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Abstract

Pancreatic cancer is one of the most lethal cancers worldwide due to its insidious symptoms, early metastasis, and
chemoresistance. Hence, the underlying mechanisms contributing to pancreatic cancer progression require further
exploration. Based on accumulating evidence, extracellular vesicles, including exosomes and microvesicles, play a
crucial role in pancreatic cancer progression and chemoresistance. Furthermore, they also possess the potential to
be promising biomarkers, therapy targets and tools for treating pancreatic cancer. Therefore, in-depth studies on the
role of extracellular vesicles in pancreatic cancer are meaningful. In this review, we focus on the regulatory effects of
extracellular vesicles on pancreatic cancer progression, metastasis, cancer-related immunity and chemoresistance,
particularly their potential roles as biomarkers and therapeutic targets.
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Background
Pancreatic ductal adenocarcinoma (PDAC, hereafter re-
ferred to as pancreatic cancer [PC]) is the seventh most
common malignancy, ranking as the fourth and sixth lead-
ing causes of cancer-related death in the USA and China,
respectively. Patients with PC have a 5-year survival rate of
approximately 6% and a median survival rate of 6 months
[1–3]. PC is expected to become the second leading cause
of cancer-related death in the USA by 2030 [4]. The dismal
prognosis of PC is mainly attributed to poor detection rates
at early stages, rapid progression and disappointing surgical
resection outcomes. Most patients with PC lack diagnostic
symptoms during early stages, and the existing screening
biomarkers, such as CA19–9, are not sufficient for a highly
sensitive and specific diagnosis of PC [5]. When a patient
is diagnosed with localized PC, surgical resection is

regarded as the only potential curative treatment [6]. How-
ever, patients should expect only a 5-year survival rate of
23–26% before recurrence [7]. Unfortunately, approxi-
mately 80% of patients have reached an unresectable stage
at the time of diagnosis. Chemotherapy with gemcitabine
is an indispensable treatment for these patients. However,
the effectiveness of chemotherapeutic drugs is often pla-
gued by chemoresistance, worsening the outcomes of pa-
tients with metastatic disease [8, 9]. Thus, a better
understanding of the underlying cellular and molecular
mechanisms of PC progression and chemoresistance is ur-
gently needed.
Extracellular vesicles (EVs), which were considered con-

tainers of cellular debris, have recently been highlighted as
intercellular communication tools and mechanisms of
molecular transfer [10–12]. EVs include exosomes, ecto-
somes, microvesicles, apoptotic bodies and oncosomes,
according to their sizes and biogenesis mechanisms [13].
Many types of cells have the capacity to secrete EVs, in-
cluding dendritic cells (DCs) [14], B and T cells [15], neu-
rons [16], fibroblasts [17], stem cells [18], and cancer cells
[19]. EVs are also detected in and isolated from multiple
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biological fluids, such as blood, urine, ascitic fluid, saliva
and supernatants [20, 21]. EV-mediated intercellular com-
munication is achieved by biologically active substances,
such as proteins and nucleic acids, carried by EVs. Simi-
larly, the interactions between cells and the tumor micro-
environment are also partially mediated by EVs [22]. EVs
have been shown to play an important role in the tumori-
genesis, progression, metastasis and chemoresistance of
various malignancies, such as breast cancer [23], hepato-
cellular carcinoma [24] and prostate cancer [25]. The
functions of EVs in PC have also been investigated [26]. In
this review, we will discuss the roles of EVs in the progres-
sion, metastasis and chemoresistance of PC as well as
their promising applications as biomarkers and thera-
peutic targets in PC.

Biological features of PC-derived EVs
Morphology, biogenesis and secretion of EVs
Exosomes and microvesicles (MVs) are two main sub-
types of EVs, with diameters of 30–120 nm and 120–
1000 nm, respectively. Exosomes, which are typically
composed of a lipid bilayer membrane surrounding a
small cytosol lacking cellular organelles, were first de-
scribed by Johnstone RM in 1987 during the in vitro cul-
ture of sheep reticulocytes [11, 12]. Exosomes are
usually cup/disk-shaped and originate from a late endo-
some following inward budding of multivesicular bodies
(MVBs), whereas MVs are irregularly shaped and dir-
ectly formed by cell membrane shedding [27, 28]. The
intraluminal vesicles (ILVs) budding from MVBs are the
original forms of exosomes. Three independent path-
ways are involved in exosomal biogenesis: the endosomal
sorting complex required for the transport (ESCRT)-
dependent pathway and the ceramide-dependent path-
way contribute to the formation of ILVs. Inhibition of
the two pathways decreases exosomal biogenesis and se-
cretion. While the tetraspanin-dependent pathway is re-
sponsible for selecting cargoes for exosomes [29, 30].
Exosome secretion is mediated by RAB GTPase proteins
which control intracellular vesicles trafficking and dock-
ing to plasma membrane, and soluble NSF-attachment
protein receptor (SNARE) complexes which allow fusion
of lipid bilayer [30, 31]. Increasing intracellular Ca2+,
lower pH in microenvironment, up-regulation of P53
protein and heparanase stimulate exosomes secretion
[32–34]. Besides, the EVs released by cancer cells can be
triggered by anti-cancer therapy, questioning the long-
term efficacy of such treatment because EVs may pro-
mote PC progression as discussed in the context [35].
Three mechanisms are currently reported to be involved
in exosome uptake by receipt cells: (1) an interaction be-
tween a surface receptor and ligand, (2) internalization
through direct fusion, and (3) internalization through
endocytosis [36–38].

Several methods, such as ultracentrifugation, affinity
isolation, size exclusion chromatography and membrane
filtration, have been applied to isolate EVs from condi-
tioned cell culture medium and body fluids. But most
published studies of EVs have employed ultracentrifuga-
tion, the “Gold Standard” for EV isolation [11]. The
International Society for Extracellular Vesicles (ISEV)
has provided authoritative guidance for EV isolation and
purification [39]. EV detection can be realized by trans-
mission electron microscopy (for direct imaging) and
Western blotting or flow cytometry (for EV markers
analysis) [40–42]. The markers used for exosome ana-
lysis include tetraspanins (including CD9, CD63, CD81,
and CD82), ESCRT-associated proteins (including tumor
susceptibility gene 101 (TSG101) and apoptosis-linked
gene 2-interacting protein X (ALIX)), cytoplasmic pro-
teins (heat shock protein 70 (HSP70) and HSP90), adhe-
sion molecules (integrins), and membrane transport and
fusion proteins (annexins) [30, 43, 44].

Role of EVs in PC
The histology of PC is characterized by a complex
microenvironment consisting of PC cells and other com-
ponents including vascular endothelial cells, immune
cells, fibroblasts, myofibroblasts, stellate cells and extra-
cellular matrix(ECM). Cancer-associated fibroblasts
(CAFs) promote remodeling of ECM and tumor growth.
Immune cells in the microenvironment of PC have a
highly immunosuppressive composition and further con-
tribute to immune evasion [45]. The interactions be-
tween cancer cells and the tumor microenvironment are
crucial steps in tumor progression [46–48], contributing
to the altered metabolism and hyper-proliferation of
cancer cells as well as tumor metastasis and abnormal
tumor-associated immunity [46, 49, 50]. The role of EVs
in PC is illustrated by these interactions across this part
because these interactions are partially modulated by
EVs. For example, EVs from fibroblasts promote invasive
behavior and upregulate drug resistance pathways in
cancer cells, whereas EVs from tumor cells reprogram
normal fibroblasts into CAFs [51–53]. Here, we describe
the following functions of EVs in PC: (1) regulating the
proliferation of PC cells, (2) promoting PC invasion and
metastasis, and (3) modulating tumor-associated im-
munity. Figure 1 summarizes the functions of EVs in PC.

EVs regulate PC cell proliferation
EVs play different roles in regulating PC cell proliferation,
depending on their origin. In vitro studies, exosomes re-
leased from gemcitabine-treated CAFs increased the pro-
liferation and survival of both chemosensitive and
chemoresistant PC cell lines. It was partially attributed to
the increased level of Snail and its target, miR-146a, in re-
cipient cells. Inhibition of exosome secretion from CAFs
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reduced PC cell proliferation and survival [54]. Further-
more, CAF-derived exosomes (CDEs) rescued the prolifer-
ation of nutrient-deprived BxPC3 and MiaPaCa-2 cells by
supplying them with metabolites in a KRAS-independent
manner. This effect was blocked by heparin, an inhibitor
of receptor-mediated endocytosis [49]. However, EVs iso-
lated from PC cells (SOJ-6) supernatant downregulated
PC cells proliferation by activating phosphatase and tensin
homolog (PTEN) and glycogen synthase kinase 3 beta
(GSK-3β), thus evoking the mitochondria-dependent
apoptotic pathway [55]. Decreased expression of hairy and
enhancer-of-split homolog-1 (HES-1), the intranuclear
target of the Notch-1 signaling pathway, also promoted
the EV-induced suppression of PC cells proliferation [56].
These in vitro studies indicate EVs with different origins
exert opposite effects on PC cell proliferation, which re-
quires further elucidation. Although circulating EVs from
healthy people’s serum have been approved to induce
apoptosis in PC cells [57], further in vivo studies are
needed to assess the effects of EVs on PC cells prolifera-
tion and tumor growth, which may indicate a possible
intervention method for PC therapy.

EVs promote PC cell invasion and metastasis
EVs modulate PC invasion and metastasis because of
their regulatory effects on PC cells and the tumor micro-
environment. EVs derived from pancreatic stellate cells
(PSCs) and enhanced the migration of PC cells, which
were decreased by an exosome inhibitor [58]. CAF-
derived annexin 6A–positive (ANXA6+) EVs containing
the annexin A6/LDL receptor-related protein 1/throm-
bospondin1 (ANXA6/LRP1/TSP1) complex increased
PC aggressiveness following uptake by PC cells, and
ANXA6 depletion via infection of shANXA6 in CAFs

impaired tumor metastasis [59]. EVs with in vivo origins
from malignant effusions of colorectal cancer, breast
cancer and small lung cancer induced PC cell migration
[60]. Another in vivo study found that EVs derived from
PC cells contributed to the formation of the pre-
metastasis niche in the liver [3]. In this study, PC-
derived exosomes expressing high levels of macrophage
migration inhibitory factor (MIF) fused with Kupffer
cells, activated fibrotic pathways and created a proin-
flammatory environment. These changes supported me-
tastasis by upregulating the expression of transforming
growth factor β (TGF-β) and fibronectin as well as
recruiting bone-marrow-derived cells (macrophages and
neutrophils) to the liver [3]. Furthermore, the formation
of a pre-metastasis niche by exosomes required the help
of CD44v6 [61], a cancer-initiating cell (CIC) marker, to
provide a soluble matrix in vivo and enable exosomes to
transfer migratory and invasive capacity to non-CICs
[61–63]. Moreover, the epithelial-mesenchymal transi-
tion (EMT) is supported by CD151−/tetraspanin 8-
competent exosomes, which drives the differentiation of
non-metastatic PC cells toward a motile phenotype [64].
Taken together, EVs derived from tumor cells or other
cellular components of the tumor microenvironment in-
deed play a positive role in PC invasion and metastasis,
with the assistance of different molecules.

EVs modulate tumor-associated immunity
Cancer is characterized by impaired immune surveillance
and tolerance toward cancer cells. The pancreatic tumor
microenvironment is immunosuppressive because of in-
hibitory cytokines and recruitment of immunomodulatory
cells like myeloid-derived suppressor cells (MDSCs) which
suppress T-cell activation via TGFβ [45, 65]. Besides, B

Fig. 1 The functions of EVs in PC. The regulatory effects of EVs on cell proliferation, metastasis, and tumor-associated immunity are shown
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cells, tumor-associated macrophages (TAMs), and Tregs
also play immunosuppressive roles in TME of PC by sup-
pressing the function of cytotoxic T cells (CTLs) and CD8
+ T cells [45]. EVs have recently been shown to play a piv-
otal but contradictory role in PC immunity. On one hand,
EVs derived from PC cells or immune cells induce im-
mune elimination. On the other hand, some PC-derived
EVs captured by immune cells circumvent the immune re-
sponse. For instance, exosomes derived from the ASML
cell line inhibit the proliferation of leukocytes and reduce
T cell migration, whereas they support the activation of ef-
fector lymphocytes, such as CTLs [66]. Exosomes released
from cancer cells induced monocyte survival in the tumor
microenvironment by regulating the mitogen-activated
protein kinase (MAPK) pathway, resulting in the continu-
ous generation of TAMs [67]. Besides, PC-derived exo-
somes suppress the immune system by downregulating
human leukocyte antigen D related (HLA-DR) expression
in monocytes and the tumor-killing capacity of natural
killer (NK) cells [68, 69]. Furthermore, miR-203 and miR-
212-3p are also involved in immune tolerance caused by
PC-derived exosomes via decreasing the expression of
toll-like receptor 4 (TLR4) and regulatory factor X-
associated protein (RFXAP) in DCs [70, 71]. In contrast,
the exosomal proteins with miRNA depleted via miRNA
lysis and ultrafiltration activate DCs/cytokine-induced
killer (CIK) cells to target PC [72]. HSP70 surface-
positive exosomes derived from PC cells promote the
migration and cytolytic activity of NK cells [73]. Over-
all, the pro- or anti-effects of EVs on tumor-associated
immunity depend on differences in the EV composition
and target cells, but these different functions of EVs
may contribute to investigations of the use of modified
EVs as a possible tumor vaccine.

EVs participate in the formation of
chemoresistance in PC
Currently, chemotherapy is an indispensable treatment
option for patients with advanced pancreatic cancer.
Several clinical trials have shown that adjuvant chemo-
therapy based on fluorouracil and gemcitabine (GEM)
improved survival in patients with resected PC [74, 75].
A randomized phase III trial has proven that the non-
inferiority of oral S-1, a fluoropyrimidine derivative had
a higher 2-year overall survival than GEM in adjuvant
chemotherapy [76]. For metastatic PC, chemotherapy in-
cludes GEM monotherapy or GEM plus novel regimens,
such as erlotinib [77] and nanoparticle albumin-bound
paclitaxel [78]. Besides, the FOLFIRINOX regimen
which consists of oxaliplatin, folinic acid (leucovorin),
irinotecan, bolus fluorouracil, and infusional fluorouracil
has better chemotherapy response than GEM monother-
apy in metastatic PC [79]. Unfortunately, however, che-
moresistance occurs in most cases after long-term

exposure to chemotherapeutics, particularly GEM, the
standard chemotherapeutic agent for unresectable pan-
creatic cancer. Based on accumulating evidence, EVs
may play a role as intercellular communicators in pro-
moting chemoresistance in multiple cancers, including
leukemia [80], glioblastoma [81], lung cancer [82], gas-
tric cancer [83], breast cancer [84], prostate cancer [25],
ovarian cancer [85] and PC [9]. The mechanisms under-
lying the EV-mediated chemoresistance in cancers in-
clude transferring the drug-resistance-related gene
multidrug resistant-1 (MDR-1), P glycoprotein [86], sur-
vivin [87] and ubiquitin carboxyl terminal hydrolase-L1
[84] to recipient cells.
The effects of EVs on PC chemoresistance partially

rely on the RNA it transfers. When incubated with
GEM, PC cells upregulated the expression of miR-155,
which was transferred to other PC cells via exosomes.
MiR-155 contributed to resistance among PC cells via
anti-apoptosis pathways and suppression of deoxycyti-
dine kinase (dCK), a key gemcitabine-metabolizing en-
zyme [9, 88]. Furthermore, miR-155 overexpression
upregulated the synthesis and secretion of exosomes and
miR-155 contents in exosomes [9], which formed a posi-
tive loop in regulating GEM resistance. The positive role
of EVs in transporting RNA among cancer cells to in-
duce resistance has also been observed in breast and
lung cancers [82, 89].
In addition, EVs conferred chemoresistance to PC cells

by promoting ROS detoxification through increases in the
expression of the ROS detoxifying genes superoxide dis-
mutase 2 (SOD2) and catalase (CAT) [88]. Moreover,
CAFs, which were intrinsically resistant, play an active
role in GEM resistance by increasing EV release upon ex-
posure to GEM, leading to the upregulation of
chemoresistance-inducing factor Snail in recipient PC
cells [54]. The expression of Snail and its target, miR-
146a, were also upregulated in GEM-treated CAF-derived
EVs [54], which may partially explained the increase in
Snail expression in recipient cells. GEM increases Snail
expression in PC cells [90]; therefore, CAF-derived EVs
may increase Snail expression in recipient cells by trans-
ferring GEM or its metabolite to PC cells at a dose that is
not sufficient to induce cytotoxicity but induces resistance.
In the tumor microenvironment, miR-21 derived from
macrophages and CAFs are also transferred to cancer cells
via EVs, inducing chemoresistance by activating the
phosphoinositol 3-kinase (PI3K)/AKT signaling path-
way or binding apoptotic peptidase activating factor 1
(APAF1) [83, 85]. Taken together, EVs from PC cells
or other cell types in the tumor microenvironment fa-
cilitate chemoresistance by regulating RNAs, proteins,
relevant genes and signaling pathways, and extensive
investigations are required to further explain EV-
related chemoresistance in PC.
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EVs as diagnostic and prognostic biomarkers of PC
Due to the non-specific symptoms in early stages, most
patients (approximately 80–85%) are diagnosed with
metastatic or locally advanced PC at the initial examin-
ation [91, 92]. Patients who are diagnosed incidentally
during medical examinations have a better prognosis
than patients with evident symptoms, and patients with
PC diameters smaller than 10 mm can expect a 5-year
survival rate of 80.4% [93, 94]. Therefore, methods for
the early detection of PC are urgently needed to improve
the overall survival of patients with PC. Currently, the
most widely used and the only FDA-approved biomarker
for PC is CA19–9. However, CA19–9 is not optimal for
PC screening because of its relatively low sensitivity and
specificity (70–90% and 68–91%, respectively) [95]; it is
therefore primarily used to monitor progression and the
therapeutic response [94]. More importantly, 5%–10% of
the population are Lewis antigen negative and unable to
produce CA19–9 [94]. Hence, it is urgent to find new
biomarkers. The ideal biomarkers for PC should detect
the initial lesions at early stage with high sensitivity and
specificity, differentiating PC with healthy ones and be-
nign pancreatic diseases. Besides, they should be able to
predict progression and prognosis, contributing to more
effective therapy managements. Up to now, extensive in-
vestigations have been conducted to identify EVs as
novel biomarkers for PC. Because EVs contain specific
molecules of original cells, and display stability and
abundance in various biological fluids [96], which may
lead to a higher sensitivity and specificity in PC diagno-
sis. Compositions of EVs cover most cancer cell-
associated biomarkers, including proteins, mRNAs, miR-
NAs, and DNA [97]. Proteins and miRNAs are the focus
of EV biomarker research.
EVs used for biomarker detection are usually isolated

from blood. Researchers applied RT-PCR to analyze the
exosomal miRNAs extracted from the blood of 22 indi-
viduals with PC (9 at early stage and 13 at advanced
stage) and 27 individuals without PC (6 with ampullary
carcinoma, 7 with benign pancreatic tumors, 6 with
chronic pancreatitis and 8 healthy participants) and as-
sess the roles of four miRNAs (miR-17-5p, miR-21, miR-
155 and miR-196a) as biomarkers of PC [98]. Levels of
miR-17-5p and miR-21 were elevated in patients with
PC, with sensitivity and specificity values of 72.7% and
92.6% and 95.5% and 81.5%, respectively. MiR-17-5p ex-
pression was elevated in metastasis and advanced PC,
indicating that it was a potential biomarker for unresect-
able PC [98]. Similar results were reported in the investi-
gations of miR-550 [99] and miR-10b [100], which
displayed increased levels in exosomes isolated from the
plasma of patients with PC and conditioned media from
PC cell lines, suggesting that they may serve as early bio-
markers in PC diagnosis.

In addition to miRNAs, EV proteins play a significant
role in PC diagnosis. MIF was expressed at high level in
plasma exosomes isolated from PC mouse models with
liver metastasis compared with healthy ones. Besides,
the increased MIF level was also present in mice with
PanIN lesions, suggesting that it might serve as a bio-
marker for early diagnosis and predicting liver metastasis
[3]. In 2015, Nature published an article presenting a
near-perfect diagnostic biomarker for PC – glypican-1
(GPC1) – a cell surface proteoglycan that is specifically
enriched on cancer cell-derived exosomes [101]. GPC1+

circulating exosomes were significantly elevated in pa-
tients with PC (including carcinoma-in-situ, stage I–IV)
compared to healthy individuals, indicating that it may
act as an biomarker for all stages of PC and aid in distin-
guishing PC from benign pancreatic disease and healthy
individuals, while CA 19–9 levels in the serum fail to
distinguish patients with PC from those with benign
pancreatic disease. The sensitivity and specificity of
GPC1+ circulating exosomes in diagnosing PC were
both 100% [101]. Furthermore, the GPC1+ exosome level
reflected the tumor burden and distant metastasis, and a
reduction in the number of GPC1+ exosomes was re-
lated to increased survival [101]. Interestingly, however,
another study indicated that high levels of exosomal
miR-10b, miR-21, miR-30c, and miR-181a and low levels
of miR-let7a differentiated PC from normal control and
chronic pancreatitis samples, while GPC1 level was not
significantly different between normal, PC and chronic
pancreatitis samples [102]. The difference may be ex-
plained by different sample volumes, or different anti-
bodies for GPC1. Except for single EV biomarker,
investigators utilized a combination of exosomal proteins
and serum/exosomal miRNAs to diagnose PC [103]. In this
study, the exosomal protein markers included CD44v6,
TSPAN8, epithelial cell adhesion molecule (EpCAM),
MET, and CD104, whereas miR-1246, miR-4644, miR-
3976, and miR-4306 were selected as exosomal miRNA
markers. Concomitant evaluation of these markers exhib-
ited a sensitivity of 1.00 (confidence interval (CI) 0.95–1)
and specificity of 0.80 (CI 0.67–0.90) for PC compared
with all other groups and a sensitivity of 0.93 (CI 0.81–
0.98) when non-PC-malignancies were excluded [103].
In addition to plasma/serum biomarkers, salivary bio-

markers have shown potential in diagnosing PC, possibly
because miRNA expression profiles in saliva are similar
to those in serum [104]. In the study including 12 pan-
creatobiliary tract cancer patients and 13 healthy donors,
salivary exosomal miR-1246 and miR-4644 exhibit great
potential as pancreatobiliary tract cancer early bio-
markers [105]. Besides, Salivary exosomal proteins are
also utilized for the detection of PC.[107]Thus, tests of
salivary EV-derived miRNAs and proteins may be a
novel method for diagnosing PC.
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The extraction of EV biomarkers from body fluids typic-
ally requires multiple ultracentrifugation steps, which are
time consuming. Several investigators have proposed new
technologies to simplify this process. A microfluidic-based
platform to isolate circulating exosomes comprised an
ExoChip with an antibody against CD63 to capture exo-
somes and a standard plate-reader for subsequent exo-
some quantification [107]. An ultrasensitive localized
surface plasmon resonance (LSPR)-based microRNA sen-
sor with single nucleotide specificity was developed to
quantify microRNA-10b levels, which are elevated in exo-
somes from the plasma of patients with PC [100]. In
addition, another novel microfluidics-based approach was
presented by researchers from the University of Notre
Dame. This platform consisted of surface acoustic wave
(SAW) exosome lysis and ion-exchange nanomembrane
RNA sensing performed concurrently on two separate
chips; this platform has the advantages of a shorter ana-
lysis time (1.5 h for the total analysis), smaller sample vol-
umes (100 μL), and reduced sample loss [99]. Table 1
summarizes the current diagnostic biomarkers for PC.
Majority of these studies included both patients with

benign pancreatic diseases and healthy individuals as
controls to assess the role of EV biomarkers for PC

diagnosis, and various EV biomarkers proved to indicate
disease progression and predict prognosis. However, fur-
ther studies on EVs biomarkers need to be conducted to
assess response to therapy, such as chemotherapy and
radiotherapy. Besides, several obstacles remain to be
overcome before the clinical application of EVs as bio-
markers: prolonged EV isolation procedures, unavailabil-
ity of specific markers to separate tumor cell-derived
EVs from normal cell-derived EVs and lack of sensitive
system for large cohorts of clinical samples.

Potential applications of EVs in treating PC
An increasing number of studies has aimed to apply EVs
to PC therapy. The roles of EVs in PC treatment in these
studies are divided into three categories: (1) tumor-
associated immunity stimulators, (2) drug carriers and
(3) therapeutic targets.

EVs as tumor-associated immunity stimulators
EVs released by tumor cells are known to facilitate im-
mune suppression and tolerance toward cancer cells,
thus promoting cancer progression. However, EVs might
act as a promising immunity stimulator against tumors.
EVs secreted by human DCs induced the activation of

Table 1 EVs biomarkers for pancreatic cancer diagnosis

Biomarker Sample Sensitivity and specificity Methods Reference

miR-17-5p, miR-21 Serum:22 PCs, 6 benign pancreatic
tumors, 7 ampullary carcinomas, 6
CPs, 8 healthy donors

72.7% and 92.6% for miR-
17-5p 95.5% and 81.5%
for miR-21

Ultracentrifugation for
exosome isolation; RT-PCR for
miRNA screening

[98]

miR-550 Media from the PANC1 cell line Not mentioned SAW for exosomes lysis; ion-
exchange nanomembrane
sensor for miRNA detection

[99]

miR-10b Plasma:3 PCs, 3 CPs, 3 healthy
donors

Not mentioned Ultracentrifugation for exosome
isolation; LSPR-Based sensor for
miRNA quantification

[100]

miR-10b, miR-21, miR-30c,
miR-181a, miR-let7a

Blood:29 PCs, 11 CPs, 6 normal
donors

Sensitivity:100% Specificity:
100% For all these biomarkers

Ultracentrifugation for exosome
isolation; RT-qPCR for miRNA
detection

[102]

miR-1246, miR-4644, miR-3976,
miR-4306 and CD44v6,Tspan8,
EpCAM, MET, CD104

Serum: 131 PCs, 25 CPs, 22 benign
pancreatic tumors, 12non-PCs, 30
healthy donors

Sensitivity:100% Specificity:80%
With 93% for excluding non-
Pa-malignancies

Ultracentrifugation for exosome
isolation; RT-PCR for miRNA
detection; flow-cytometry for
protein analysis

[103]

miR-1246, miR-4644 saliva:12 pancreatobiliary tract
cancer patients, 13 healthy donors

66.7% and 100% for miR-1246
75.0% and 76.9% for miR-4644

Total Exosome Isolation
Reagent for exosoems isolation;
RT-qPCR for miRNA detection

[105]

Apbblip, Aspn, BCO31781, Daf2,
Foxp1, Gng2,Incenp

Salivary glands from PC mouse
model

Not mentioned Ultracentrifugation for exosome
isolation; Western-blotting for
protein anaysis

[106]

MIF Plasma: 5 mice with PanIN, 8 mice
with PC, 6 heallthy mice

Not mentioned ultracentrifugation for exosome
isolation; ELISA for MIF
measurement

[3]

Glypican-1 Serum: 32 breast cancer, 190 PCs,
100 healthy donor

Sensitivity:100% Specificity:100% Ultracentrifugation for exosome
isolation;ultraperformance liquid
chromatography-mass
spectrometry(UPLC-MS) for
protein evaluation

[101]
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CD4+ T cells in vitro [108]. Researchers enhanced the
immune activity of exosomes isolated from cultured
PANC-1 cell supernatants by depleting exosomal miR-
NAs via lysis and ultrafiltration. Notably, miRNA-
depleted exosome proteins increased the tumor-killing
capacity of DC/CIK toward PC cells, suggesting that
modified PC cell-derived exosomes may be a potential
immunotherapeutic approach for PC [72]. In addition
to PC, tumor cell-derived EVs also induce anti-tumor
immune activity in lymphoma [109], hepatocellular
carcinoma [110], and colorectal cancer [111]. Further-
more, some clinical trials have confirmed that cancer
progression may be halted by EV-associated immuno-
therapy [111, 112].

EVs as drug carriers
EVs carry multiple biological substances and are cap-
tured by recipient cells, indicating that they may be an
ideal drug delivery tool. Unlike synthetic nanoparticle
drug delivery systems, EVs harbor transmembrane or
membrane-anchored proteins to enhance endocytosis,
which promotes the delivery of their contents [113, 114].
After priming with paclitaxel, mesenchymal stromal cells

(MSCs) substantially inhibited the proliferation of the
CFPAC-1 pancreatic cell line by secreting EVs contain-
ing paclitaxel into the conditioned medium [115]. EVs
also deliver curcumin, a turmeric root derivative, to re-
cipient PC cells to promote cytotoxicity in vitro [116]. In
addition to common chemotherapeutics, EVs could
transport RNA and proteins into recipient cells. Accord-
ing to a newly published article, exosomes that had been
engineered to convey a siRNA or short hairpin RNA tar-
geting oncogenic KRASG12D, a common mutation in PC,
suppressed cancer in mouse models and significantly in-
creased overall survival [117]. Similarly, the delivery of
exosomes carrying the survivin T34A mutant, a survivin
blocker, to the MiaPaCa-2 cell line increases gemcitabine
sensitivity in PC cells [118]. A novel compound compris-
ing exosomes and staphylococcal enterotoxin B (EXO/
SEB) induces the apoptosis of pancreatic cell lines and
increases the expression of BAX, BAK and FAS [119].
The advantage of exosomes over liposomes in drug de-
livery may depend on CD47, a widely expressed
integrin-associated transmembrane protein that protects
exosomes from clearance by monocytes by binding to
CD47 and signal regulatory protein alpha (SIRPα) [117].

Fig. 2 The functions of EVs in PC therapeutic intervention. The potential applications of EVs with different origins in PC therapeutic interventions
are shown
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EVs as a therapeutic target
As discussed above, EV secretion plays a pivotal role in
PC progression and chemoresistance. Thus, strategies
that block EV secretion from specific cell types like
CAFs or tumor cells may be a potential treatment for
PC. The formation of the pre-metastatic niche in the
liver was abolished by the silencing of exosomal MIF [3].
Moreover, the chemoresistance of PC cells transferred
by GEM-exposed CAFs was eliminated by GW4869, an
inhibitor of exosome release, significantly reducing the
survival of PC cells [54]. MiR-155-induced GEM resist-
ance was ameliorated by decreasing the number of exo-
somes following siRAB27B transfection in PC cells [9].
In addition to suppressing EV secretion, inhibition of EV
uptake may be another strategy in PC treatment. REG3β,
a lectin that binds to EV surface, released by the normal
pancreatic tissues surrounding tumor impaired the up-
take of EVs by tumor cells both in vitro and vivo and
inhibited the migration and metabolic changes in cancer
cells [120]. All of these studies indicate that EVs may be
a potential therapeutic target for the treatment of PC.
However, as discussed above, EVs released by different
cell types may present pro- or anti- tumor effects. How
to block the EV secretion or uptake by specific cell types
like CAFs or tumor cells at the exclusion of other cell
subsets in tumor microenvironment remains a challenge
to overcome. Figure 2 summarizes the functions of EVs
in PC therapeutic intervention.

Conclusions
EVs have various roles in modulating PC progression,
chemoresistance, diagnosis and treatment. The under-
lying mechanisms remain to be further explored, par-
ticularly the seemingly contradictory effects of EVs on
tumor cell proliferation and tumor-associated immunity.
Biomarkers related to exosomes prove to be promising
in diagnosing PC and determining patient prognosis; fur-
ther investigations are required to explore the potential
clinical applications of EVs, which may usher in a new
era for PC treatment.
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