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Ω-3 fatty acids-supplementary in gestation
alleviates neuroinflammation and
modulates neurochemistry in rats
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Abstract

Background: The mechanisms underlying the association between immune activation and postpartum depression
remained elusive. Although Ω-3 fatty acids possess anti-inflammatory properties, there is limited evidence directly
linking the modulating effects of Ω-3 fatty acids on neuroimmune and neurochemistry to the antidepressant actions.

Methods: A between-groups design was used to assess the effects of reproductive status (virgin or parous) and Ω-3
fatty acids content (control and supplementary). Serum inflammatory cytokine levels (IL-1a, IL-1β, IL-2, IL-6, IL-12, TNF-a,
IFN-γ) were evaluated using the Bio-Plex Luminex System. Moreover, we also measured the protein levels of Purinergic
type 2X7 receptor (P2X7R), NOD-like receptor pyrin domain containing 3 (NLRP3) and Nuclear factor-kappaB (NF-κB).
Lastly, we assessed the function of various neurotransmitter systems to link the inflammatory response and
neurotransmitter metabolism.

Results: Pro-inflammatory cyrokines, including IL-1a, IL-6, TNF-a and IFN-γ were markedly induced in the serum of
parous rats, although no significantly depressive-like behavior was found. Meanwhile, NLRP3 and NF-κB were decreased
in certain brain areas. Moreover, gestational stress significantly induced neurochemical disturbance, which is partly
restored by Ω-3 fatty acids supplementation.

Conclusions: These findings strengthen the link between inflammation, neurochemistry and postpartum depression,
and further provide novel insights into the antidepressant effect of Ω-3 fatty acids.

Keywords: Ω-3 fatty acids, Neuroinflammatary factors, Purinergic type 2X7 (P2X7), NOD-like receptor pyrin domain
containing 3 (NLRP3), Nuclear factor-kappaB (NF-kB), Neurotransmission

Background
The pathogenesis of depression has not yet been defined.
Among many hypotheses, the neuroimmune theory con-
tinues to generate substantial interest. Several studies in
both humans and animals have provided evidence for a
link between the inflammatory process and the depressive
disorders. Patients with depression were reported to exhibit
an activation of the inflammatory response as shown by
increased levels of proinflammatory cytokines (e.g.
interleukin-1β (IL-1β), IL-6, tumor necrosis factor-a

(TNF-a), interferon-γ (IFN-γ)) and altered secretion of
anti-inflammatory cytokines (e.g. interleukin-4 (IL-4) and
IL-10), as well as increased concentrations of acute-phase
proteins in the peripheral [1–5]. Also studies involving ani-
mal models of depression have revealed alterations in the
function of immune system both in the periphery and in
the central nervous system (CNS). A restraint stress model
in mice demonstrated a higher expression of IL-1β in the
hippocampus [6]. Furthermore, in chronic mild stress
(CMS) model of depression, the concentrations of IL-1β,
IL-6, IL-18 and TNF-a in the brain or serum were en-
hanced [7–9]. It is worth emphasizing that the serum pro-
inflammatory cytokines, including IL-1β and IL-6, were
also increased in the rats with postpartum depression [10].
Omega-3 polyunsaturated fatty acids (Ω-3 PUFAs), es-

pecially eicosapentaenoic acid (EPA, C20:5n-3) and
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docosahexaenoic acid (DHA, C22:6n-3), are essential
fatty acids that play crucial roles in balancing inflamma-
tion and neurobiological mechanisms of depression [11].
Ω-3 fatty acids and Ω-6 fatty acids consumption have
opposite influence on inflammation. Arachidonic acid
(AA, C20:4n-6), a Ω-6 fatty acids, increase proinflamma-
tory cytokine production [12]. However, studies have
found the association between higher intake of Ω-3
PUFAs and lower proinflammatory cytokine production
[13]. Maternal storage of DHA, a biologically important
LC-PUFA, was reported to be reduced during pregnancy
[14]. Importantly, a recent meta-analysis has found that
Ω-3 PUFAs supplementation show antidepressant effect
on depression patients [15]. However, whether the re-
duction of Ω-3 PUFAs during pregnancy could increase
the proinflammatory cytokine production, and further
increase the risk of depression in parous female remains
unknown.
In recent years, increased attention has been paid to the

importance of cytosolic signalling pathways of inflamma-
tion. Among these, the NOD-like receptor pyrin domain
containing 3 (NLRP3) inflammasome is of particular inter-
est [16]. The NLRP3 inflammasome is activated by a wide
range of divergent invading pathogens and cellular dam-
ages, and subsequently results in activation of caspase-1 by
which inactive forms of IL-1β and IL-18 (i.e., pro-IL-1β
and pro-IL-18) are processed to mature IL-1β and IL-18. It
has been shown that LPS- and CUMS-induced depression
is associated with NLRP3 inflammasome activation in
brain [8, 9, 11, 17]. Patients with major depressive disorder
(MDD) also reported to exhibit increased level of NLRP3
inflammasome in peripheral blood mononuclear cells
[18].Given that inflammation in brain may contribute to
depression-like behavior, we hypothesized that NLRP3
inflammasome may contribute to neuroinflammation in
postpartum depression. Purinergic type 2X7 receptor
(P2X7R) is an ionotropic receptor located predominantly
on microglia and macrophages and is activated in response
to cellular danger signals, such as adenosine triphosphate
(ATP) [19]. Studies of peripheral immune cells demon-
strate that the ATP/P2X7R-induced oligomerization of
NLRP3 is the major steps of inflammatory response to
danger substances [20, 21]. Stress may increase ATP, which
further activates P2X7R and releases IL-1β with subse-
quent activation of the NLRP3 inflammasome [22].
Inflammation-induced disorder was reported to be asso-

ciated with perturbations of neurotransmission, especially
the imbalance between serotonin (5-HT) and kynurenine
(KYN) branches of tryptophan (TRY) metabolism due to
the activation of the tryptophan-degrading enzyme indolea-
mine 2,3-dioxygenase (IDO) [23, 24]. Moreover, increased
glutamate will releases ATP, and further activates P2X7R
and the subsequent inflammatory response [25]. Thus, in-
flammatory response may interact with neurotransmitter

metabolism, and further influence the development of
depression.
In the present study, we evaluated the serum levels of

proinflammatory cytokines to illustrate the modulate ef-
fect of Ω-3 PUFAs on neuroimmune system. We also
measured the inflammation and oxidative stress
markers, P2X7R, NLRP3 and NF-kappaB (NF-κB) in the
prefrontal cortex and hippocampus, which are thought
to mediate the expression of pro-inflammatory factors.
Finally, we analyzed neurochemical metabolites spanning
amino acids, dopamine (DA), noradrenaline (NE), 5-HT
and KYN metabolic pathways in the rat brain to gain
further insight into the interrelationship between inflam-
mation and neurotransmission.

Methods
Animals and husbandry
Adult, male and female Sprague-Dawley rats were ini-
tially housed in a temperature-controlled environment
under a 12/12 h light/dark cycle with free access to food
and water except prior to sucrose preference test (SPT).
All efforts were made to minimize suffering. This study
was approved by the Animal Care & Use Committee of
Central South University. All experiments were per-
formed in accordance with the Guide for Care and Use
of Laboratory Animals (Chinese Council).

Experimental design
A between-groups design was used to assess the effects
of reproductive status (virgin or parous) and Ω-3 PUFAs
content (control and supplementary). After a short accli-
mation period, rats were randomly assigned to groups
mentioned above (n = 6–7). Breeding stock maintained
on corresponding diets from two weeks before mating to
the 3 weeks of postpartum. One male rat was housed
with two female rats per cage for three days at the time
of mating. To meet all current nutrient standards for
rats’ pregnancy and growth [26], the Control diet in our
experiment was AIN-93G (Trophic Animal Feed
High-Tech Co., Ltd., China) formulated with soybean oil
(70 g/kg). The Supplementary diet was identical to the
Control diet except the oil formulation. The Supplemen-
tary diet was prepared with fish oil (20 g/kg) and soy-
bean oil (50 g/kg). The fatty acids composition of the
diets is shown in Table 1. After breeding treatments and
behavior tests, rats were anesthetized and sacrificed.

Forced swinmming test (FST)
The paradigm is based on the evaluation of immobility
as a measure of behavioral despair in stressful and in-
escapable situations. The test was performed as previ-
ously reported [27]. Two swimming sessions were
conducted: a 15-min pretest on the first day followed by
a 5-min test the next day. Briefly, each rat was placed in
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a plastic drum (45 cm height, 25 cm diameter) contain-
ing approximately 35 cm of water (24 ± 1 °C) for a
15-min pretest. After swimming, rats were dried with
towels and placed back in their home cage. Twenty-four
hours later, the rat was exposed to the same experimen-
tal conditions for a 5-min FST. Water was changed be-
fore each trial. Increasing immobility time is the
indicator for depressive-like symptom, which was de-
fined as floating passively and only making slight move-
ments to keep the head above water. Each test session
was videotaped and the duration of immobility was
scored by two experienced observers blind to the experi-
ment design.

Sucrose preference test (SPT)
SPT is a measure of stressed-induced anhedonia state, a
key depressive-like behavior in rats [28]. Prior to SPT, the
rats were housed individually in separated cages and given
free access to two bottles of sucrose solution (1%, w/v).
Then after 24 h, one bottle of sucrose solution was re-
placed with water. On day 3, rats were deprived of water
for 23 h, and then rats were given free access to two
pre-weighed bottles of solution: 100 ml of sucrose solution
(1%, w/v) and 100 ml of water. The side (left and right) of
the bottles was randomly placed to avoid spatial bias. One
hour later, the consumed volume in both bottles was re-
corded. The preference for sucrose was measured as a
percentage of the consumed 1% sucrose solution relative
to the total amount of liquid intake.

Determination of systemic concentration of inflammatory
cytokines
Serum inflammatory cytokine levels (IL-1a, IL-1β, IL-2,
IL-6, IL-12, TNF-a, IFN-γ) were measured with the
Bio-Plex System and Luminex xMAP technology
(Bio-Rad Laboratories, Inc., USA) using a high sensitivity
kit (Bio-Techne; R&D Systems, Inc., USA). The Bio-Plex
200 system (Bio-Rad Laboratories, Inc., USA) uses fluo-
rescently dyed beads, a flow cytometer and associated

optics, and a high-speed digital signal processor to detect up
to 100 different types of molecules in a single well of a
96-microwell plates, requiring low sample volumes [29, 30].
The colour-coded beads are pre-coated with analyte-specific
capture antibodies which bind to the cytokine of interest.
Then, biotinylated detection antibodies specific to the ana-
lytes of interest are added, forming an antibody-antigen
sandwich. Finally, phycoerythrin-conjugated streptavidin is
added, binding to the biotinylated detection antibodies.
With this technology, relevant inflammatory cytokines could
be detected in a single run. Dyed beads are read on the
Bio-Plex analyser. One laser classifies the bead and deter-
mines the cytokine that is being detected, and a second laser
determines the magnitude of the phycoerythrin-derived sig-
nal, which is in direct proportion to the amount of molecule
bound. Cytokine concentrations were derived by interpolat-
ing the measured fluorescence intensities to standard curves,
and correcting by the corresponding dilution factor
employed to achieve the minimum volume for analysis.
Bio-Plex Manager software was employed to calculate cyto-
kine concentrations. To avoid inter-assay variations, all sam-
ples were analyzed with the same kit on the same day.

Western blot analysis
Protein extracts of tissues (10 μg) were mixed with gel
loading buffer and separated on 12% SDS-PAGE gels.
After electrophoresis, the proteins were transferred onto
PVDF membranes and then blocked with 5% nonfat dry
milk in Tris-buffered saline (TBS). Membranes were incu-
bated with the following primary antibodies: anti-P2X7,
anti-NALRP3, anti-NF-κB and anti-β-actin. After incuba-
tion with the primary antibodies, membranes were washed
with Tris-buffered saline containing 0.05% Tween-20
(TBST), and incubated with appropriate horse radish per-
oxidase (HRP)-conjugated secondary antibodies. The film
signal was digitally scanned and then quantified using
Image J software.

The determination of neurotransmitters
Following the method we established before [31], neuro-
transmitters and their metabolites were quantified using
high-performance liquid chromatography coupled to tan-
dem mass spectrometry (HPLC-MS/MS). Briefly, brain tis-
sues were homogenized by tissue homogenizer with 1 ml of
85% ice-cold acetonitrile-water adding 10 μl of mixed in-
ternal standard solution (containing 20 μg/ml 3,4-dihydrox-
ybenzylamine, 10 μg/ml 5-hydroxyindole-2-carboxylic acid
and 100 μg/ml L-aspartic acid-13C4,15 N). After the hom-
ogenate, the mixture was centrifuged at 4 °C for 15 min at
10000 rpm. The supernatant (500 μL) was then transferred
and subsequently evaporated to dryness. For derivatization,
150 μl of dansyl chloride solution (4 mg/ml in acetonitrile)
and 50 μl of 0.1 M Na2CO3-NaHCO3 buffer (pH 11.0)
were added to the residue and reacted at 35 °C for 30 min.

Table 1 Fatty acids composition of the Experimental Diets

Fatty acids Content in diet(area percent)

Control Supplementary

C16:0 11.21 9.77

C18:0 3.59 3.41

C18:3n3 4.70 3.50

C18:1n9c 24.24 23.00

C18:2n6c 54.69 47.70

C20:5n3 ND 6.96

C22:6n3 ND 3.72

Other MUFA 1.56 1.95

Diet fatty acids composition was determined by GC/MS using Supelco 37
Standard. ND: Not detected
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After the reaction, the pH of the mixture was ad-
justed by adding 10 μl of 7.5% formic acid solution.
After centrifugation, the supernatant was transferred
to the vial for analysis. HPLC-MS/MS analysis was
carried out on a Waters Acquity ultra-performance liquid
chromatography system (Waters, USA) with a Micromass
Quattro Premier XE tandem quadruple mass spectrom-
eter (Waters, USA) equipped with ESI source. The chro-
matographic separation was achieved on Ultimate XB-C8
column, 2.1 mm× 50 mm, 3.0 μm particle size (Welch,
China). The mobile phase for elution was a gradient estab-
lished between solvent A (water with 20 mM ammonium
acetate and 0.1% formic acid) and solvent B (acetonitrile)
at a flow rate of 0.25 ml/min. The mass spectrometer was
operating at the following parameters: capillary voltage,
3.00 kV; extractor voltage, 3.00 V; source temperature,
120 °C; desolvation temperature, 450 °C; desolvation gas
flow, 750 L/h; cone gas flow, 50 L/h. Argon used as the
collision gas was introduced into the collision cell at a
flow rate of 0.16 ml/min. The electrospray ionization
source was operated in the positive mode. Data acquisi-
tion was carried out by Mass Lynx 4.1 software. Neuro-
transmitters were quantified relative to the internal
standard areas and calibrated using standard curves.

Statistical analysis
Results from the experiment were expressed as means ±
SEM and analyzed using SPSS software. Differences be-
tween groups were determined by two-way ANOVA
with reproductive status (yes or no) and Ω-3 PUFAs
content (control and supplementary) as main factors.
When significant interaction or main effect was found
for any item, post hoc analysis for multiple pairwise
comparisons was performed using the Bonferroni cor-
rection. The level of significance was set at 0.05.

Results
Forced swimming test
Two-way ANOVA on immobility time in FST indicated
a significant effect of reproductive status (F(1,24) =
11.523 p < 0.01) (As shown in Fig. 1a). In the control
groups, virgin rats had a higher immobility time than
parous rats (p < 0.01). This effect of reproductive status
was greatly attenuated in supplementary rats, resulting
in no significant difference between the virgin and par-
ous rats (p = 0.198).

Sucrose preference test
As to the percentages of sucrose preference, no signifi-
cantly difference was found between the virgin and par-
ous rats in different dietary groups (Diet: F(1, 24) < 1;
reproductive status: F(1, 24) < 1): CON group (virgin:
63.46 ± 5.38%; parous: 77.80 ± 3.69%), ENR group (virgin:
67.22 ± 5.23%; parous: 69.23 ± 3.93%)(Shown in Fig. 1b).

Serum inflammatory cytokines
To further explore the neuroinflammatory response to par-
ous treatment, we firstly evaluated the serum inflammatory
cytokines. As shown in Fig. 2, the four pro-inflammatory
cyrokines IL-1a (p < 0.05), IL-6 (p < 0.05), TNF-a (p < 0.05)
and IFN-γ (p < 0.01) were markedly induced in the serum
of parous rats, whereas supplementary with Ω-3 fatty acids
significantly ameliorated the pregnancy-induced upregula-
tion of these proinflammatory cyrokines.

Protein levels of P2X7, NALRP3 and NF-κB in the
prefrontal cortex
The NF-κB level was influenced by diet (F(1,24) =13.429,
p = 0.002) and reproductive status (F(1,24) = 25.324, p =
0.000) (Fig. 3d). In the control rats, parous rats had a lower
protein level of NF-κB (p < 0.01). Fish oil supplementation

Fig. 1 Performance in the behavior test. Immobility time in the FST (a); Sucrose preference in the SPT (b). #significantly different between
reproductive status conditions (Two-way ANOVA followed by LSD post hoc test, n = 6–7 in each group)
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attenuated the effect of reproductive status in control rats
and significantly increased the expression of NF-κB com-
pared to control groups (p < 0.01).

Protein levels of P2X7, NALRP3 and NF-κB in the
hippocampus
As to the protein level of P2X7, no significantly differ-
ence was found between the virgin and parous rats in
different dietary groups in the hippocampus (shown in
Fig. 4b). However, the protein level of NALRP3 was in-
fluenced by diet (F(1,24) = 13.095, p = 0.002) and repro-
ductive status (F(1,24) = 5.305, p = 0.035). In the control
rats, as shown in Fig. 4c, parous rats had a lower protein
level of NALRP3 (p < 0.01). Fish oil supplementation sig-
nificantly increased the expression of NALRP3 com-
pared to control groups (p < 0.05). In parallel with the
prefrontal cortex, the NF-κB level was influenced by diet
(F(1,24) = 14.899, p = 0.001) (Fig. 4d) in the hippocam-
pus. And parous rats had a lower protein level of NF-κB
than virgin rats in the control groups (p < 0.05). Simi-
larly, fish oil supplementation eliminated the effect of re-
productive status in the expression of NF-κB.

Brain neurochemistry
To further explore the interrelationship between parous-
induced neuroinflammation and neurotransmitters, we
systematically analyzed the neurochemistry both in the
prefrontal cortex and in the hippocampus of rats. As

shown in Tables 2 and 3, DA level were significantly de-
creased both in the prefrontal cortex (p < 0.01) and in the
hippocampus (p < 0.05) of parous groups, while its metabo-
lites 3,4-dihydroxyphenylacetic acid (DOPAC) and homo-
vanillic acid (HVA) remain stable. Parous rats that exposed
to control diet also exhibited decreased norepinephrine
(NE, p < 0.01 for prefrontal cortex), without altering the
metabolites vanilmandelic acid (VMA) and 4-Hydroxy-
3-methoxyphenylglycol (MHPG). However, virgin rats that
with daily supply of Ω-3 fatty acids exhibited decreased NE
(p < 0.01 for prefrontal cortex) and increased VMA (p <
0.05 for prefrontal cortex). It was worth to mention that
both parous and Ω-3 fatty acids supplementation did not
affect the serotonin (5-HT) level, but parous rats that ex-
posed to daily supplementary of Ω-3 fatty acids exhibited
decreased 5-hydroxy indole acetic acid (5-HIAA, p < 0.01)
and the 5-HT turnover (the ratio of 5-HIAA to 5-HT, p <
0.05). Unexpectedly, parous resulted in significant increase
of γ-aminobutyric acid (GABA) status (Table 2, p < 0.01)
and glutamine (GLN, Table 2, p < 0.01) in the prefrontal
cortex. Conversely, we find opposite trend in the hippo-
campus which exhibit decrease of GABA (p < 0.01) and
GLN (p < 0.01) in parous.

Discussion
In the present study, we established a model of normal
pregnancy to evaluate the depressive-like behavior, the
dysregulated neuroimmune system and neurotransmitter

Fig. 2 Serum levels of proinflammatory factors. Effect of reproductive status and dietary conditions on serum IL-1a (a); Effect of reproductive
status and dietary conditions on serum IL-1β (b); Effect of reproductive status and dietary conditions on serum IL-2 (c); Effect of reproductive
status and dietary conditions on serum IL-6 (d); Effect of reproductive status and dietary conditions on serum IL-12 (e); Effect of reproductive
status and dietary conditions on serum TNF-a (f); Effect of reproductive status and dietary conditions on serum IFN-γ (g). #significantly different
between reproductive status conditions (Two-way ANOVA followed by LSD post hoc test, n = 6–7 in each group)
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system in parous rats. In particular, we demonstrated
that Ω-3 fatty acids could attenuate the proinflammatory
cytokines and modulate neurotransmitter system. Be-
sides, our study also showed that the turbulence of neu-
roimmune system manifested in parous rats might have
some relation to the immunological defects, which can
featured by reduced protein level of NF-κB.
The FST is an extensively validated predictor of anti-

depressant efficacy, and has been used as a putative model
simulating depressive behavior in rodents [32]. Increasing
immobility time is the indicator for depressive-like symp-
tom. In the present study, parous dams exhibited less im-
mobility time than virgin females, which was different with
previous study [33]. We speculate that the different ter-
minal point of observation can partly explain the diver-
gence. SPT is also a key behavioral indicator to
depressive-like behavior. Unfortunately, no significantly
difference was found in the SPT between the virgin and
parous rats in different dietary groups. Postpartum rats
were reported to drink almost 93% sucrose at PND 25, and
then reduced to 65% at PND180 [34], which suggest that it
may needs longer time to form the state of anhedonia.

Numerous studies have suggested that major depression
is accompanied by immune dysregulation. Proinflamma-
tory cytokines have been shown to induce stress-reactive
neuroendocrine and central neurotransmitter changes in
depression. As previously reported, the proinflammatory
cytokines TNF-α and IL-6 in depressed subjects were sig-
nificantly higher than control subjects. However, the levels
of some markers of inflammation, such as C-reactive pro-
tein, TNF-a, IL-1, IL-2 and IL-8 differ between studies [35].
However, the serum proinflammatory cytokines, including
IL-1β and IL-6, were increased in the rats with postpartum
depression [10]. In the present study, four pro-inflamma-
tory cyrokines including IL-1a, IL-6, TNF-a and IFN-γ
were markedly induced in the serum of parous rats, which
reflected the activation of neuroimmune system under ges-
tational stress. Elevated cytokines may play an important
role in depression for following reasons: modulate hippo-
campal neurogenesis [36]; induce the IDO enzyme [37]
and impact the hypothalamic-pituitary-adrenal (HPA) axis
[35, 38]. Our data showed that Ω-3 fatty acids alleviated
the alterations of proinflammatory cytokines induced by
pregnancy, lending more weight to hypothesis that

Fig. 3 Protein levels in the prefrontal cortex. Protein expression of P2X7, NLRP3, NF-κB and β-actin in the prefrontal cortex (a); Effect of
reproductive status and dietary conditions on protein levels of P2X7 in the prefrontal cortex (b); Effect of reproductive status and dietary
conditions on protein levels of NLRP3 in the prefrontal cortex (c); Effect of reproductive status and dietary conditions on protein levels of NF-κB
in the prefrontal cortex (d). #significantly different between reproductive status conditions and *significantly different between dietary conditions
(Two-way ANOVA followed by LSD post hoc test, n = 6–7 in each group)
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Fig. 4 Protein levels in the hippocampus. Protein expression of P2X7, NLRP3, NF-κB and β-actin in the hippocampus (a); Effect of reproductive
status and dietary conditions on protein levels of P2X7 in the hippocampus (b); Effect of reproductive status and dietary conditions on protein
levels of NLRP3 in the hippocampus (c); Effect of reproductive status and dietary conditions on protein levels of NF-κB in the hippocampus (d).
#significantly different between reproductive status conditions and *significantly different between dietary conditions (Two-way ANOVA followed
by LSD post hoc test, n = 6–7 in each group)

Table 2 The content of major neurotransmitters and their metabolites in the prefrontal cortex

Compound Virgin Parous

Control Supplementary Control Supplementary

DA (ng/g) 5.3 ± 0.6 5.4 ± 1.2 2.2 ± 0.3## 3.4 ± 0.3#

DOPAC (ng/g) 6.8 ± 0.9 10.1 ± 1.9 10.1 ± 1.0 7.7 ± 0.5

HVA (ng/g) 1.1 ± 0.2 1.3 ± 0.3 1.3 ± 0.1 1.8 ± 0.2

NE (ng/g) 8.2 ± 1.8 3.8 ± 0.9** 3.3 ± 0.6## 5.9 ± 0.7

MHPG (ng/g) 0.7 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 1.1 ± 0.1

VMA(ng/g) 1.2 ± 0.1 2.0 ± 0.4* 0.6 ± 0.1 0.5 ± 0.1##

TRY (ug/g) 9.2 ± 1.6 6.7 ± 1.4 8.2 ± 0.7 12.0 ± 1.0##,*

5-HT (ng/g) 153.7 ± 14.0 127.7 ± 31.3 116.0 ± 14.6 178.6 ± 26.1

5-HIAA (ng/g) 373.9 ± 45.6 355.6 ± 27.0 304.0 ± 25.8 215.3 ± 11.02##,*

5-HIAA/5-HT 3.0 ± 0.4 3.2 ± 0.8 2.8 ± 0.4 1.2 ± 0.2#,*

KYN (ng/g) 540.7 ± 99.0 429.0 ± 101.2 526.1 ± 51.4 622.2 ± 58.8

GABA (ug/g) 292.6 ± 41.5 200.3 ± 49.8 602.7 ± 82.8## 730.1 ± 99.2##

GLU (ug/g) 0.4 ± 0.06 0.3 ± 0.05 0.5 ± 0.06 0.7 ± 0.07

GLN (ug/g) 178.2 ± 25.2 132.0 ± 35.8 356.7 ± 41.5# 501.0 ± 64.2##

Data are means ± SEM (n = 6–7). #p < 0.05, ##p < 0.01 compared to virgin group; *p < 0.05, **p < 0.01compared to control group
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anti-depressive action of Ω-3 fatty acids is through their
potent immunomodulating effects.
The physiological role of NF-κB is best delineated in the

immune system. Either the under- or over-activation of
NF-κB has the capacity to result in dysregulated inflamma-
tion [39]. Knockout mice for the NF-κB show predomin-
antly immunological defects [40]. Moreover, the absence of
p50, the consist member of NF-κB, leads to enhanced NK
cell proliferation and production of IFN-γ [41]. In the
present study, we find the reduced expression of NF-κB
both in the prefrontal cortex and in the hippocampus of
parous rats, along with the decreased serum IFN-γ. We
speculated that the reduction of NF-κB reflected immune
system disorders in parous rats and Ω-3 fatty acids supple-
mentary successfully reversed gestational stress-induced al-
terations in rats. Similarly with NF-κB, NLRP3 also induced
by a wide range of divergent stress and has been reported
to couple with NF-κB inflammatory signaling to mediate
transcription and function of proinflammatory cytokines
[11]. Limiting the activation of NLRP3 could inhibit the in-
flammation induced by divergent invading pathogens and
cellular damages [42, 43]. However, we didn’t find any stud-
ies that regarding the association of the potential effect of
NLRP3 knockdown with immune system. Further studies
are needed to figure out the possible reason why NLRP3
decreased in the hippocampus of parous rats. As mention
before, ATP/P2X7R-induced oligomerization of NLRP3 is
the major steps of inflammatory response. P2X7R/NLRP3
inflammasome axis has also been demonstrated to link
cytokine, psychological stress and depression [11]. However,
we didn’t find activated P2X7R/NLRP3 axis in parous rats.
Instead, we find decreased NF-κB and NLRP3 in certain

brain areas. Other pathways may be involed in the activa-
tion of proinflammatory cytokines in parous rats.
The alterations of neurotransmission in the key brain

areas play a pivotal role in the progression of neuro-
psychiatric disease, and the beneficial effects of Ω-3 fatty
acids in these brain-related disorders was, at least par-
tially, via its modulating effect on neurotransmissions
[44]. Our data showed that parous-induced alterations
of multiple neurotransmitters systems, including DA,
NE, 5-HT and glutamate systems. DA plays a key role in
governing motivation and reward processing. In line
with previous report, the brain content of DA in parous
rats was also decreased in our study [45]. Along with the
reduction of DA, the precursor of NE, we also find de-
creased NE in the prefrontal cortex of parous female
rats. In addition, the content of 5-HT in the prefrontal
cortex of parous rats was decreased, but it was not sig-
nificant. Tryptophane (TRY), the precursor of 5-HT also
can be metabolized to KYN through indoleamine
2,3-dioxygenase (IDO) which is activated by inflamma-
tory cytokines resulting in accelerated conversion of
TRY to KYN and reduced bioavailability of TRY for
5-HT production [46]. In the present study, the content
of KYN was increased in parous rats that exposed to
Ω-3 fatty acids diet, without change the 5-HT and KYN
levels, which imply the relatively stable of TRY metabol-
ism. It is worth to mention that the content of 5-HIAA
and the ratio of 5-HIAA/5-HT (5-HT turnover) were
significantly decreased in the prefrontal cortex and the
hippocampus of parous rats with Ω-3 fatty acids supple-
mentary diet. Previous work has shown increased 5-HT
turnover in the prefrontal cortex of gestational stress,

Table 3 The content of major neurotransmitters and their metabolites in the hippocampus

Compound Virgin Parous

Control Supplementary Control Supplementary

DA (ng/g) 6.3 ± 0.8 5.0 ± 0.7 4.2 ± 0.4# 3.6 ± 0.5#

DOPAC (ng/g) 3.1 ± 0.5 2.0 ± 0.2 3.1 ± 0.7 3.5 ± 0.7

HVA (ng/g) 0.5 ± 0.1 0.4 ± 0.1 0.3 ± 0.0 0.4 ± 0.1

NE (ng/g) 3.8 ± 0.4 3.5 ± 0.5 2.7 ± 0.3 3.0 ± 0.3

MHPG (ng/g) 0.4 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0

VMA(ng/g) 4.0 ± 0.3 3.5 ± 0.7 4.5 ± 0.4 3.5 ± 0.4

TRY (ug/g) 4.8 ± 0.3 4.0 ± 0.1 3.7 ± 0.1 4.6 ± 0.4

5-HT (ng/g) 129.6 ± 17.9 105.5 ± 14.0 108.1 ± 9.1 121.1 ± 12.3

5-HIAA (ng/g) 194.5 ± 30.3 166.8 ± 29.6 123.4 ± 9.5 71.8 ± 14.1##

5-HIAA/5-HT 1.8 ± 0.5 2.3 ± 0.6 0.7 ± 0.1 0.7 ± 0.2#

KYN (ng/g) 282.6 ± 24.5 242.4 ± 6.9 222.8 ± 8.8 239.3 ± 14.4

GABA (ug/g) 63.3 ± 5.0 49.5 ± 3.1 31.6 ± 1.5## 34.4 ± 1.5

GLU (ug/g) 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

GLN (ug/g) 48.3 ± 3.7 38.0 ± 3.7 29.2 ± 1.3## 32.5 ± 1.1

Data are means ± SEM (n = 6–7). #p < 0.05, ##p < 0.01 compared to virgin group; *p < 0.05, **p < 0.01compared to control group
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and antidepressant fluoxetine treatment could normalize
the alterations and reduce the 5-HIAA/5-HT ratios [47].
Additionally, the use of antidepressant and improvement
of depression was reported to associate with the reduc-
tion of 5-HT turnover [48]. Thus, it is possible that Ω-3
fatty acids supplementary may exhibit protective effect
via its modulating effect in serotonin system. Abnormal-
ities in GLU and GABA signal transmission also have
been postulated to play a role in depression. GABA is
the major inhibitory neurotransmitter in the central ner-
vous system, which is produced in the CNS via decarb-
oxylation of GLU. Within the CNS, the majority of GLU
is produced from GLN via the enzyme glutaminase. Re-
duced GABA levels have been observed in the cortex of
depressed patients [49] or hippocampal of rats exposed
to chronic mild stress [50]. In the present study, we find
decreased GABA in the hippocampus rather than in the
prefrontal cortex. However, the concentration of GLU
remains stable. Also, Ω-3 fatty acids supplementary
failed to reverse these alterations.
There are some limitations in the present study. First, we

didn’t determine the cytokines in pre-frontal cortex and
hippocampus. Thus, we fail to complete the correlation
analysis of cytokines and NF-κB or NLRP3 levels. Second,
we didn’t add the analysis of phosphorylated portion of
NF-κB to our paper. Third, we didn’t establish a typical
model of postpartum depression. Additional research is
needed to figure out the changes of neuro-immune system
and potential regulatory mechanisms.

Conclusion
Our data showed that instead of inducing depressive-like
behaviors, gestational stress significantly induced the
serum levels of proinflammatory cytokines and perturba-
tions of neurotransmitter system, which may ultimately
contribute to the pathology of inflammation-induced de-
pression. An important finding in the present study is that
Ω-3 fatty acids attenuated the gestational stress-induced
neuroinflammation. Concomitant with reduced neuroin-
flammation, Ω-3 fatty acids also involved in modulating
the dysregulation of neurotransmission system. These re-
sults provide more insight into the link between the
neuro-immune modulating features of Ω-3 fatty acids and
their potential antidepressant actions.
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