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Abstract

It is still controversial whether comprehensive genome screening of target molecules by next generation sequencing
(NGS) is needed to increase clinical efficacy of investigational drugs or accelerate drug development, although several
studies are being carried out. Therefore, we performed a prospective study to evaluate the feasibility of comprehensive
gene screening in this setting. Our findings indicate that actionable alterations were identified in 45% of the analyzed
patients, most frequently in those with breast cancer. Common actionable alterations were found in PIK3CA mutation,
BRCA2 mutation, ERBB2 amplification, and CCND1 amplification. In total, 22% of the analyzed patients could be entered
into phase I clinical trials, and 8% of them were treated with “matched” drugs. Among patients who received matched
therapies, response and disease control rates were 33 and 78%, respectively. On the other hand, in the patients who
received “non-matched” therapy, the objective response rate was 6%. We believe this data indicates that NGS-based
molecular pre-screening is a potent platform for use before patient entry into phase I trials.
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Findings
Background
Recent molecular characterization studies showed that
many alterations occurred in oncogenes or tumor
suppressor genes that might become therapeutic targets,
for instance, PIK3CA [1], AKT1 [2], FGFR1 [3–5], and
BRCA1/2 [6]. Screening for such targetable genetic alter-
ations will aid in identifying subpopulations of patients
who will benefit from specific treatments.
In phase I trials, information on genomic alterations in

tumors is quite helpful to allow each patient entry to a
suitable clinical trial, in which the molecular targeted
drug is theoretically matched to the alterations. If we

were to find super-responders in these trials, the genomic
alterations would be recognized as specific biomarkers to
predict the response to the investigational drug.
Therefore, we conducted a prospective cohort study to

investigate the feasibility of NGS-based pre-screening
to identify genomic alterations in patients considering
entry into phase I clinical trials (Additional file 1:
Supplementary Methods) [7–15]. We named this study
the “Trial of Oncopanel for Introduction into Clinical
Study-Phase 1 (TOPICS-1).”

Results
Registration and sequencing
From July 2013 to October 2014, 183 patients were
recruited for the study (Fig. 1 and Additional file 2:
Table S1). Fifty-two patients were omitted from sequen-
cing analysis. The major reasons were low-quality DNA
(22 patients) and insufficient tumor tissue (21 patients).
Less common reasons included insufficient DNA
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quantities (3 patients) and other factors (6 patients)
(Additional file 2: Table S1). The success rates were
higher in surgical samples (93/125, 74.4%) than in
biopsy samples (38/58, 65.5%). As a result sequencing
was performed in 131 patients. The types of cancer
were as follows: 35 breast (27%), 35 gastric (27%), 21
ovarian (16%), 12 lung (9%), 8 bile duct (6%), 5 cervical
(4%), 4 thymic (3%), 3 endometrial (2%), 3 colon (2%), 2
sarcomas (2%), and 3 others (2%) (Fig. 1). Thirty (79%)
of 38 biopsied samples and 83 (89%) of 93 surgical sam-
ples were primary tumor lesions. The other biopsy sam-
ples were derived from metastases in the liver (4
patients), lymph nodes (2 patients), and skin (2 pa-
tients) (Additional file 2: Table S1).

Detected genomic alterations
We identified 1.42 mutations (Additional file 3: Table
S5) and 0.26 amplifications (Additional file 4: Table S6)
per patient. In addition, a fusion gene (CD74-ROS1) was
found in 1 patient. Of the 131 patients, 104 (79%) had at
least 1 genomic alteration, and 59 (45%) had at least 1 ac-
tionable genomic alteration (Additional file 5: Table S7).
The most frequent genomic alterations were TP53 muta-
tions (59 [46%] of 131 patients), PIK3CA mutations (15
patients [11%]), ERBB2 amplifications and mutations (12
patients [9%]), BRCA2 mutations (8 patients [6%]),
CCND1 amplifications (8 patients [6%]), KRAS mutations

Fig. 1 Registered and analyzed tumors in the TOPICS-1 study. The
diagnoses of patients who underwent genomic testing. Each diagnosis
included a variety of different histologic subtypes

Fig. 2 Summary of identified genomic alterations. The mutations, amplifications and fusions observed and reported in the study
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(8 patients [6%]), MYC amplifications (7 patients [5%]),
and ARID1A mutations (5 patients [4%]) (Fig. 2). Among
them, we considered PIK3CA mutations, ERBB2 amplifi-
cations and mutations, BRCA2 mutations, and CCND1
amplifications as actionable. Other actionable alterations
were less common, including BRCA1 mutations (4 pa-
tients [2%]), EGFR amplifications (2 patients [2%]), AKT1
mutations (2 patients [2%]), MDM2 amplifications (2 pa-
tients [2%]), FGFR1 amplifications (2 patients [2%]), and a
ROS1 fusion (1 patient [1%]).

Entry into phase I clinical trials
By June 2015, 29 (22%) of the 131 patients who under-
went the sequencing test had entered phase I trials.
Therefore, the primary endpoint, the inclusion of 25%
patients in phase I trials, was not met. Seventeen differ-
ent regimens were used in the 29 patients who entered
phase I trials. Eleven (8% of the 131 patients) entered
phase I trials of targeted therapies that matched their
genomic alterations (Table 1). Forty-two of 59 patients
who had actionable alterations could not enter access-
ible phase I trials because of ongoing standard treat-
ment (18 patients), disease progression (18 patients),
the patients’ wishes (4 patients), or no available
matched phase I trials that targeted their actionable
alterations (2 patients).

Matched therapies and response
Seven different regimens were used in the 11 patients
who received matched therapy. Two patients could not
be assessed for antitumor activity. We evaluated re-
sponse in the 9 assessable patients. Of them, 3 showed
response and 4 had stable disease (Table 1). Partial

response (PR) was seen in 3 patients, all responders had
breast cancer. Case 1 was an ER-positive breast cancer
patient with a PIK3CA H1047R mutation. She was
treated with 5 kinds of hormonal therapy and 3 kinds of
chemotherapy containing anthracycline and capecitabine
after first relapse, and then received PI3K inhibitor treat-
ment. PR began 60 days after first administration and
lasted for 16 months. Case 2 was an ER-positive breast
cancer patient with an AKT1 E17K mutation. She was
treated with 6 kinds of hormonal therapy and 3 kinds of
chemotherapy containing anthracycline and taxane, and
then received AKT inhibitor treatment. PR began 60 days
after first administration and lasted for 27 months. Case
3 was a triple-negative breast cancer patient with a
BRCA1 truncation mutation. She experienced her first
relapse after adjuvant chemotherapy containing anthracy-
cline and taxane and then received combination therapy
with a PARP inhibitor and eribulin. PR began 60 days after
first administration and lasted for 6 months. The response
and disease control rates were 33 and 78%, respectively. In
contrast, the 18 patients who received non-matched ther-
apy had response and disease control rates of only 6 and
56%, respectively. Moreover, we assessed progression free
survival (PFS) (Table 1). Median PFS of the patients with
matched therapy was longer than those with non-
matched therapy (5.5 months, 95% CI; 2.1 to 9.0 vs.
1.9 months, 95% CI; 0.5 to 3.2) (Additional file 6: Fig-
ure S1).
Several trials, including SAFIR01 [NCT01414933] [7],

NCI-MATCH [NCT02465060], MOSCATO01 and −02
trials [NCT01566019], SHIVA [NCT01771458] [16],
PROFILER [NCT01774409], the EORTC SPECTA ini-
tiatives, are carried out to investigate the feasibility and

Table 1 Characteristic of patient entering into Phase I with matched therapy

No. Cancer type Molecular alteration Matched therapy Response Progression free survival (month)

1 Bile duct FGFR2 FGFR inhibitor PD 0.95

2 Cervical PIK3CA
E542K

PI3K inhibitor NE 2.53

3 Liver TSC1 mTOR inhibitor NE 0.82

4 Breast BRCA1 PARP inhibitor PR 8.09

5 Peritoneal BRCA1 PARP inhibitor SD 7.17

6 Cervical PIK3CA
E542K

AKT inhibitor PD 0.72

7 Breast PIK3CA
H1047R

PI3K inhibitor PR 6.18

8 Breast PIK3CA
E545K

PI3K inhibitor SD 2.80

9 Breast PIK3CA
E545V

PI3K inhibitor SD 5.72

10 Breast AKT1
E17K

AKT inhibitor PR 14.1

11 Breast BRCA1 PARP inhibitor SD 5.53

PD progression disease, SD stable disease, PR partial response, NE not evaluable

Tanabe et al. Molecular Cancer  (2016) 15:73 Page 3 of 5



utility of NGS-based screening. However, it is contro-
versial for phase I trials, especially.
We demonstrate the feasibility of in-house, gene panel–

based NGS screening for entry into phase I clinical trials for
anti-cancer drugs. One of the distinctive features of this
study is the customized assay design. Considering the flexi-
bility of target genes, we adopted a custom gene panel con-
sisting of 90 genes for mutations and amplifications and 10
genes for fusions (Additional file 7: Table S4). The analytical
accuracy of this in-house system was validated. The second
distinctive feature of this study is the use of formalin-fixed
paraffin-embedded (FFPE) samples, which are easily avail-
able in clinical practice. The use of FFPE samples for se-
quencing creates the opportunity to characterize cancer-
relevant genes even in cases where tissue retrieval is difficult.
The quality of FFPE samples was related to fixation time
and storage duration. To ensure stable sequencing, we chan-
ged the DNA amounts used for library preparation in re-
sponse to the quality of the extracted DNA (Additional file
8: Table S2).
Genomic analysis was performed in 72% of the en-

rolled patients, and enabled matching of therapy in 8%
of the patients in whom sequencing was performed.
Twenty-two percent of the analyzed patients entered
phase I trials after the sequencing test, although the
primary endpoint was not met. This result was affected
by patients’ performance status and the numbers of
accessible phase I trials. However, it was feasible for the
candidate patients to entry to phase I trials based on se-
quencing results. Moreover, genomic analyses led to PR
in 33% and disease control in 78% of the patients who
received matched therapy. The success rate of receiving
matched therapy was consistent with other report [17].
On average, phase I trials show response rates between 5
and 10% [18–21]. In addition, in this study the response
and disease control rates of genomic alteration–matched
therapies were higher than those of non-matched ther-
apies (33% versus 6%, and 78% versus 56%, respectively).
Median PFS of the patients with matched therapy was lon-
ger than those with non-matched therapy (5.5 months,
95% CI; 2.1 to 9.0 vs. 1.9 months, 95% CI; 0.5 to 3.2).
These results suggest the clinical utility of the sequencing
test. The value of the sequencing test should increase if
more predictive markers are defined or more novel tar-
geted therapies are developed.
“Actionable genomic alterations” are a moving target.

The evidence level of these alterations will probably
change in the coming years as experimental agents move
through the developmental pipeline. Many of the tumors
that we tested harbored more than one potentially action-
able alteration, but few treatment algorithms existed to
stratify treatment options for these cases. In our original
gene panel, target genes can be flexibly changed respond-
ing to the needs of the study (customized panel).

The current study involved 9 tumor types. The ratio of
patients who were able to receive matched therapy was
higher in breast cancer patients than those with other can-
cer types, and objective responses were observed only in
breast cancer patients. The high efficacy in this population
might be due to the higher frequency of driver mutations
in breast cancer than in other tumor types (Additional file
9: Table S3). Moreover, it might be helpful that breast can-
cer is less aggressive and the tumor tissue is easy to access.
Given our results, it is likely that the clinical utility of mo-
lecular prescreening differs among tumor types, and
organ-specific screening might be useful.
Regarding future directions, we first need to determine

the utility of small, organ-specific gene panels compared
with the present pan-cancer gene panel. Second, we
need to reconsider the timing of sequencing tests, such
as perioperatively or at first recurrence. Third, to improve
the accessibility of target drugs we need to construct a
global social networking system that will allow patients
to enter clinical trials.

Conclusions
This report showed that the NGS-based molecular screen-
ing was feasible in clinical setting and would be potentially
useful for selecting adequate patients for entry into clinical
studies. Since most recent phase I trials have tried to iden-
tify early signals regarding the efficacy of targeted agents,
there is a strong rationale for proposing molecular selec-
tion for patients eligible for these studies.
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