). For both illuminations, photomultiplier tube (gain 
and light amplification) settings were at 1000 and laser 
power was set at 50%. All images were captured in TIFF 

Table 1  Clinical parameters of  the  bone marrow donors, 
the  categories based on  the  International Myeloma 
Working Group uniform response criteria

a  The phenotype was investigated with immune-cytochemical staining with 
anti-k or anti-� antibody according to the light chain of the M-component

Case Sex aIgIsotype stage

1-MM F IgA k II A

2-MM M IgG k II A

3-MM M IgM k/IgA k II A

4-MM M IgG � III A

5-MM M IgG k III A

6-MM M IgG k III A

7-MM M micromolecular k III A

8-MM F IgG k III A

9-MM M IgA � III A

10-MM M micromolecular k III A

1-MGUS F IgG �

2-MGUS M IgG �

3-MGUS M IgG �

4-MGUS M IgG k

5-MGUS M IgG k

6-MGUS M IgA k

7-MGUS M IgA k

8-MGUS F IgG � / IgA �

https://www.wma.net
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format. Raw images were analysed with VersArray Ana-
lyzer Software v4.5 (Bio-Rad Laboratories) using media 
pixel intensities for each spot. The set consists of 21,329 
oligonucleotides whose length is 70mer (version Operon 
2.0) designed on Cluster of Human Unigen, mainly in the 
3 end terminal region. Global background was subtracted 
by bi-quadratic polynomial approximation, and cross-
channel normalization was performed by local regression 
(LOESS).

Data approximation via nonnegative matrix factorization
The gene expression profile obtained by the biologi-
cal experiments are collected in numerical nonnegative 
matrices whose columns measure the processed inten-
sities of one gene probe in a corresponding experiment 
on a single patient and rows correspond to the processed 
intensity for a single gene probe across all the patients. 
Three different microarray matrices were considered: the 
first one collects gene expression profile from 8 patients 
affected by MGUS condition, the second one collects 
gene expression profile from 10 patients affected by MM 
and the third one resulting from a concatenation of the 
previous two matrices. This latter describes gene expres-
sion profile among all 18 patients with both clinical con-
ditions (8 with MGUS and 10 with MM). These data 
matrices have been deposited in the NCBI Gene Expres-
sion Omnibus [38] and are accessible through the series 
entry GSE249901; while the id of the adopted genes are 
available using the platform entry GPL21362 (totally we 
considered 21520 genes involved in the analysis). Figure 1 
illustrates the heatmap plot3 of the concatenated data 
matrix in log-2 scale: the first 8 columns of the matrix 
represents the gene expression profile from MGUS con-
ditions while the latter 10 columns represents the gene 
expression profile from MM conditions.

The three microarray matrices were independently 
analysed using a nonnegative matrix factorization (NMF) 
algorithm based on Kullback–Leibler divergence4 with 
multiple runs and random initialization [32, 40]. Numeri-
cal experiments were conducted using NMF package on 
R-project environment [41].

A NMF algorithm approximates any microarray 
matrix X ∈ R

n×m as the product of a nonnegative basis 

matrix W ∈ R
n×r
+  and a nonnegative coefficient matrix 

H ∈ R
r×m
+  , so that X ≈ WH . NMF reduces the dimen-

sionality of available microarray matrix and extracts from 
it a small number (r) of nonnegative features (basis vec-
tor) which are indicative of latent knowledge embedded 
in data [35, 42]. In this paper, the number r of metagenes 
is empirically chosen as described in [40].

Considering gene expression levels from a single sam-
ple as a vector in the space of the n genes, a column X:,j 
of the matrix X can be interpreted as a nonnegative lin-
ear combination of the columns W:,k of the basis matrix 
W, weighted with coefficients of the matrix H, that is 
X:,j ≈

∑r
k=1W:,kHkj , for j = 1, . . . ,m.

For the sake of illustration, Fig. 2 reports the heatmap 
plot of a rank 2 factorization ( r = 2 ) of a microarray 
matrix X approximated as the matrix product WH. Each 
value in the matrices X, W and H correspond to a color 
in accordance to the corresponding color bar, rows in W 
represent the same genes in X, the two columns of W are 
the 2 metagenes which store up the biological informa-
tion hidden in the analysed genes, while elements of H 
measure the effect of a specific metagene in a particular 
sample in X.

NMF based extraction approach and post‑processing 
phase
After the two factor matrices W and H have been 
obtained via a NMF algorithm, a procedure to identify 
relevant genes in each metagene is applied. Particularly, 
genes in each metagene are firstly ranked and succes-
sively extracted in accordance to the some criteria (pre-
liminary chosen). In this work, the gene.score procedure 
proposed in [43] is adopted. This procedure selects rep-
resentative genes in a single metagene if their gene.score 
values are higher than µ̂+ 3σ̂ (where µ̂ and σ̂ are the 
median and the median absolute deviation of gene.scores, 
respectively) and their maximal values in the correspond-
ing rows of W is larger than the median of all elements in 
the basis matrix W.

In this paper, each of the three microarray data matri-
ces was decomposed via NMF factorization, and then a 
single metagene was considered for each obtained basis 
matrix. The single metagene was chosen as the column in 
the basis matrix possessing the largest number of genes 
extracted when the gene extraction technique is adopted. 
Genes extracted from the “most informative” metagenes 
of the MGUS, MM and the concatenated matrix were 
subsequently collected into three subsets, indicated here-
after as metaMGUS, metaMM and metaMGUSMM.

With the aim of investigating the influence of spe-
cific genes on the disease behavior a post-processing 
phase was adopted. Post-processing procedure consists 
in inspecting common and uncommon genes between 

1  https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE24​990.
2  https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GPL21​36.
3  Heatmap tool is frequently adopted to illustrate trends in genetic data 
which are not clearly visible using other visualization techniques. This plot 
associates a color to each numerical values in a matrix so that the relevance 
of a row element in a column can be easily highlighted.
4  This divergence is frequently adopted in microarray data analysis since 
it corresponds to the maximum likelihood estimation under independent 
Poisson assumption. [39]

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24990
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2136
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metaMGUS and metaMM, in associating them the cor-
respondent gene symbol identification and in discard-
ing obsolete genes contained in the Operon version 2.0 
platform.

Considerations on the NMF‑based approach
Nonnegative matrix factorization is the core of the pecu-
liar approach we used to extract few genes which should 
be representative of the whole dataset. NMF was used 
to performed a dimensionality reduction of data matri-
ces. NMF are applied in a new peculiar way: it is used 

to select a single metagene from the MGUS data matrix 
and from the MM data matrix which can be interpreted 
as the most representative of the whole dataset (for each 
data matrix). Then, genes in each metagenes were firstly 
ranked and successively extracted in accordance to the 
gene score procedure based on the work in [43]. Finally, 
intersection and complementary set operations has been 
applied to extract common and uncommon genes to be 
further investigated from a biologically point of view 
(details are reported in “Function analysis” section).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

MGUS samples                                                                               MM samples

-15

-10

-5

0
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Fig. 1  Concatenation of the two conditions: MGUS and MM. Heatmap plot of the concatenated data matrix in log-2 scale: the first 8 columns of the 
matrix represents the gene expression profile from MGUS conditions while the latter 10 columns represents the gene expression profile from MM 
conditions

Fig. 2  Graphical illustration of NMF. Microarray matrix X is modeled as the linear combination of a set of patterns, the columns of W, and the 
assignment of genes to those patterns with varying strengths, the rows of H 
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It should be observed that factor matrices derived from 
the NMF decomposition only contain non-negative val-
ues, hence the original data can be represented by only 
additive, not subtractive, combinations of the basis vec-
tors (metagenes). This parts-based representation of 
original data is appealing because reflects the intuitive 
notion of combining parts to form a whole. Particularly, 
the metagenes can uncover meaningful biological inter-
pretation in term of genes it is composed by. Further-
more, each original sample is represented by metagenes 
with the corresponding encoding vector (the column of 
coefficient matrix H). It is clear that large value of both 
basis factors and encoding vectors play important role 
in representing of the original data allowing an intuitive 
ranking of the most important information.

Results
Preliminary microarray data analysis
A preliminary qualitative investigation of the origi-
nal data matrices were performed to figure up the most 
appropriate dimensionality reduction mechanism to 
be applied. Figure  3a illustrates the Volcano plot of the 
elements in the gene expression profile matrix among 
all 18 patients with both clinical conditions MGUS and 
MM. It can be observed the presence of some interest-
ing genes which differentiate in their expression (points 
above the horizontal dotted line). To obtain information 

on the overall structure of the complete gene expression 
microarray data (illustrated in Fig. 1) both principal com-
ponents analysis (PCA) and NMF were applied. Figure 3b 
reports the heatmap of the first principal components 
(PC1) and of the relavant metagene obtained, respec-
tively, using PCA and NMF of the gene expression profile 
matrix among all 18 patients. As it can be observed, the 
first principal component, which preserves mostly the 
variance of data (in particular the 99%), highlights very 
few genes which are unlikely assumed as a subset of genes 
representative of the whole dataset. On the contrary, the 
first metagene obtained using NMF presents differences 
between genes. Similar plots can be obtained for all the 
other principal components. These results suggest that 
PCA fails to detect relevant embedded information while 
NMF is more effective providing a more comprehensive 
detection of underlying genetic information of the com-
plete gene expression data and the possibility to handle 
the results as significance factors [32].

Microarray dimensionality reduction
The results automatically obtained from NMF based 
approach previously described are illustrated using heat-
map plots. Particularly, Figs.  4 and 5 report the heat-
maps of reordered basis matrices extracted from gene 
expression profiles of 8 patients with MGUS condition 
and from 10 patients with MM condition, respectively. 

Fig. 3  a Volcano plot of the gene expression profile data of all 18 patients. x-axis reports difference of the group means while y-axis indicates 
statistical significance of the t-test per rows (–log10 of p-value). The dashed line shows where p = 0.05 with points above the line having p < 0.05. 
In particular, points represent interesting genes, in the left upper corner are depicted genes with mostly small p-value and low difference in means, 
whereas in the right upper corner there are genes with small p-value and large difference in means. b Heatmap of the first principal component 
PC1 and of the Metagene 1 (both normalized) obtained respectively by PCA and NMF on the gene expression profile data of all 18 patients
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The ascending re-ordering of each column in the heat-
maps helps to identify the relevant metagenes as those 
with much darker shades than the others. From these 
metagenes, the gene extraction procedure is performed 
to automatically extract genes with higher values. These 
genes constitute the knowledge base to be further 

investigated from a biological point of view. The extracted 
subsets: metaMGUS and metaMM composed by 2086 
genes and 472 genes, belong to the second column in 
Fig. 4 and to the sixth metagene in Fig. 5, respectively. 

The post-processing procedure is detailed in Fig. 6. As 
it can be observed, common genes between metaMGUS 

Fig. 4  Basis matrix of MGUS condition. Heatmap plot of basis matrix extracted from the gene expression profile data matrix of the 8 patients with 
MGUS conditions. Five metagenes were automatically extracted with a rank of the factorization = 5. Values in each column of the basis matrix 
have been normalized by row and sorted to show higher values on the bottom and lower values on the top of the heatmap. As highlighted by 
the color shades, both metagenes two and five present a significant number of important genes. Metagene two has been considered as the most 
representative of the whole dataset of MGUS condition since this column includes the largest number of extracted genes

Fig. 5  Basis matrix of MM condition. Heatmap plot of the basis matrix extracted from the gene expression profile data matrix of the 10 patients 
with MM conditions. Eight metagenes were automatically extracted with a rank of the factorization equal to 8. Values in each column of the basis 
matrix have been normalized by row and sorted to show higher values on the bottom and lower values on the top of the heatmap. Due to the 
presented of the highest number of relevant values, metagene six was (automatically) identified as the most representative metagene of the 
dataset with MM condition
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and metaMM, with the gene symbol identification were 
only 24 among 46, while the remaining 17 were Homo 
sapiens cDNA and 5 Hypothetical protein. On the other 
hand, from the 426 uncommon genes belonging only to 
metaMM, 226 had the gene symbol identification, while 
the remaining 136 genes were Homo sapiens cDNA, 35 
were hypothetical protein and 29 were not Homo sapi-
ens. Moreover, from 226 genes only 216 were considered 
useful for the functional analysis since the presence of 
some duplicates. These genes and their corresponding 
median value of MGUS and MM are listed in Additional 
file 1: Tables S1 and S2.

Function analysis
Common and uncommon genes found in the two meta-
MGUS and metaMM subsets could be considered as 
genes potentially involved in the activation of fibroblasts 
from the MGUS to MM condition.

These automatically selected genes undertook func-
tional analysis via WebGestalt (WEB-based GEne SeT 
AnaLysis Toolkit) tool5 to understand if any genes could 
be responsible for the activation of bone marrow fibro-
blasts [44].

The identification of a common genes subset between 
the fibroblasts of patients with MGUS and the myeloma 
clinical condition shows that a functional switch is 

required to lead fibroblasts to acquire pro-tumorigenic 
activity. This functional switch is determined by genes 
that promote a phenotype capable of creating a more 
important dialogue in the bone marrow micro-environ-
ment. Results of this functional analysis are described in 
the following.

Functional analysis of common genes
The analysis of the 24 common genes between metaM-
GUS and metaMM allows to identify four genes in dif-
ferent pathways: 1 prokineticin precursor (Prok-1), 
gonadotropin releasing hormone 1 leutinizing-releasing 
hormone (GNRHR), alpha-2-HS-glycoprotein (AHSG) 
and beta-2-microglobulin ( β2-M). These genes alone 
may not be related to the fibroblast activation process, 
however, it is possible that integrated into the functional 
activity of the uncommon metaMGUS and metaMM 
subsets these genes are able to work in concert and 
favour activation. It can be noted that

• • The Prok-1 and GNRHR genes are present in the 
pathways: GPCR ligand binding, signal transduction 
and class A/1 (rhodopsin-like receptor).

• • The AHSG and B2M genes are present in VEGF and 
VEGFR signaling network, Arf6 downstream path-
way, Sphingosine 1-phosphate (S1P) pathway, prote-
oglycan syndecan-mediated signaling events, Nectin 
adhesion pathway, EGFR-dependent signaling events 
endothelin, and endothelins.

In particular, the gene Prok-1 is involved in the synthe-
sis of a secretory protein signalling and is a potent angio-
genic factor, in fact, promotes angiogenesis in various 
steroids glands [45]. Moreover, Prok-1 protein promotes 
the survival and differentiation of granulocytes and 
monocytes, as well as stimulation, mobilization of hemat-
opoietic cells and modulation of the immune response 
[46].

The protein encoded by the gene is a GnRH receptor 
type 1 of gonadotropin-releasing hormone, it is part of a 
system autocrine regulation of cell proliferation and it is 
expressed on the surface of many cells, on lymphocytes 
and in various human malignant tumors [47].

Alpha2 HS-glycoprotein is encoded by AHSG gene, it 
is an important chemoattractant in serum or blood and 
it is involved in different functions as endocytosis and 
bone formation. Cancer cells have the ability to follow the 
concentration gradient of Alpha2 HS-glycoprotein from 
primary sites up to the nearby blood vessel. Moreover, 
AHSG shows synergy with traditional chemotactic as 
SDF-1/CXCL12 to mediate chemotaxis and invasion of 
cancer cells through the extracellular matrix [48].

Fig. 6  Workflow of the post-processing procedure. Common and 
uncommon genes have been extracted from the two obtained 
subsets and matched with their corresponding gene symbols. These 
operations get two groups of genes: 24 over 46 for common genes 
and 216 over 426 for uncommon genes. Genes symbols and their 
corresponding expression median value in the two conditions, MM 
and MGUS, are reported in Additional file 1

5  WebGestalt is a functional enrichment analysis web tool that using statis-
tics is able to translate gene lists into biological insights [44].
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Finally, the β2-M gene encodes for a non-glycosylated 
protein that is present in all nucleated cells. The β2-M 
protein activates pleiotropic signaling such as regula-
tion of protein kinase A, androgen receptor, VEGF, fatty 
acid synthetase and has multiple roles in tumorigenesis 
and angiogenesis. β2-M behaves as a growth factor and 
is known to activate stromal cells, such as mesenchymal 
stem cells, osteoblasts and osteoclasts [49].

In addition to the described genes, we can individually 
identify WHSC1, PRDM14 and ANXA11 genes which 
are involved in autoimmune disorders and in some can-
cers [50–52]. The set of functions governed by the genes 
selected and described has shown a particularly active 
state of the fibroblasts belonging to the subset of com-
mon metaMGUS and metaMM genes but without the 
adoption of a phenotype that can alter the bone marrow.

Functional analysis of uncommon genes
The analysis of 216 genes present just in metaMM but not 
in the intersection allows to select 11 pathways in which 
only 30 of 216 genes belonging to metaMM are present. 
Fig.  7 illustrates the network generated by these genes: 
each node in the network represents a gene, the node size 
is proportional to the number of pathways the specific 
gene belongs to, whereas edges between nodes indicate 
linked pathways. As it can be observed, few genes located 
in the centre of chart are the key genes linking all the 
remaining genes. 

These genes and the pathways they belong to are listed 
in Table 2.

In particular, it can be noted that:

• • The TNF gene is shared in 7 pathways, it is a multi-
functional pro-inflammatory cytokine and represents 
an index of fibroblast activity in the regulation of a 
broad spectrum of biological processes, including cell 
proliferation, differentiation, apoptosis, metabolic 
lipids and coagulation within the bone marrow [53, 
54].

• • The FYN gene and the PPP3CB gene are present 
in 6 and 5 of the selected pathways, respectively. In 
particular, the FYN gene is a member of the kinase 
family and plays a role in controlling cell growth [55]. 
The PPP3CB gene is a phosphatase and has a specific 
role in regulating T lymphocytes [56].

• • NFATC1 and LCP2 genes are present in 4 of the 
selected pathways. The function of the protein 
encoded by the NFATC1 gene is the regulation of 
multiple cytokines and other regulatory molecules, 
including some interleukins (IL-2, IL-3, IL-4, IL-5, 
IL-6, IL-8, GM CSF), interferon (IFN)-ν, tumor 
necrosis factor (TNF)-α, CD40 ligand (CD154), and 
CD95 ligand (FasL). The NFATC1 protein is mainly 
studied in T cells (calcineurin-dependent 1) and is 
involved in the immune responses of lymphocytes B, 
NK cells, macrophages, mast cells, and eosinophils 
[20, 54, 57]. The LCP2 protein acts as a T cell sub-
strate (TCR), therefore it plays a role in the transduc-
tion of the intracellular signal mediated by TCR [58].

• • EGF, HGF, TGFB3, LAT, CASP9, and COMP genes 
are present in 3 of the 11 pathways, they encode for 
proteins involved in the growth, proliferation and 
differentiation of many cell types. In particular, EGF 
is a potent mitogen factor [59], while HGF binds to 
the hepatocyte growth factor receptor to regulate 
morphogenesis, growth and cellular motility and is 
secreted by mesenchymal cells. The HGF therefore 
acts as a multifunctional cytokine on predominantly 
epithelial cells and plays a role in angiogenesis, tumo-
rigenesis, and tissue regeneration [60, 61]. TGFB3 
protein is a ligand of the various TGF-beta recep-
tors and leads to the recruitment and activation of 
SMAD family transcription factors and regulates a 
myriad of mainly immunosuppressive responses [18, 
62–64]. The LAT protein forms, along with several 
adaptive proteins, a complex that creates a multimo-
lecular signaling network located at the TCR engage-
ment site. The role played by LAT protein underlines 
the complex modulation performed by fibroblasts of 
uncommon metaMM subsets in regulating immune 
response [65]. The CASP9 gene encodes for a protein 
whose function is comparable to a tumor suppressor 
and its functional polymorphisms may be responsi-

Fig. 7  Network obtained from genes sharing different pathways. 
Nodes of the graph represent the 30 genes reported in Table 2, the 
graph edges link genes belonging to the same pathway. Node size 
reflects the number of pathways the gene is involved in: larger is 
the radius of the node greater is the number of pathways the gene 
belongs to
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ble for alterations in proliferation [66]. The protein 
encoded by the gene COMP family belonging to the 
thrombospondin family carries out direct action on 
the mechanical integrity of the extracellular matrix, 
intervening in the interface between mineralized 
and non-mineralized regions [67, 68]. This protein is 
involved in the interaction between fibroblasts and 
osteoblasts, and is related to the significant changes 
caused by the nature of mechanical stress by the min-
eralized fibrocartilage to the bone [69].

• • GAB2, CRK, APC2, BMP4, SPI1, PDPK1 and 
FCGR3B genes are only present in 2 of the 11 path-
ways selected, specifically GAB2 and CRK, are adapt-
ers for the transmission of various signals, GAB2 pro-
tein responds to receptors stimuli cytokines, growth 
factors, and antigen receptors [70] while CRK protein 
binds several tyrosine-phosphorylated proteins [71]. 
The APC2 gene encodes a protein that promotes the 
assembly of a multiproteic complex responsible for 
the control of beta-catenin cytoplasmic levels and is 
crucial in interaction with cytoskeletal proteins [72]. 
The BMP4 gene belongs to the superfamily of TGF-
beta proteins [73] and the SPI1 gene encodes for a 
transcription factor that activates gene expression in 

the myeloid line and the development of B-lymphoid 
cells [74]. The PDPK1 gene encodes for a serine-
threonine kinase, crucial to regulating cell migration. 
PDPK1 is a signal transducer for PI3K and activates 
multiple downstream effectors, it represents a focal 
point in the coordination of signals from the extra-
cellular environment to the cytoskeleton PLCν [75]. 
Finally, the FCGR3B gene encodes for a low affinity 
receptor for the Fc region of gamma immunoglobu-
lins (IgG) and is capable of capturing immune com-
plexes [76].

• • Gene residues individually present in the 11 path-
ways, such as the CD3E gene and the CD28 gene may 
be involved in some cellular processes mainly related 
to an immune response [75]. The immune response 
is integrated with the CSF2RA [76] and SLIT2 genes 
[77]. A second set of genes promotes cell prolifera-
tion control; indeed, the ID2 gene belongs to tran-
scriptional factor regulators and negatively regulates 
cell differentiation [78]. E2F5 genes and PTPN11 are 
important in cell cycle control and tumor suppres-
sor genes in oncogenic transformation [79, 80]. The 
last group consists of FZD2 [81], ACTN1 [82], CFL1 
[83] and RHOD [84, 85], these genes are involved in 

Table 2  Table lists the gene symbol and the KEGG pathway of selected genes

Only 14% of the total number of genes has been selected with the WebGestalt tool

Gene symbol Pathway name Gene symbol Pathway name

TNF T cell receptor signaling pathway, osteoclast differentiation, 
natural killer cell mediated cytotoxicity, Fc epsilon RI signal-
ing pathway, TGF-beta signaling pathway, amyotrophic lateral 
sclerosis (ALS), malaria

FYN T cell receptor signaling pathway, osteoclast differ-
entiation, natural killer cell mediated cytotoxicity, 
Fc epsilon RI signaling pathway, axon guidance, 
focal adhesion

PPP3CB T cell receptor signaling pathway, osteoclast differentiation, natu-
ral killer cell mediated cytotoxicity, axon guidance, amyotrophic 
lateral sclerosis (ALS)

NFATC1 T cell receptor signaling pathway, osteoclast differ-
entiation, natural killer cell mediated cytotoxicity, 
axon guidance

LCP2 T-cell receptor signaling pathway, osteoclast differentiation, 
natural Killer cell mediated cytoxicity, Fc epsilon RI signaling 
pathway

EGF Pathway in cancer, focal adhesion, endometrial 
cancer

HGF Pathway in cancer, malaria, focal adhesion TGFB3 Pathway in cancer, malaria, TGF-beta signaling 
pathway

LAT T-cell receptor signaling pathway, natural Killer cell mediated 
cytoxicity, Fc epsilon RI signaling pathway

CASP9 Pathways in cancer, amyotrophic lateral sclerosis 
(ALS), endometrial cancer

COMP TGF-beta signaling pathway, focal adhesion, malaria GAB2 Osteoclast differentiation, Fc epsilon RI signaling 
pathway

CRK Pathway in cancer, focal adhesion APC2 Pathway in cancer, endometrial cancer

BMP4 Pathway in cancer, TGF-beta signaling pathway SPI1 Pathway in cancer, osteoclast differentiation

PDPK1 Focal adhesion, endometrial cancer FCGR3B Osteoclast differentiation, natural killer cell medi-
ated cytoxicity

CD3E T cell receptor signaling pathway CD28 T cell receptor signaling pathway

CSF2RA Pathways in cancer SLIT2 Axon guidance

ID2 TGF-beta signaling pathway E2F5 TGF-beta signaling pathway

PTPN11 Cytotoxicity mediated by killer cells FZD2 Pathways in cancer

ACTN1 Focal adhesion CFL1 Axon guide

RHOD Axon guide MAP3K5 Amyotrophic lateral sclerosis (ALS)



Page 11 of 16Boccarelli et al. J Transl Med  (2018) 16:217 

the organization of the cytoskeleton. Finally, MAPK 
gene encoding MAP3K5, responsible for the activa-
tion of several downstream effects, in particular tran-
scription factors, which regulate different cellular 
responses [86]. The functional network created by 
the 30 genes in the 11 pathways selected and belong-
ing to the uncommon subset of metaMM shows that 
fibroblasts have acquired additional properties from 
those belonging to the common metaMGUS subset 
that favor the “activated fibroblast” condition.

Validation of post‑processing procedure as preliminary 
step for functional analysis
It is important to note that the functional analysis of 
common genes, found through the post-processing pro-
cedure, is correlated with the information extracted 
studying the two clinical conditions at the same time. In 
fact, focusing on this aim, the NMF has been also per-
formed on the matrix concatenating the MGUS and MM 
conditions with a rank equal to r = 5. This rank selection 
respects the theory of the rank of a concatenation matrix 
(that is rank([A1,A2]) < rank(A1)+ rank(A2), where 
[A1,A2] is the concatenation per column of the matrices 
A1 and A2).

The heatmap plot of the reordered basis matrix, 
obtained from the NMF, shown in Fig. 8a, allows to iden-
tify the first column as the most informative metagene. 
From this metagene 1393 genes were identify through 
the extraction procedure; we refer to this subset as meta-
MGUSMM. It is worthy to note that metaMGUSMM 
contains a significant part of common genes previously 
extracted. Moreover, to further investigate the possible 
influence of the selected metagene among all patients, 
an analysis on the associated coefficient matrix was per-
formed. Figure  8b plots the density level corresponding 
to the elements of the selected metagene in the coeffi-
cient matrix. The density values represent the weight of 
the selected metagene among patients who are distin-
guished by circle and star markers in accordance to the 
condition they belong to (circle corresponds to MGUS 
and star to MM, respectively). The higher is the value, 
the greater is the effect of the metagene over a specified 
condition; as it can be appreciated in the plot the major-
ity corresponds to MM condition. This can be considered 
as an empirical evidence of the effectiveness of the func-
tional analysis performed on the subset of genes as a tool 
to acquire an understanding on the activation of fibro-
blasts in bone marrow. 

Discussion
The combined use of NMF, gene extraction mechanism 
and post-processing procedure on fibroblast gene expres-
sion of patients with MGUS and MM, allows to select a 

reduced number of genes ideally involved in the activa-
tion of bone marrow fibroblasts (CAF) in the MM. Usu-
ally, as observed in solid tumors, a sub-population of 
CAF is studied on the basis of some expressed indicators, 
but the data are interpreted as true for all CAF popula-
tions. In fact, the term “cancer-associated fibroblasts” 
is misleading, since it groups these cells based solely on 
their position, despite the heterogeneity and roles in the 
different types of tumors. The common characteristic of 
CAF is the ability to alter the micro-environment and 
the behaviour of neoplastic cells. In fact, when a trans-
formation is established in a cell, a symbiotic relationship 
that promotes tumor growth is generated with its micro-
environment. This process is a crucial feature and those 
neoplastic cells that fail to develop this capacity will not 
overcome tumorigenic barriers and will remain quiescent 
(not evolution of the disease). In this study, we primar-
ily sought to identify the specific genes associated with 
activation of the sub-population of CAF in the bone mar-
row micro-environment and aimed at understanding the 
role in the pathogenesis of MM. These genes, grouped 
into common and uncommon subsets compared to the 
two clinical conditions (MGUS and MM), were sub-
sequently functionally analysed. The evaluation of the 
results obtained is purely descriptive and focused on 34 
genes: 4 belonging to common genes and 30 to non-com-
mon genes in metaMGUS and metaMM. The 4 common 
genes show a fibroblast phenotype incapable of altering 
the bone marrow micro-environment. By contrast, the 
30 genes belonging to the subset of uncommon genes of 
metaMGUS and metaMM have allowed fibroblasts to 
acquire additional properties other than those belong-
ing to the subset of common metaMGUS and metaMM 
genes, that favour the “activated fibroblast” condition.

In particular, as shown in Fig.  9, the functional path-
ways allowed to select proteins such as NFATC1, HGF 
and FYN proteins that favor epithelial–mesenchy-
mal transition (EMT); add the immortalization pro-
cesses linked to inhibition of apoptosis (TNF, CFL1, 
HGF, COMP, FYN) [53, 55, 87–89] and changes in glu-
cose metabolism and the regulation of insulin signaling 
(PTPN11, PDPK1) [90]. The proteins encoded by the 
genes FYN, CD28, PDPK1, PTPN11 play a stimulating 
action of T cells [77, 91–93] while PPP3CB and NFATC1 
regulate the signalling pathways of lymphocyte receptors 
B and T [56, 94]; as well as CD28, LAT, LCP2, FCGR3B 
are involved in mediating the immune response [58, 65, 
76, 77]. In addition, the phenotype acquired by fibro-
blasts exhibits unique functional properties which also 
serve for osteoblastic differentiation. Indeed, in the evo-
lution of MM disease, the action of the fibroblasts in the 
bone marrow niche is subject to a neuroendocrine regu-
lation of bone metabolism. The fibers of the sympathetic 
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nervous system (SNS), known to innervate the corti-
cal bone, modulate a number of functions, including 
the homeostatic regulation and hormonal control of 
bone turnover [95]. In this regard, the gene products of 
PPP3CB, FYN, NFATC1, RHOD, SLIT2, CFL1 could be 
involved in the propagation of a vicious cycle charac-
terized by the presence of osteolytic lesions, caused by 
prolonged declines in bone mineralization mediated by 
osteoblasts and increases bone resorption by osteoclasts. 
The signaling pathways are mediated by growth factors 

(EGF, HGF, TGFB3, BMP4), cytokines (TNF, SLIT2) and 
specific receptors (CD3E, CD28, FCGR3B, CSF2R), sug-
gesting greater influence of activated fibroblasts in MM 
compared to the condition of MGUS. Therefore, in the 
progression of the disease, the selected 30 genes generate 
a clear interaction between activated fibroblasts and T 
lymphocytes, NK cells, osteoclasts, B lymphocytes, mac-
rophages, and the same plasma cells. Thus, the subgroup 
of uncommon metaMGUS and metaMM genes may be 
considered candidates for determining the activation 

Fig. 8  a Heatmap plot of basis matrix extracted from the gene expression profile data matrix. This matrix has been obtained concatenating 
expression data from 10 patients with MM condition and 8 patients with MGUS condition. Five metagenes were automatically extracted with a 
rank of the factorization = 5. Values in each column of the basis matrix have been normalized by row and sorted to show higher values on the 
bottom and lower values on the top of the heatmap. The first metagene was automatically identified as the most representative metagene of the 
whole dataset of the two conditions, since it presented the highest number of relevant values. b Density level of the coefficient matrix for each 
patient in the first metagene. Values in the coefficient matrix have been normalized by column to a clearer result representation. The MM and 
MGUS conditions are marked by circle and star markers, respectively. Higher values represent a greater influence of genes in the metagene on the 
corresponding patient
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of bone marrow fibroblasts and actively involved in the 
progression of the disease from MGUS to MM. In addi-
tion, by adopting the style introduced for the different 
polarized immune cells, we could also subdivide the CAF 
into two functional subtypes: the F1 and F2 polarized 
fibroblasts [17, 18]. The subtype F1 could be associated 
with the MGUS condition because it is characterized by 
genes that alone are not related to the activation pro-
cess of fibroblasts, although it is possible that they are 
able to work in conjunction with uncommon genes of 
metaMGUS and metaMM. The subtype F2, instead, 
characterized by the uncommon genes of metaMGUS 
and metaMM, can be associated with the MM condition 
because it is able to create an altered dialogue between 

the plasma cells and the bone marrow. Although some of 
these genes have already been validated by in vitro and in 
vivo experiments, as the literature indicates, the rest will 
be the object of our attention in the near future. 

Conclusion
In conclusion, we applied a peculiar methodology based 
on NMF method to gene expression profiles of fibroblasts 
from patients with MGUS and MM to identify—in an 
automatic manner—a limited number of genes which are 
possible candidates associated with activation of fibro-
blasts in the bone marrow in patients with MM com-
pared to MGUS. We recognize that these in vitro results 
almost certainly represent an incomplete representation 

Fig. 9  Functional network of different pathways genes. The functional network created by the genes in the 11 pathways selected and belonging 
to the subset of uncommon metaMM. The CAFs have acquired additional properties from those belonging to the common metaMGUS subset. 
In particular, the 30 selected genes regulate processes such as: epithelial–mesenchymal transition (EMT), immortalization, inhibition of apoptosis, 
changes in glucose metabolism and the mediation of the immune response. The phenotype acquired by fibroblasts shows properties that include 
homeostatic regulation and hormonal control of bone turnover (PPP3CB, FYN, NFATC1, RHOD, SLIT2, CFL1) and also mediate signals with specific 
receptors, growth factors and cytokines
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of the normal fibroblast response in the bone marrow 
microenvironment during the progression of the disease 
from MGUS to MM, for experimental times. However, 
we believe that the emerged picture strongly suggests 
a very broad role for fibroblast in the orchestration of 
this important process. Furthermore, it should be noted 
that only with a greater understanding of the relation-
ship between plasma cells and stromal bone marrow 
cells can we have suggestions for a more targeted therapy 
and these results provide a further contribution. In fact, 
a pharmacological treatment with a simultaneous action 
against the genes in the selected pathways, rather than on 
the single gene, could have a greater effect on the evolu-
tion of the disease. Therefore, the development of com-
binatorial therapies for both CAF and neoplastic cells 
could be promising in clinical practice.

Additional file

Additional file 1: Tables S1 and S2. Genes and their corresponding 
median value of MGUS and MM.
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