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Abstract

Background: Cancer cells become immortalized through telomere maintenance mechanisms, such as telomerase
reverse transcriptase (TERT) activation. In addition to maintaining telomere length, TERT activates manifold cell
survival signaling pathways. However, telomerase-associated gene signatures in cancer remain elusive.

Methods: We performed a systematic analysis of TERT high (TERT"9") and low (TERT") cancers using multidimensional
data from The Cancer Genome Atlas (TCGA). Multidimensional data were analyzed by propensity score matching weight
algorithm. Coexpression networks were constructed by weight gene coexpression network analysis (WGCNA). Random
forest classifiers were generated to identify cancer subtypes.

Results: The TERT"9"-specific mRNA expression signature is associated with cell cycle-related coexpression modules

across cancer types. Experimental screening of hub genes in the cell cycle module suggested TPX2 and EXOT1 as potential
regulators of telomerase activity and cell survival. MiIRNA analysis revealed that the TERT""-specific miR-17-92 cluster can

normal telomere length ratio. Intriguingly, TERT"

differences in telomerase activity and patient survival.

therapeutic opportunities for cancer treatment.
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target biological processes enriched in TERT®" cancer and that its expression is negatively correlated with the tumor/
cancers tend to have mutations in extracellular matrix organization
genes and amplify MAPK signaling. By mining the clinical actionable gene database, we uncovered a number of TERTM9M-
specific somatic mutations, amplifications and high expression genes containing therapeutic targets. Finally, a random
forest classifier integrating telomerase-associated multi-omics signatures identifies two cancer subtypes showed profound

Conclusions: In summary, our results depict a telomerase-associated molecular landscape in cancers and provide

Background

Telomeres are the terminal ends of linear chromosomes,
and in most eukaryotes, they are composed of a GT-rich
DNA repeat sequence (TTAGGG) and capped by
telomere-specific binding proteins [1]. Telomeres have
an essential role in the protection of chromosome ends
and prevent them from being recognized as DNA dam-
age sites [2]. Telomeres shorten progressively with each
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cell proliferation, causing cell senescence and eventual
death [3-5]. Maintenance of telomere length enables
cells to bypass crises and become immortalized [6].
Most cancers activate telomerase to maintain telomere
length [7]. Telomerase consists of two main compo-
nents, enzymatic subunit telomerase reverse transcript-
ase (TERT) and RNA subunit TERC. Telomerase binds
to the telomere G strand and counteracts telomere
shortening by adding telomere repeats during unlimited
proliferation [7]. In addition, growing evidence reveals
multiple noncanonical functions of TERT. For example,
TERT activates NF-kb and WNT signaling by function-
ing as a transcription cofactor [8-10]. Interaction be-
tween TERT and NF-«kb subunit p65 modulates TERT
nuclear translocation in myeloma cells [11]. Moreover,
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TERT increases cell adhesion and migration independ-
ent of telomerase activity [12]. All these canonical and
noncanonical functions provide cell survival signals and
promote tumorigenesis. Therefore, TERT plays a pivotal
role in cancer by bridging various regulatory machinery.

Although TERT is actively transcribed in most human
normal cells and tissues, TERT transcripts in normal cells
are non-functional variants generated by alternative splicing
[13]. However, cancer cells are able to produce full length
of functional TERT and develop numerous regulatory
mechanisms of TERT activation and stabilization. These
mechanisms include TERT promoter point mutations,
methylation, rearrangements, DNA amplifications, tran-
script fusions and posttranslational modification [14—19].
In addition to telomerase activation, there is an alternative
telomere maintenance mechanism involving a homologous
recombination—based process, termed alternative lengthen-
ing of telomeres (ALT), which is found in 5% of tumors
[20, 21].

A recent systemic analysis of 18,430 samples across 31
cancer types has discovered that approximately 22% of
tumors without detectable TERT expression might be
absent from the two mechanisms of telomere mainten-
ance [18]. This type of tumor can serve as an excellent
control for the investigation of gene signatures linked to
TERT expression or telomerase activation. Although
previous studies have revealed that telomerase activity is
able to be estimated by the expression of a group of
genes [18], a study integrating genome-wide alterations
with TERT expression would provide deep insights into
the mechanisms associated with telomerase activity and
its related signaling circuits.

To address these questions above, we assembled
genome-wide molecular data across 8 cancer types in The
Cancer Genome Atlas (TCGA) and performed compre-
hensive pan-cancer analysis by comparing TERT high
(TERT"®" and low (TERT'") groups. We identified a
common cell cycle pathway associated with TERT expres-
sion and experimentally validated that knockdown of
TPX2 or EXO1 diminished telomerase activity. Examin-
ation of the telomerase gene signatures uncovered mul-
tiple clinically actionable genes. In addition, we show that
these telomerase gene signatures are predictive of survival.

Methods

Propensity score matching weight algorithm

We collected TCGA multi-omics data and clinical char-
acteristics (sex, race, alcohol, laterality, purity and so on)
for 8 cancers from the cBioPortal and then applied a
propensity score matching (PSM) analysis to identify sig-
nificant molecular features. Propensity score matching is
widely used for studying treatment efforts in observa-
tional studies. We used the propensity score method
proposed by Liang Li [22]. Unlike pair matching, this
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method improves balance and estimates efficiency and
uses all subjects by weighting them so that every subject
potentially contributes to the estimation.

We first calculated the propensity score using logistic re-
gression with “TERT™&"/TERT™" status” as the responsible
variable. Through the propensity scoring method, we can
balance the covariable and use standardized difference to
examine the balance (<10%, Additional file 1: Figure S1).
Among all variables, the race variable in KIRP is > 10% after
the propensity scoring model was applied. Using the chi-
square test, we found that there was no significant differ-
ence in this variable between the two groups (P = 0.43).

After completing the above procedure, we compared
the molecular data between the two balanced groups
(TERT™®" and TERT™") by supplying the sample
weights calculated from propensity scoring analysis to a
linear regression model using TERT™&"/TERT'" status
as the sole independent variable. Furthermore, we calcu-
lated the corresponding FDR adjusted P value of the
TERT™ME"/TERT" status effect. To measure the
TERT™E"/ TERT™" effects and reduce the bias of con-
founders, we used a matching weight (MW) estimator
instead of the gene’s fold change. The MW estimator
formula was as follows:
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where Y; Z; W; denotes the outcome (mRNA expression
level; SCNA; methylation data; miRNA expression level;
SNP mutations), 1 o 0 denotes the TERT'" group or
TERT™" group, and the mean matching weight was
assigned to the ith subject. To examine the robustness of
the signal, we performed resampling by randomly select-
ing > 30 samples in both groups (TERT"&" and TERT'").
Applying the PSM algorithm to this resampled group, we
found that the MW estimators for all mRNAs were highly
correlated with those of the original sample set (Pearson
correlation R = 0.83-0.97, P < 2.2e-16). To ensure that our
significant feature sets were not caused by random noise,
we also computed the P value by a random permutation
test (randomizing the TERT™&"/TERT'" status of all sam-
ples from the same individual each time). We only
retained the significant features (P value < 0.05) for further
analysis (Additional file 2: Figure S2). For different mo-
lecular signatures, TERTM&Y/ TERT'" specificity was de-
termined by the relative levels of molecular signatures.

mRNA and miRNA expression analysis
We obtained normalized mRNA expression data in
RSEM (RNA-seq by expectation maximization from
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cBioPortal. After log2 transformation, we selected mRNAs
with an average expression level > 1 in both the TERT™¢"
and TERT'" groups. Applying the propensity score algo-
rithm and permutation test, we identified significantly
expressed mRNAs in the TERT™" and TERT'" groups
(FDR < 0.05, permutation test P value < 0.05).

We obtained miRNA expression data (in read per million)
from Firehose. The propensity score algorithm and permu-
tation test were used to identify the miRNAs that showed
significant differences between the TERT™&" and TERT"Y
groups (FDR < 0.05, permutation test P value < 0.05).

We curated miRNA targets from the following well-
established databases: miRtarBase, miRanda and miRDB.
We extracted the intersect of targets in miRanda and
miRDB and merged these genes with the targets in miR-
tarBase as our final miRNA targets. We then selected
the strongest targets that are hit by at least two miRNAs
in each group (22 for upregulated miRNAs or miRNAs,
>4 for downregulated miRNAs due to the larger number
of miRNAs in this group).

DNA methylation analysis

We obtained DNA methylation HM450 data from the
cBioPortal. For genes with multiple methylation probes,
we selected methylation probes showing the strongest
anti-correlation with mRNA gene expression data. Then,
we applied the PSM model to find significant TERT™¢"/
TERT™" -specific methylation probes at an FDR < 0.05
and a permutation test P <0.05. In addition, to deter-
mine the potential regulatory relationship between
TERT™MS"/TERT™" -specific methylation probes and
TERT™MS"/TERT™" -specific expressed genes, we used
Fisher’s exact test to assess whether TERT™&"/TERT'""
-specific methylation probes are significantly enriched in
TERT™M8"/ TERT™" -specific expressed genes.

Weighted gene co-expression network analysis (WGCNA)
for mRNA and miRNA

We constructed the mRNA co-expression network using
‘WGCNA' R package with entire datasets [23]. First, the
pearson correlations were calculated between each pair
of genes to obtain similarity matrix. Then, WGCNA
used power function to transform the similarity matrix
to adjacency matrix. The key parameter, beta, for scale-
free weighted network construction, was determined by
the scale-free topological fit test. We chose a scale free
fit R"2>0.9 to obtain a high-confidence scale free net-
work. Further, the pair-wise topological overlap (TO) be-
tween genes was calculated to obtain co-expression
modules using cutreeDynamic function in the dynamic-
TreeCut R package. The expression of each module was
summarized by module eigengene (ME). Highly corre-
lated modules were further merged by mergeCloseMo-
dules function in WGCNA R package. The gene’s
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connectivity was defined by the sum of edge weights and
calculated by intramodular Connectivity function in
WGCNA R package. The hub genes of each module are
defined as the top 5% of the genes with the highest con-
nectivity in each module. For each module, we defined
the module membership measure (kME), which is mod-
ule eigengene based connectivity, as the correlation be-
tween gene expression values and module eigengene.

We utilized the module preservation statistic Zsum-
mary, described in the ‘modulePreservation’ R function
implemented in WGCNA, to assess the overlap between
network modules obtained from the whole samples and
TERT"" or TERT'" samples. The Zsummary statistic
takes into account the overlap in module membership,
the density (mean connectivity) and connectivity (sum of
connections) patterns of modules. A module is consid-
ered not being preserved if preservation Zsummary< 2,
moderately preserved if 2 <Zsummary< 10, and highly
preserved if Zsummary >10.

Somatic mutation and somatic copy number variation
data analysis

We obtained the mutation data (MAF file) and signifi-
cant SCNA (both focal- and arm-level) from Firehose.
For mutation data, we only retained samples with < 1000
mutations in their exomes for further analysis. We fo-
cused on the mutations with >5% mutation frequency in
patients. After combining the high confidence SNP and
SCNA, we applied propensity score model to identify
the TERT"ME"/TERT" -specific SNP and SCNA at
FDR < 0.05 and permutation test P < 0.05.

Gene ontology and pathway analysis

Gene ontology analysis was performed using EnrichGO
function in clusterProfiler R package [24], with the follow-
ing parameters:ont = “MF”, pvalueCutoff = 0.01, qvalue-
Cutoff = 0.05. False-discovery rate adjusted P values were
calculated using Benjamini-Hochberg correction. Pathway
analysis was performed using Toppgene with TERTMe"
specific mutated or amplified genes as input [25].

Other data preparation

Tumor/normal telomere length ratios of cancer samples
were downloaded from Barthel et al. [18]. Gene list for
telomerase activity estimation was obtained from Barthel
[18]. FDA-approved drugs and their targets information
were downloaded from Drugbank database [26].

Random forest clustering algorithm for tumor subtype
identification

We used two different sets of molecular signatures as mo-
lecular markers for unsupervised classification: 1. “global
markers”, which consist of consensus hub genes of the cell
cycle/mitosis nuclear division module, and miRNAs
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belong to the miR-17-92 cluster. 2. “cancer-specific
markers”, which contains TERTM&Y/TERT'Y -specific
top20 expressed genes (including TERT) and DNA
methylation probes, and the top 5 expressed miRNAs,
SNPs and SCNAs. We combined the above molecular
markers and generated a molecular marker profile for
each cancer.

We applied a random forest clustering algorithm pro-
posed by Tao Shi and Steve Horvath [27] that uses a
random forest algorithm to perform a dissimilarity
measure for 11n labeled data. This algorithm handles
mixed variable types well and is invariant to monotonix
transformations of the input variable. First, we obtained
a similarity matrix from an ensemble of individual tree
predictors (terminal node) that distinguish observed
from ‘synthetic’ data. The observed data are original
data, while the synthetic data are collected by randomly
sampling from the product of the empirical marginal
distribution of the variable. A synthetic class outcome is
defined by labeling the observed data as class 1 and the
synthetic data as class 2. Then, at the random forest
classification step, one can define a similarity measure
between unlabeled observations. For each tree, if obser-
vations i and j both land in the same terminal node, the
similarity between i and j is increased by one. At the end
of the forest construction, the similarities are symme-
trized and divided by the number of trees. Then, we cal-
culated dissimilarity between i and j, which is defined as
RF dissimilarityij = sqrt(1 - RF similarityij). We used the
RF dissimilarity as input for partitioning around medoids
(PAM) clustering, which is implemented in the R func-
tion Pam in the package cluster. Finally, we obtained
new clusters (or subtypes) for each cancer type. The ran-
dom forest algorithm was implemented with the R pack-
age ‘randomForest’.

Cell lines

Human embryonic kidney HEK293T, human liver hepa-
tocellular carcinoma HepG2 cells and human fibrosar-
coma HTC75 cells were maintained in high-glucose
DMEM (Hyclone, SH30243) with 10% fetal bovine
serum (Hyclone, SH30070) and 1% penicillin/strepto-
mycin. Mycoplasma testing was performed by PCR every
month to ensure non-contamination. The general length
of time between thawing and use in the described exper-
iments is 1 week.

RNAi experiments and quantitative RT-PCR

We performed RNAIi experiments and quantitative RT-
PCR as described previously [28—30]. Cells were trans-
fected with appropriate siRNA oligos (from Ribobio)
using RNAiMax (Invitrogen) according to the manufac-
turer’s instructions. Cells were harvested and examined
48 h after transfection. Real-time quantitive RT-PCR was
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carried out to confirm inhibition of mRNA expression.
Briefly, total RNA was isolated with the TRIzol reagent
(Invitrogene), reverse transcribed using the RevertAid
First Strand cDNA Synthesis Kit (Thermo Fisher), and
then amplified using the ABI StepOnePlus real-time
PCR system (Applied Biosystems). Cycling conditions
were 40 cycles of 95 °C for 15s and 60 °C for 60 s.
Sequences of the various siRNAs used in the study
were:
siTPX2: 5'-AUGAAAGUUUCUAACAACAAATT-3’
siEXO1: 5'- CAAGCCUAUUCUCGUAUUUTT-3’
siFOXM1: 5'- GCCAAUCGUUCUCUGACAGAATT-3’
si-RAD54L: 5'- UGUAAUUCGACACCAGCACTT-3’
si-NEIL3: 5'- UAUCCGAUGAAAUACAUAGTT-3’
Sequences of the various Q-PCR primers used in the
study were:

TPX2-Q-FP: 5'- ATGGAACTGGAGGGCTTTTTC-3’
TPX2-Q-RP: 5'- TGTTGTCAACTGGTTTCAAAGGT-3’
EXO1-Q-FP: 5'- CCTCGTGGCTCCCTATGAAG-3’
EXOI1-Q-RP: 5'- AGGAGATCCGAGTCCTCTGTAA-3’
FOXM1-Q-FP: 5'- GGAGCAGCGACAGGTTAAGG-3’
FOXM1-Q-RP: 5'- GTTGATGGCGAATTGTATCA
TGG-3’

RAD54L-Q-FP: 5'- ATGGAACTGGAGGGCTTT
TTC-3" RAD54L-Q-RP: 5'- TGTTGTCAACTGG
TTTCAAAGGT-3’

NEIL3-Q-FP: 5'- CAAGCGTCCTAATTGTGGTCA-3’
NEIL3-Q-RP: 5'- CCCTGCTAGATGTCCAACTGATT-
3"

Real-time quantitative PCR-based TRAP (Q-TRAP)
Real-time quantitative PCR-based TRAP assays were
carried out as previous described [29]. Briefly, cells (3—
10x 106) were lysed in 5x pellet volume of high-salt buf-
fer (20 mM Hepes at pH 7.9, 0.42 mM KClI, 25% (vol/vol)
glycerol, 0.2% Nonidet P-40, 0.1 mM EDTA, 1 mM DTT,
and protease inhibitors), and then diluted with 5x vol-
ume of low-salt buffer (20 mM Hepes at pH 7.9, 100 mM
KCl, 25% (vol/vol) glycerol, 0.1 mM EDTA, 1 mM DTT,
and protease inhibitors) and centrifuged at >14,000xg
for 10 min at 4°C. The supernatant was then diluted
two- to five fold before being used for real-time quanti-
tative PCR-based TRAP assay. Each 20 pL of real-time
quantitative PCR-based TRAP reaction contained 1 pL
of the eluted proteins, 100 ng each of TS primer (5'-
AATCCGTCGAGCAGAGTT-3") and ACX primer (5'-
GCGCGGCTTACCCTTACCCTTACCCTAACC-3"), and
1mM EGTA in SYBR Green PCR Master Mix (Applied
Biosystems). The reaction mixtures were incubated at
30°C for 30min and then PCR amplified (40 cycles of
95°C for 15s and 60 °C for 60s) by using an ABI StepO-
nePlus Real-Time PCR System (Applied Biosystems).
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Results

Overview of molecular signature differences between
TERT high (TERT"9") and low (TERT'°") cancers

To identify telomerase-associated molecular signatures,
we first defined two cancer types based on TERT expres-
sion: 1) patients with high expression of TERT
(TERT™®#") and 2) patients with low expression of TERT
(TERT™Y). We excluded ALT cancers because of their
small sample size (~5% of all samples in TCGA) and
unique genomic and transcriptomic features that may
confound the analysis. Samples with 2 or more RNA-Seq
quantified reads of TERT were defined as TERT™E",
while those with less than 2 reads of TERT and without
known ALT-related somatic alterations (ATRX or DAXX
mutations, deletions or structural variants) were defined
as TERT"".

To investigate telomerase-associated molecular signa-
tures across cancers, we developed an analytic pipeline
by integrating multi-omics data and experimental studies
(Fig. 1a). We adopted propensity score modeling (PSM)
to identify molecular differences between TERT"" and
TERT™" patients with removal of other confounder ef-
fects that may bias findings (e.g., age, race, gender, vital
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status, tissue source site, grade, laterality, BMI, histology,
purity, alcohol history, see potential confounders sur-
veyed in Additional file 1: Figure S1). Propensity score
modeling is a widely used statistical technique for esti-
mation of treatment effects and reduction in bias caused
by covariables [22]. It corrects the confounder effect by
balancing the propensity score. It has been shown to
outperform other methods, including the t-test, ANOVA
and GLM [31]. Due to the requirement of sample size
(at least 30 samples in each group) for the PSM algo-
rithm, we focused on 8 TCGA cancer types with suffi-
cient sample size for 5 molecular types, including
somatic mutation, somatic copy number alterations
(SCNAs), mRNA expression, DNA methylation, and
miRNA expression (Additional file 4: Table S1). These 8
cancer types include breast invasive carcinoma (BRCA),
kidney renal clear cell carcinoma (KIRC), kidney renal
papillary cell carcinoma (KIRP), lung adenocarcinoma
(LUAD), liver hepatocellular carcinoma (LIHC), thyroid
carcinoma (THCA), brain lower grade glioma (LGG)
and sarcoma (SARC).

To ensure the significance of our PSM analysis results,
we first performed permutation tests by randomly

-
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shifting the TERT™®" and TERT'" status of samples
(Additional file 2: Figure S2). By focusing on the signifi-
cant feature sets in the permutation test, we identified
several significantly differential molecular features (with
false discovery rate<0.05 in PSM analysis) between
TERT™" and TERT'" patients across cancer types
(Additional file 2: Figure S2). These molecular types ex-
hibit distinct signature patterns across cancer types
(Fig. 1b). Among them, DNA methylation and mRNA
represent the most striking signatures that a number of
genes display significant differences between TERT™E"
and TERT'" (Fig. 1b). The number of genes showing
significant differences between TERT™S" and TERT'"
samples varied across cancer types (ranging from 176 to
9229, <2000 genes in KIRP, KIRC and LGG, > 2000 in
THCA, SARC, LIHC, LUAD and BRCA). We also ob-
served some nondifferential features. For example,
TERT™" and TERT'" showed no significant difference
at somatic mutation level for KIRP, KIRC, THCA and
SARC. No distinct miRNA patterns between TERTMSh
and TERT™" were identified for KIRP, KIRC and LGG.
Taken together, these results provide a global picture of
molecular differences between TERT™E" and TERT™"
patients. To further dissect the TERT™" and TERT'"
-associated molecular mechanisms, we next performed
systematic analyses at the transcriptomic (DNA methyla-
tion, mRNA expression, miRNA expression) and gen-
omic (somatic mutation and copy number alteration
patterns) levels.

TERTM9M_specific gene expression is associated with cell
cycle processes across cancers

DNA hypermethylation silences gene expression while hy-
pomethylation leads to elevated gene expression levels
[32]. We identified a large number of genes with TERT™"
or TERT'""-specific DNA methylation and mRNA expres-
sion [FDR < 0.05]. The number of resulting genes ranged
from 52 in LGG to 4981 in THCA for DNA methylation
and from 102 in KIRP to 5102 in SARC for mRNA ex-
pression. When examining the relationship between DNA
methylation and mRNA expression, we found that
TERT"8" or TERT'"-specific DNA methylation was asso-
ciated with TERT™" or TERT'"-specific downregulated
gene expression levels in most cancer types (except for
KIRC), suggesting mRNA expression regulation by DNA
methylation (Additional file 5: Figure S3).

Notably, gene ontology enrichment analysis shows that
TERT™®"-specific genes across 6 cancers (BRCA, LIHC,
LUAD, THCA, KIRC and KIRP) are enriched in shared bio-
logical processes: mitotic nuclear division/DNA replication
and RNA processing (Fig. 2a). In contrast, enriched biological
processes of TERT'*“-specific expressing genes tend to vary
across cancer types. These TERT'*"-enriched biological pro-
cesses include extracellular matrix organization, angiogenesis,
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cell junction assembly, and muscle-related processes (Fig. 2b)
. These results reveal common gene signatures relevant to
the cell cycle and RNA processing in TERT™" patients and
diverse gene functions in TERT'" patients.

To gain additional system-level understanding of
telomerase-associated mRNA expression signatures, we
constructed gene coexpression networks using weighted
gene coexpression network analysis (WGCNA) for each
cancer type. WGCNA identified 38, 63, 76, 70, 52, 101,
47 and 58 coexpression modules in BRCA, KIRC, KIRP,
LGG, LIHC, LUAD, SARC and THCA, respectively
(Additional file 6: Figure S4). To examine whether the
coexpression modules are invariant between TERT"&"
and TERT™" samples, we constructed networks using
either TERT™&" or TERT'“ samples and performed
module preservation test [33]. The results show that all
modules are highly preserved across TERT"" and TER-
T'°Y networks with Zsummary > 10 for most modules,
supporting the robustness and reproducibility of our
identified coexpression modules (Additional file 7: Fig-
ure S5). By exploring enriched biological processes for
each module by gene ontology analysis, we found four
main functional module classes: (A) cell cycle/mitotic
nuclear division (P =1.60E-52 for BRCA, P =2.59E-56
for KIRC, P = 1.23E-32 for KIRP, P = 1.08E-51 for LIHC,
P =1.69E-31 for LUAD, P =9.35E-56 for THCA); (B)
RNA splicing (P =3.00E-06 for BRCA, P =2.11E-07 for
KIRC, P =4.68E-06 for LUAD, P =0.0002496 for LGG,
P =0.0037 for SARC); (C) extracellular matrix
organization (P =9.85E-39 for BRCA, P =3.93E-26 for
THCA) and (D) angiogenesis/regulation of vasculature
development (P =5.77E-17 for BRCA, P = 8.00E-20 for
LIHC). These results further support the observation
that TERT-related signatures are associated with cell
cycle and RNA processing.

We also noticed that genes in the cell cycle/mitotic nu-
clear division module are highly expressed in TERT"S"
samples across 6 cancers (BRCA, LIHC, LUAD, THCA,
KIRC and KIRP, FDR < 0.01, Additional file 8: Figure S6).
Remarkably, the cell cycle/mitotic nuclear division module
also showed significant enrichment of known telomere
maintenance related genes Additional file 9: Table S2; P
values range from 2.468846e-06 to 0.06327812), indicating
the connectivity between cell cycle/mitotic nuclear division
and telomere maintenance. Taken together, our transcrip-
tomic analysis results demonstrate a common enriched cell
cycle process in TERTMeM patients across cancers.

Knockdown of the hub gene TPX2 or EXO1 decreased
telomerase activity and cell viability

In the gene coexpression module network, hub genes
with high intramodular connectivity represent a small
proportion of nodes with maximal information com-
pared to other nodes [23]. Hub genes play important
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Enriched biological processes for TERT"¢" specific genes
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Fig. 2 Gene ontology analysis of TERT"9"/TERT'*"-specific mRNA expression. a Enriched biological processes for TERT"
across cancer types. GO terms with FDR < 0.05 are shown. b Enriched biological processes for TERT"-specific expressed genes across cancer types.
GO terms with FDR < 0.05 are shown. No enriched biological processes were found for TERT"-specifically expressed genes in KIRP, KIRC and LGG
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roles in the module network. Ranking the genes in the
cell cycle/mitotic nuclear division module according to
their connectivity measure (K), we identified several hub
genes that are known to be related to telomere mainten-
ance. For instance, one hub gene in KIRP is ASF1B (K =
35.378, ranks within the top 5 among hubs). This gene
has recently been revealed to regulate epigenetic modifi-
cations at telomeres and interact with telomerase [34].
This finding implicates a putative connection between
the cell cycle/mitotic nuclear division module and tel-
omerase. To explore this further, we next examined the
relationship between intramodular connectivity in the
cell cycle/mitotic nuclear division module and telomer-
ase activity. Telomerase activity was estimated by ex-
pression of a group of genes reported previously [18].
For each gene in the cell cycle/mitotic nuclear division
module, we calculated the Pearson correlation between
their expression levels and telomerase activity. The
resulting Pearson correlation data show a significantly
positive correlation between intramodular connectivity
K and telomerase activity across cancer types (Pearson
correlation coefficient, R>04, P value <2.2e-16,

Additional file 10: Figure S7). These results indicate that
hub genes in the cell cycle/mitotic nuclear division mod-
ule are associated with telomerase activity.

We also observed that hub genes in the cell cycle/mi-
totic nuclear division module vary among cancer types
(Fig. 3a). For example, TPX2, a microtubule-binding
protein, is a hub gene in all 8 cancer types (Fig. 3a),
while EXO1 and BUBI are hub genes in 5 cancer types
(Fig. 3a). According to the number of cancers where the
gene is a hub, we defined strong (genes as hubs in at
least 5 cancer types), median (genes as hubs in 4 or 3
cancer types) and weak (genes as hubs in 2 or 1 cancer
type) hub gene groups (Additional file 3: Table S3). We
reasoned that our analysis would identify potential tel-
omerase regulators, and genes in the strong hub group
would have a higher degree of association with telomer-
ase activity compared with those in other groups. To test
this hypothesis, we randomly selected genes from
strong- and median hub groups (TPX2 and EXO1 in
strong group, FOXM1 and RAD54L in median group)
and non-hub cell cycle gene NEIL3 (as negative control)
for experimental validation. We knocked down these
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genes individually in HEK293T and liver hepatocellular
carcinoma HepG2 cells. The siRNA oligo achieved ap-
proximately 80% knockdown efficacy of mRNA expres-
sion compared to the siRNA control (Fig. 3 b and c,
Additional file 11: Figure S8A-C). Intriguingly, knock-
down of the strong hub group gene TPX2 or EXO1 sig-
nificantly reduced 50% telomerase activity in both cells
(Fig. 3 d and e). Knockdown of the median hub group
gene resulted in less telomerase activity (~40% decrease
in RAD54L knocked down HEK293T cells, Add-
itional file 11: Figure S8D) or increased telomerase activity
(RAD54L knocked down HepG2 cells in Additional file 11:
Figure S8D and FOXM1 knocked down cells in
Additional file 11: Figure S8E). As expected, the reduction
in the negative control non-hub cell cycle gene NEIL3 did
not change any telomerase activity (Additional file 11:
Figure S8F). In parallel with decreased telomerase activ-
ities, TPX2 or EXO1 knockdown reduced the viability of
fibrosarcoma HTC75 cells and HepG2 cells (Fig. 3f).
These data suggest that the hub genes TPX2 and EXO1
may regulate telomerase activity and that a strong hub
group contains potential telomerase regulators.

The TERTM9M-specific miR-17-92 cluster is associated with
telomere shortening

miRNA plays a critical role in the posttranscriptional
regulation of gene expression [35]. In five of eight cancer
types (BRCA, LIHC, LUAD, SARC and THCA, Fig. 1b),
we were able to detect several TERT™8" or TERT'*"-spe-
cific-expressing miRNAs [FDR < 0.05], ranging from 21
in THCA to 243 in SARC. Assessing the correlation be-
tween the first principle component of TERT"&" or
TERT""-specific expressing miRNAs and those of their
predicted TERT"&" or TERT'“-specific downregulated
mRNA targets. We observed a significantly negative cor-
relation in 5 cancer types (Fig. 4a). This result suggests
that TERT™&"/ TERT'*"-specific mRNAs are regulated by
TERTME"/ TERT'*Y-specific miRNAs.

A recent study has reported that miRNA miR-19b
augments TERT expression by targeting PITX1 [36].
miR-19b is transcribed from the miR-17-92 cluster,
which comprises miR-17, miR-18a, miR-19a, miR-20a,
miR-19b-1 and miR-92a-1 [37]. In the five cancer types
with TERT™&" or TERT'“-specific-expressing miRNAs
(BRCA, LIHC, LUAD, SARC and THCA), we found that
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the expression of the miR-17-92 cluster is TERT™€"-specific
(Fig. 4b). Interestingly, the expression level of the miR-17-
92 cluster was negatively correlated with the tumor/normal
telomere length ratio in TERT™" patients in BRCA, SARC
and THCA (Fig. 4c). Many targets of the TERT™&"-specific
miR-17-92 cluster belong to multiple extracellular matrix

organization-related biological processes that are enriched
in TERT""-specific cancers (Fig. 4d). These results indicate
that the miR-17-92 cluster is associated with telomere
shortening in TERT™S" patients in certain cancers and that
the miR-17-92 cluster may maintain telomerase activity by
suppressing extracellular matrix organization genes.
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TERT"9".specific somatic mutations and copy-number
alterations

We next investigated differences between TERT™€" and
TERT™" mechanisms at the genomic level. By setting
the FDR = 0.05 and focusing on highly mutated genes (>
5% mutation frequency), we identified 1 TERT'-spe-
cific somatic mutation gene in BRCA, 2 TERT'Y-spe-
cific and 2 TERT"8" specific somatic mutation genes in
LGG, 2 TERT""-specific and 13 TERT"8"-specific genes
in LIHC, 34 TERT"€"-specific genes in LUAD (Fig. 5a).

To characterize TERT™&"/TERT-specific SCNAs,
we analyzed the most significant SCNAs (including both
focal and arm-level amplifications/deletions) identified
by GISTIC [38]. At FDR=0.5, we found significant
TERTMEY/ TERT'"-specific SCNAs with 8 amplification
peaks (12p13.33 in BRCA; 7p11.2 and 7q31.2 in LGG;
17q23.1 in LUAD; 8q24.21 in LIHC; 5p15.33, 12q15 and
17p11.2 in SARC) and 11 deletion peaks (8p23.2 in
LIHC; 1p36.32, 2p25.3, 6p25.3, 10q23.31, 10926.3,
13q14.2, 16q11.2, 16¢q23.1, 17p23.1 and Xq22.3 in SARC)
(Fig. 5b). Consistent with previous findings that TERT'"
cases contain fewer copy number segments [18], most of
these significant amplification/deletion peaks are
TERT™&"_specific (8 amplification peaks except 17p11.2
and 10 deletion peaks except 8p23.2), whereas only 1
amplification peak in SARC and 1 deletion peak in LIHC
are TERTlow—specific (Fig. 5b).

To understand the mechanism underlying TERT™"-
specific mutation and amplification, we next examined
enriched pathways of TERT™€"specific mutated or amp-
lified genes. REACTOME pathway analysis showed that
TERT™M"_specific mutated genes were enriched in
stimuli-sensing channels, cardiac conduction and extra-
cellular matrix organization (Fig. 5c). Extracellular
matrix organization was found to be enriched for TER-
T'°%-specific mRNA genes (Fig. 2b), suggesting that
TERT™&" cancers may silence genes whose expression is
high in TERT' cancers. In addition, REACTOME
pathway analysis showed that TERT™&"-specific ampli-
fied genes are enriched in Class C/3, oncogenic MAPK
signaling (Fig. 5d). Given that oncogenic MAPK signal-
ing can promote cell cycle progression [39], these data
indicate that TERT™&" cancers can amplify growth sig-
naling genes to maintain cell proliferation.

TERT-associated mutation/SCNAs and mRNA expression
signatures contain clinically actionable targets

To investigate the clinical implications of the TERT-
associated mutation/SCNAs and mRNA expression sig-
natures, we searched for targets of FDA-approved drugs
in the signatures. To identify highly confident targets,
we selected targets that met one of the following criteria:
1) targets that were mutated or amplified or 2) targets
that were consistently upregulated at least 2-fold in
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TERT"" or TERT™" samples compared to adjacent
normal samples across cancer types.

Examining the TERT-associated mutation/SCNA list,
we found 8 drug targets with mutations/SCNAs across
cancer types (Fig. 6a). All targets are mutated or ampli-
fied in either LGG, LIHC or LUAD but not in other can-
cers. LGG has the highest number of amplified drug
targets (6 out of 8, yellow colored boxes) (Fig. 6a). In
addition, TERT-associated mRNA expression signatures
contain targets of FDA-approved drugs. In this analysis,
we focused on those cancers (BRCA, KIRC, LUAD and
THCA) with adjacent normal samples available. Eight
targets were identified based on the criteria that they
had at least 2-fold upregulation in cancer (Fig. 6b).
Drugs for these targets can be categorized into 2 groups:
chemotherapy and targeted therapy. Many drugs have
been widely used in the clinic. In targeted therapy, gefitinib
and erlotinib, EGFR inhibitors, were approved for the treat-
ment of cancers with EGFR mutations or hyperactivation,
including certain breast and lung cancers [40, 41]. In chemo-
therapy, the anthracycline drugs doxorubicin and epirubicin
are used in the treatment of multiple cancers [42].

Identification of two cancer subtypes with distinct
telomerase activities and survival rates based on TERT-
associated multi-omics molecular signatures

In an attempt to examine the power and utility of these
TERT-associated signatures for cancer subtype classifica-
tion and prognostic analysis, we developed a multi-
omics random forest classifier using the following signa-
tures as guides: (1) “global markers”, which consist of
consensus hub genes of cell cycle/mitosis nuclear div-
ision module in WGCNA (Additional file 3: Table S3)
and miR-17-92 cluster, and (2) “cancer-specific markers”,
which contain TERT"&"/TERT'"-specific top 20
expressed genes (including TERT) and DNA methyla-
tion probes, and the top 5 expressed miRNAs, SNPs
and SCNAs. With this classifier, we were able to
identify two subtypes (RFclusterl and RFcluster2) for
each cancer type. RFclusterl showed higher levels of
telomerase activity (Fig. 7a). These two subtypes show
more significant differences in telomerase activity
when compared with the TERT™" and TERT"Y
groups (Fig. 7 a and b). Furthermore, these two sub-
types showed significant differences in the overall sur-
vival rate in 6 cancer types except for SARC and
THCA (Fig. 7d), whereas the TERT™" and TERT'"Y
groups showed differences in only 3 cancer types
(KIRP, SARC and THCA) (Fig. 7c) (see also Add-
itional file 12: Table S4 for Cox regression results).
Comparison among different predictors in the predic-
tion of patient survival showed that the multi-omics
random forest predictor outperformed predictors
using TERT expression or telomerase activity alone



Luo et al. Molecular Cancer (2019) 18:106 Page 11 of 15

C

Top 5 enriched REACTOME pathways of TERT"" specific mutated genes

-
Mutation frequency
@ TERT® Missense mutation [ Frame shift Il Multple LUAD auency
A0AM10
O TERTMSh M Spice site M Nonsense mutation 1 Sient e Y Ay T LT Il
ANKRD30B M g | I I
. PG . A 1A | -
BRCA Mutation frequency CHRM2 | “ | (nem
aatas | MO0 DO A0 DO T e A ol =
I L . cous | I [N | =
060 005 odo ois oo \[ ‘I \H‘ P | | i HH" \‘\I | —
LGG Mutation frequency Lo ' 11 | “ || \‘\ 0.1 \‘ 0] ‘\H —
Teso MM | IV ULE 01| — FruPD i A LT T —
Huer? ! W | B Hont IR RN L LR Y =
Mucts 0 I |- KCNHT 1 i I =
ATRX bl A S 2 KANTSS el kel TN | —
600 020 0% KIAAZD: | | 1|1 \‘ | | \‘J‘J‘ \H\ | ==
et [
LIHC Mutation frequency et / L M I UTRNTTN | —
el 1| 11— Lrai TN -
st = NeE | ] mHH —
ARID2 1 ORSD13 \ H\ -—
AL |H 1 \IH —— oneors IRTIEN ‘\ -—
L11A1 _—
csmD1 | 0 IH [ Rz 11 ] IIII||H\IFIII I\IIHII\I\'H\H | I H\I IIII\ IH HHII (U} H‘Ill I\\I 1
ocHs2 i = SAnDS | =
ONaHg. | (N ‘ — SCNTA \ I| | -
apros 00 0 (1 [ SoRLt Ml H I ! I —
Yo | L= stocaL2 o I [, 0 —
NBEA I = TECTA | TGl | i -
Poo 1 il TRRAP U R U L R L [
PrEX2 | == TR -
PRUNEZ = WoRis | T P T N
RYR1 | o zccHes
R S raa 2 (il L] A L —
i p
BRCA ficati LGG
B Amplifications Deletions Amplifications Deletions
7 = : : 1
2 : 2
— B EGFR 4,1, : s =
4 4 : : 4
5 B i
s : 6 [ —
7 e
s ACHE  7q312 : ] 8|
.M CFTR : =
— W E CHRM2 ul) ==
P ) KCND2 oo 2E
o KCNH2 P T
o 718 ] 7 16
| e sEBE
= =2 = —| 25—
0 X . X -
odor  ob omdr o5 35 ciom oo okt od  ob omor o5 1 T ook oo omt
FDR FDR FDR FDR
- LUAD . I LIHC )
i
Amplifications Deletions Amplifications Deletions
5 — . - 5 | :
2 2 [
3 r 3
- s i .
s — |5
.| 6 E— 6
—, 7 —ns2
— 8 e
El L sq2s21 .
0 —] 10
" [0 gy
"R [ —
S =11 =N
15 4 15
a1 —] = = e
E=pi=f | =
ERI-E] : 29 % -
3 z : 21 :
0.001 001 005 0.1 05 108 01005 001 0.001 0001 001 00501 05 05 01005 001 0.001
FDR FDR FOR FDR
Amplifications SARC Deletions
—tp32
- El
: s
: — s
: s
: - ™~ op2s3
n — 7
5 ° 1002331
12015 . - 1 ~—10q26.3
. 13 |——13q14.2
0 |1 |_—16q112
17p112—| . = 17 S0
N — 129‘ 17p23.1
- X |—— Xq22.3
[ T TR Y P Ts 07908 oor =3
FDR FDR

Top 5 enriched REACTOME pathways of TERT*" specific amplificated genes

Stimuli-sensing channels Class C/3
Cardiac conduction ‘Oncogenic MAPK signaling:
Collagen chain trimerization Signaling by BRAF and RAF fusions:
Extracellular matrix organization NOSTRIN mediated eNOS trafficking
lon homeostasis Diseases of signal transduction
o 1 2 3 0 10 20 30

- Log (P value) - Log, (P value)
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(Additional file 12: Table S4). This demonstrates that inte-
grating multi-omics molecular information associated with
TERT yields two cancer subtypes with more discrimination
in telomerase activity and patient survival compared with
those using TERT™" and TERT™" information only.

Discussion

By applying a propensity score matching algorithm to
control potential confounder effects, we comprehen-
sively characterized the molecular differences between
TERT"" and TERT'™" patients across 8 cancer types.
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Our results reveal large diverse molecular signatures and
common pathways, such as the cell cycle, at the tran-
scriptomic level. By combining TERT™®" and TERT™"-
specific genomic and transcriptomic differences, we de-
veloped a multi-omics random forest classifier. This
classifier successfully identified two groups of patients
with different telomerase activities and overall survival
rates, providing novel insights that link telomerase-
related signatures to patient survival.

Compared to TERT'®" patients, TERT™" patients dis-
play higher mRNA expression levels of cell cycle genes
and lower expression of genes in extracellular matrix
organization and angiogenesis. Moreover, TERT™M&" pa-
tients tend to have mutated genes enriched in extracellu-
lar matrix organization and amplify genes in cell cycle
progression-related MAPK signaling. Consistent with
our finding, a recent report has found that cell cycle
genes were upregulated, whereas extracellular matrix
production and angiogenesis genes were downregulated
in primary BJ fibroblasts when they were immortalized
by overexpression of human TERT in vitro [43]. We also
noticed that RNA processing-related processes rank sec-
ond among TERT"&"-specific biological processes. In
line with this finding, recent studies have shown that tel-
omerase promotes cell proliferation by augmenting
tRNA expression and stimulating ribosomal DNA

transcription [44, 45]. Taken together, these data indicate
that maintenance of telomerase activity may require high
expression of cell cycle-related genes and that TERT
may promote unlimited cell proliferation by reducing
extracellular matrix production and enhancing transla-
tion in a noncanonical manner. These data also demon-
strate that telomerase or TERT is an essential factor in
cell survival and growth regulatory mechanisms in which
telomere maintenance, protein synthesis and cell migra-
tion are involved.

Our analysis also revealed that the expression of the
TERT"&"_specific miR-17-92 cluster negatively correlates
with the tumor/normal telomere length ratio. These data
suggest that telomere attrition and TERT activation may
promote miR-17-92 cluster expression in certain cancer
types. Targets of the TERT™&"-specific miR-17-92 cluster
are involved in multiple biological processes, including
extracellular matrix organization, angiogenesis, cell junction
organization and muscle system process, indicating that
miR-17-92 might assist in the maintenance of telomerase
activity and telomere by inhibiting these processes.

Our coexpression network analysis identified a cell
cycle/mitotic nuclear division module linked to telomer-
ase activity regulation. In particular, TPX2 and EXOI,
two strong hub genes, are potential telomerase regula-
tors. Knockdown of TPX2 or EXO1 significantly



Luo et al. Molecular Cancer (2019) 18:106

Page 13 of 15

A @ RFcluster1 RFcluster2
2 5000 P <22e-16 P=1.1e-06 P =49e-05 P <22e-16 P =3.9e-16 P<22e-16 P =3.1e-09 P<22e-16
-‘E 4000 & - ) . P ..
3000 u kb ! 9 s
% oo * e % Eia Eig
& 1000 ¥ - . b 4
s v .
° o
BRCA KIRC KIRP LGG LIHC LUAD SARC THCA
B £ TERTMsh £+ TERT®™
> 5000 P=0.0012 P=0.88 P=051 P=043 P =0.00037 P=0.98 P=0.015 P =1.6e-06
=
‘.a 4000 . . . ;“
© 3000 N 1o - o %= . ) . .
[0} v %, .. . C B 3 3 X [ty
P P b g f o b o 4 b
2 o ¢ 7 S G % oo _’{?‘— 3 EIE |
S o ) o i, . .
° .
BRCA KIRC KIRP LGG LIHC LUAD SARC THCA
C BRCA KIRC KIRP LGG
\ P=0.29 ! o P=033 ""i;‘ P=0027 P =068
ors{ Ly ) s} L‘ b 075§ b
o . w -
% | —= TERTM"n=535) 3| = TERT™M (n=75) %] == TERT"" (n=36) | == TERT"" (n=203)
S . TERT*(n=120) w TERT**(n=114) .|~ TERT®(n=75) | = TERT=(n=40)
5 v wmww S 0 = e "5 5 =
g LIHC LUAD SARC THCA
LR o R\ 0] —
@ .\ P=039 . P=039 |\ P =0.00017 P <0.0001
! ~+ TERT#(n=393)
o . o= ~ TERT*(n=53) °=| ox
" =+ TERT"””(“E:\jL o | = TERT™ (n=86) 025 = TERT™ (n=03)
.| = TERT*(n=38) » .| == TERT*"(n=57) .| == TERT*(n=384)
Overall survival time (months)
BRCA KIRC . KIRP LGG
k P <0.0001 s «
P =0.027 P=000028 | | P <0.0001
z. hul - . .
g =+ RFcluster1 (n=367) =+ RFcluster1 (n=76) =+ RFcluster1 (n=41) =+ RFcluster1 (n=105)
S— o RFcluster2 (n=288) o000} RFcluster2 (n=113) o00f RFcluster2 (n=70) o00f RFcluster2 (n=138)
e I S s 8 e e R : O
>
s LIHC LUAD SARC THCA
o P =0.00025 P=0.011 P =0.084 = P=013
—~ RFclustert (1=117) - RFcluste;—'lLﬁ)_ *“| 4~ RFcluster1 (n=160) | 4 RFolustert (n=223)
o]~ RFcluster2 (n=88) sl RFcEsterZ(‘:=175)_m o o RFcluster2 (n=83) o RFcluster2 (n=254)
Overall survival time (months)
Fig. 7 Genomic and transcriptomic marker-guided random forest clustering identified two cancer subtypes with distinct telomerase activity and
survival rates. a Box plots show differences in estimated telomerase activity between RFcluster1 and RFcluster2 groups. The P value was
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decreased telomerase activity. EXO1 is a DNA exonucle-
ase and resects telomere ends [46], while TPX2 has not
been implicated in telomere biology. Future work will
dissect the detailed mechanisms of TPX2 and EXO1 in
the regulation of telomerase activity. Moreover, some
hub genes in the cell cycle/mitotic nuclear division mod-
ule have been shown to play important roles in telomere
regulation. For example, BUB1 directly phosphorylates
TRF1 and promotes telomere replication [47]. Future
studies will understand the roles of hub genes in

telomere regulation and noncanonical functions of
telomerase.

Given the central role in cellular immortality, telomer-
ase has garnered significant attention as an anticancer
drug target [48]. Numerous telomerase inhibitors have
been designed over the past decades, some of which
have successfully passed stage I in clinical trials [48].
However, anti-telomerase therapies have been shown to
induce ALT in mouse and human cancer cells [49].
Therefore, our findings of FDA-approved drug targets
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for TERT"8" cancer may provide alternative options for
treating this type of cancer.

This study has limitations. We recognize that stratifi-
cation of patients by cancer stage and TERT promoter
mutation has not been conducted. TERT promoter mu-
tations have recently been shown to be major drivers of
TERT expression. In our preliminary analysis of LGG,
THCA and LIHC patients, we found that the multi-
omics signature performs better than the TERT pro-
moter mutation in the classification of TERT™&" and
TERT"" patients for THCA and LIHC and that the
combination of both parameters achieves the highest
performance (data not shown). Validations in other can-
cer types and a large cohort of cancer patients are war-
ranted in the future.

Conclusions

In summary, our report of molecular differences be-
tween TERT™E" and TERT'" cancers provides essential
insights into telomerase-associated alterations in cancer
and opens new avenues for treating cancer.
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