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Abstract

biomarkers and therapeutic targets.

The previous decade has seen long non-coding RNAs (IncRNAs) rise from obscurity to being defined as a category
of genetic elements, leaving its mark on the field of cancer biology. With the current number of curated IncRNAs
increasing by 10,000 in the last five years, the field is moving from annotation of INcCRNA expression in various
tumours to understanding their importance in the key cancer signalling networks and characteristic behaviours.
Here, we summarize the previously identified as well as recently discovered mechanisms of IncRNA function and
their roles in the hallmarks of cancer. Furthermore, we identify novel technologies for investigation of INncCRNA
properties and their function in carcinogenesis, which will be important for their translation to the clinic as novel

Background
Our understanding of cancer biology was drastically
changed by the genomic revolution of the last decade,
marked by the conclusion of the human genome project
and the development of novel DNA sequencing tech-
nologies [1, 2]. The complete human genome sequence
provided a framework for comparison of populations
with cancer susceptibility, allowing for clinical prognosis
based on mutations in genes such as BRCA1/2 or differ-
ential treatment based modifications in KRAS and BRAF
[3-5]. Sequencing of individual tumours revealed the
prevalence of acquired DNA damage compared to the
germline mutations, which allowed identification of foot-
prints for individual mutagens and gave us important in-
sights into tumour heterogeneity and evolution [6—10].
Parallel to the progress in genomics, advances in tran-
scriptomics initiated functional annotation of numerous
genomic loci associated with cancer that do not overlap
protein-coding genes — the noncoding genome.
Large-scale cDNA sequencing projects, together with
technological advancements such as tiling arrays and the

* Correspondence: m.dinger@garvan.org.au

"Equal contributors

'Genome Informatics, Genomics & Epigenetics Division, Garvan Institute of
Medical Research, Sydney, NSW, Australia

2Faculty of Medicine, St Vincent's Clinical School, University of New South
Wales, Sydney, NSW, Australia

( ) BiolMed Central

next generation RNA sequencing provided an unprece-
dented view of the transcriptome complexity [11-15].
Surprisingly, only 1-2 % of the whole genome encodes
proteins, with evidence of at least 80 % of the remainder
being actively transcribed [11, 16]. These non-coding
portions of the genome produce a large variety of mostly
regulatory RNAs that differ in their biogenesis, proper-
ties and function, and are separated by their size into
short, such as miRNAs (reviewed in [17]) and long
(>200 nt) RNAs [12, 18-20]. The heterogeneous cat-
egory of long non-coding RNAs (IncRNA) are especially
abundant, accounting for 16,000 curated records in the
current Gencode annotation (v.23) [21] with for all
IncRNA loci in the human genome numbering as high
as 60,000 [22].

IncRNAs remained elusive even in the genomics era due
to their low expression levels and their presence in specific
cell types, tissues or narrow time frames [23-25]. They
were identified as a class of RNA molecules in 2002 [26],
even though some IncRNA such as H19 and Xist were
known since the early 1990s [27, 28] Analogous to protein
coding genes but with low coding potential, these RNAs
are usually transcribed by RNA polymerase II (Pol II),
spliced, and mostly polyadenylated [12, 13]. Similarly,
IncRNA promoters are enriched for active histone modifi-
cations typical of Pol II occupancy: H3K4me3, H3K9ac and
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H3K27ac [20, 29]. Even though the sequence of IncRNAs
evolves rapidly, especially compared to their 3D structure,
their tissue specificity as well as promotor sequences re-
main conserved as protein-coding genes [30-32]. The het-
erogeneity of IncRNAs resonates in the diversity of their
functions; IncRNAs interact with DNA, proteins and other
RNAs to participate in processes from transcription, intra-
cellular trafficking to chromosome remodelling as reviewed
previously [29, 33]).

IncRNAs have been observed to regulate complex cellular
behaviours such as growth, differentiation and establish-
ment of cell identity that are commonly deregulated in
cancer [34-36]. Some have already been linked to poor
prognosis in multiple tumour types and have a clinical rele-
vance as biomarkers. In this review we will focus on the
molecular mechanisms of function for cancer-associated
IncRNAs, their involvement in cancer hallmarks and pro-
vide information on the most recent advances in technolo-
gies for their identification and functional interrogation.

Identification of IncRNAs in cancer

IncRNAs were initially observed in carcinogenesis due to
their differential expression compared to normal tissues.
High expression in tumour tissues of some of the first
identified IncRNAs such as h19, MALAT1 and PCA3
was recognised before the availability of next-generation
sequencing technologies [37-39]. RNA sequencing
allowed a large-scale assessment of differential expres-
sion of IncRNAs comparing cancer to normal tissues,
with a large number of IncRNAs showing aberrant ex-
pression, similar to the influence microarrays had on the
miRNA field (Fig. 1). Recently, a number of IncRNAs
have been systematically identified in numerous cancer
transcriptomes, either by overlap of sequencing libraries
with previously annotated GENCODE IncRNAs, or by
de novo assembly of all available public datasets [22, 40],
marking their presence in the majority of cancer types
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(Fig. 2, Additional file 1: Table S1). Novel RNA-seq tech-
niques such as CaptureSeq, that enriches transcript li-
braries for specific oligonucleotides designed for
genomic regions of interest, will improve observation of
rare or lowly abundant transcripts from gene deserts as-
sociated with cancer [41].

There are two main drivers for altered expression of
IncRNAs in tumours. First, abundance of some IncRNAs can
be altered due to the cancer-induced change of copy number
of their genomic loci. This phenomenon has been observed
for FAL1 in ovarian and PRAL in hepatocellular carcinoma
[42, 43]. Second, expression of some cancer-associated
IncRNAs can be initiated by oncogenes acting as transcription
factors. Two crucial genes implicated in multiple tumour
types, Myc and p53, act as transcription factors for a large
number of IncRNAs [44—46]. Some of these IncRNAs modu-
late activity of their respective TFs in a feedback loop, for ex-
ample MINCR with Myc and MEG3 for p53, which makes
them potential candidates for therapeutic targeting [47, 48].

Presence of IncRNAs in specific tumours can also be
observed based on their overlap with the cancer risk loci
identified through genome-wide association studies
(GWAS). For example, association of ANRIL with gli-
oma and basal cell carcinoma as well as PTCSC3 with
thyroid cancer were discovered based on the known risk
loci established through genotyping of cancer patients
[49, 50] Recently, CASC15 and NBAT1 were identified
through GWAS of neuroblastoma, a cancer that mostly
affects children and has a poorly explained genetic back-
ground. Both CASC15 and NBAT1 are part of the 6p22
locus that contains SNP rs6939340, associated with
metastatic disease and poor event free survival [51, 52].
CASC15 acts as a tumour suppressor and is associated
with advanced tumour stages and poor patient survival,
while NBAT1 seems to negatively regulate transcription
factor NRSF (neuron restrictive silencing factor) [52, 53].
Furthermore, CARLo-5 was identified as significantly
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Fig. 1 Interest for INcRNAs (red) in the cancer scientific community compared to miRNAs (blue). The y-axis represents the number of publications
and the x-axis represents time. Data was obtained by searching Pubmed for IncRNA cancer’ or ‘'miRNA cancer’. Data from 2016 was not used in
the graph. Publications with terms ‘miRNA" and ‘cancer’ plateau in 2015
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correlated with the rs6983267 allele, a single nucleotide
polymorphism (SNP) in the region for Myc enhancers.
This IncRNA is associated with increased cancer suscep-
tibility and has a function in cell-cycle regulation and
tumour development [54]. Since more than 80 % of dis-
ease associated SNPs fall into intronic and intergenic
regions, it is likely that future development of more sen-
sitive technologies for RNA detection will be essential in
defining novel cancer-associated IncRNAs [55].

Mechanisms of IncRNA function in carcinogenesis
Although IncRNAs are scarcely functionally annotated
[56], their mechanism of action can be separated based
on their influence on chromatin state and methylation,
stability of proteins and complexes or by acting as a
sponge for miRNA inhibition (reviewed in [29]).

Chromatin state and methylation

Chromatin remodelling was one of the first identified func-
tions of IncRNAs. Epigenetic remodelling is frequently
achieved through interaction of a IncRNAs with PRC2
(reviewed in [57]), a protein from the polycomb complex
that introduces chromatin inactivation by establishing in-
hibitory H3K427me3 histone marks [58]. These IncRNAs
are sometimes expressed antisense to the target gene in-
volved in cancer, such as in the case of ANRIL with
CDKNA/B and asFGFR2 with FGFR2 [59, 60], suggesting a
possibility for a cis-acting activity. PCE3, as the first

IncRNA involved in cancer was only recently found to have
the same mode of action, with the discovery of its antisense
protein oncogene PRUNE?2 [61]. However, it has also been
observed that PRC2 lacks specificity in binding RNAs that
recruit it, providing a potential explanation why such a
large number of IncRNAs influence chromatin remodelling
[62]. Besides acting through PRC2, some IncRNAs such as
Kcnglotl, TARID, ASIDHRS4 and DACORI recruit DNA
methyltransferases directly to modify chromatin conform-
ation, or they modify nucleosome positioning through
SWI/SNF complex as in the case of SChLAP1 [63-67].
Other IncRNAs, like Firre, bind chromatin remodelers
cohesin and CTCF to change chromatin state of the whole
chromosomes in the process of X chromosome inactivation
[68]. IncRNAs can also act as chromatin activators, as in
the case of HOTTIP and CCAT1-L that regulate chromo-
some looping in their proximity to deposit activating
H3K4me3 mark on gene promoters [69-71].

Stability of proteins or protein complexes

A large number of IncRNAs exert their oncogenic func-
tion through direct interaction with proteins or protein
complexes as scaffolds or allosteric activators/inhibitors.
CTBP1-AS, CCTA2 and ZBTB7A interact with transcrip-
tion factors and modify their activity [72-74]. Some
IncRNAs can be used as a scaffold for assembly of whole
protein complexes, for example HOTAIR for the HBXIP/
Hotair/LSD1 complex [75], NEAT1 for paraspeckle
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proteins [76, 77], BCAR4 for binding of SNIP1 and
PNUTS [78], PRAL for HSP90 and p53 [43]. Furthermore,
TERRA recruits a complex of chromatin modifiers to
regulate telomere maintenance in response to a variety of
cellular signals [79]. Finally, some IncRNAs such as GAS5
bind to nuclear receptors, in this case the glucocorticoid
receptor [80].

Competing endogenous RNAs

Some IncRNAs have recently been found to act as com-
peting endogenous RNAs (ceRNAs), by binding miR-
NAs (“sponging”) and reducing their inhibitory effect
on their natural targets (reviewed in [81]). There are
numerous examples of IncRNA sponges involved in
cancer progression. In lung cancer, UCA1 up-regulates
a potent oncogene ERBB4 by binding miR-193-3p [82].
In gastric cancer, MEG3 upregulates Bcl-2 by seques-
tering miR-181-a [83]. Similarly, ZFAS1 binds miR-150
in hepatocellular carcinoma, Linc-RoR binds miR-145
in endometrial cancer stem cells and CASC2 regulates
concentration of miR-21 [84—86].

In addition to the previously described mechanisms,
IncRNAs have recently been observed to employ the
following set of diverse strategies. IncRNAs can mod-
ify the phosphorylation state of proteins by masking
phosphorylation motifs, like LINK-a and HIFla [87].
Furthermore, some IncRNAs such as NORAD act as
sponges for a whole set of proteins, in this case the
PUMILIO family that would otherwise drive chromo-
somal instability by repressing mitotic, DNA repair,
and DNA replication factors [88]. Interestingly, some
IncRNAs form DNA-RNA triplexes that regulate ex-
pression of oncogenes either in cis for Khpsl, or in
trans for MEG3 [89, 90]. Other IncRNAs such as
Uc.283 + A control production of miRNAs by influen-
cing processing of the pri-miRNA transcripts, in this
case pri-miR-195 [91].

In summary, IncRNAs act through an increasingly
wide range of mechanisms that compete with proteins in
terms of their diversity and regulatory potential. In the
next section we discuss how these mechanisms impact
upon cell transformation to cancer phenotype.

Hallmarks of cancer

In 2000, Hanahan and Weinberg described six properties
required for cell transformation, termed hallmarks of
cancer. These included self-sustained growth signalling,
insensitivity to growth inhibition, apoptosis avoidance,
uncontrolled proliferation, angiogenesis and metastasis
[92, 93]. IncRNAs as regulatory molecules have been im-
plicated in the majority of these functions (reviewed in
[94]), and key patterns are starting to emerge.
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Self-sustained growth signalling

IncRNAs promote self-sufficiency in growth signals
mostly by acting on the activation on the first step of the
signal transduction, the signal receptors. Multiple
IncRNAs have been observed to specifically bind nuclear
receptors either alone or in a ribonucleoprotein com-
plexes (reviewed in [95]). SRAL serves as a scaffold to
stabilize the estrogen receptor [96, 97], while GAS5 acts
as the competitive inhibitor of the glucocorticoid recep-
tor [80]. Instead of activating the signal receptors, some
IncRNAs such as PVT1 affect the proliferation by regu-
lating the receptor abundance, as is demonstrated for
PVT1 and thyroid-stimulating hormone [98].

Insensitivity to growth inhibition

Growth inhibition or its evasion can also be regulated by
IncRNAs, and mostly involves influence on tumour sup-
pressors that regulate cell cycle such as cyclins, CDKs,
CDK inhibitors and p53 (reviewed in [99]). This can be
achieved by chromatin repression through PRC complex,
as detailed in the previous section. Using this mechan-
ism PANDA represses protein CDKN1A through PRC1
while ANRIL repress their targets tumour suppressor
pl5 (CDKN2B) through PRC2 [59, 100, 101]. Some
IncRNAs regulate expression of tumour suppressors by
influencing various parts of transcription and translation.
Initiation of transcription can be influenced by scaffold-
ing of transcription factor complexes, as in the case of
LincRNA-p21 and p21 (inhibitor of CDK2) [102]. Tran-
scription elongation can be modified by destabilization
of mRNA transcripts, as exemplified by gadd7 and Cdké
[103]. Finally, transcript stability and translation can be
regulated post-transcriptionally by diminishing the role
of miRNAs, as in the case of PTENP1 acting as a com-
petitive endogenous RNA to inhibit miRNA repression
of PTEN [104]. For some of the IncRNAs like CASC15-
S, the direct mechanism of growth inhibition is un-
known, but the lack of its expression increases cancer
growth and migratory capacity [53].

Avoiding apoptosis

Apoptosis or controlled cell death is one of the key path-
ways for control of carcinogenesis (reviewed in [36]).
Some IncRNAs act on regulation of transcription of key
apoptotic genes. For example, IncRNA INXS is expressed
from the intron of BCL-X and regulates its splicing into a
pro-apoptotic isoform BCL-XS [105]. A recently discov-
ered IncRNA PRAL induces apoptosis by stabilizing a
complex between HSP90 and p53 [43]. Several other
IncRNAs have been implicated in apoptosis such as
SPRY4-IT1 [106], HOXA-AS2 [107] and uc002mbe.2
[108], but the details of the mechanism of action remain
still unknown.
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Uncontrolled proliferation

Maintenance of telomeres as nucleoprotein structures that
stabilize ends of chromosomes is a key requirement for
limitless replicative potential of cancer cells. Telomeres
shorten in dividing cells, so a ribonucleoprotein complex
telomerase is required to elongate telomeric repeats
through reverse transcription of an internal template
RNA. Shortening of telomeres induces production of a
IncRNAs TERRA, that is transcribed from the subtelo-
meric regions [109]. Under normal conditions, TERRA re-
presses its expression through chromatin modifications,
but when activated can recruits protein complexes for
homology-directed repair of shortened or damaged telo-
meric sequences [79].

Promotion of angiogenesis

Multiple IncRNAs have been implicated in regulation of
nutrient supply to tumours, mostly by regulating vascu-
lar endothelial growth factor (VEGF) that is essential for
formation of blood vesicles. Transcription of VEGF was
recently reported to be regulated by IncRNAs HOTAIR
[110] and MIAT [111]. MIAT sequesters mir-150-5p that
is required for repression of VEGEF, resulting in micro-
vascular dysfunction and decreased metastasis after
MIAT knockdown. MVIH also influences production of
VEGE, though indirectly through phosphoglycerate kin-
ase 1 (PGK1) [112]. Finally, MALAT1 has been observed
to promotes angiogenic sprouting and migration when
expressed in endothelial cells [113].

Tissue invasion and metastasis

Multiple IncRNAs increase invasiveness of cancer cells
and facilitate metastasis. Examples of these include h19
[114], MALAT1 in colorectal and nasopharyngeal carcin-
oma [115], SPRY4-IT1 in melanoma [106], HOTAIR
[116], AFAP1-AS1 [117], and CCAT?2 [118] in lung cancer,
lincRNA-RoR in breast cancer [119], LEIGC in gastric
cancer [120] and IncRNA-ATB in hepatocellular carcin-
oma [121]. Out of these, only lincRNA-RoR and
IncRNAs-ATB have a suggested mechanism of action in
tissue invasion. lincRNA-RoR likely serves as a “sponge”
for miR-145 that is important for regulation of ADP-
ribosylation factor 6, a protein involved in invasion of
breast cancer cells [119]. Similarly, IncRNA-ATB, acts as a
ceRNA to reduce the effect of the miR-200 family targets
ZEB1 and ZEB2, two transcription factors that promote
cell motility and metastasis [121].

IncRNAs can be involved in a number of other pro-
cesses related to cancer. Some IncRNAs promote a
metabolic switch to glycolysis and lactic acid fermenta-
tion termed the Warburg effect [122]. lincRNA-p21 reg-
ulates the Warburg effect by preventing ubiquitination
of hypoxia-inducible factor-1 (HIF-1), a key transcription
factor that promotes upregulation of glycolysis and
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downregulation of oxidative phosphorylation [123]. Sev-
eral IncRNAs have been observed as essential for DNA
repair by homologous recombination (HR): ANRIL,
PCAT1 and DDSR1. Although the mechanism of ANRIL
in HR remains unknown, PCAT1 posttranslationally in-
hibits BRCA2 [124], while DDSR1 is suggested to inter-
act with BRCA1 [125]. Finally, there are implications of
IncRNAs on cancer therapies through expression of drug
exporters. For example, MRUL promotes expression of
ABCBI1 that is essential for multidrug-resistance in gas-
tric cancer cell lines [126].

Novel techniques for IncRNA interrogation The num-
ber of annotated transcribed genomic elements has in-
creased by 100 % in the last decade, the majority of
which are in the non-coding space and have a defined
function in less than 1 % of cases [56]. Such a vast num-
ber of novel genetic players presents a great potential for
clinical applications, especially in view of cancer as a
genomic disease. However, it also requires a thorough
rethinking of our basic premises on biological systems,
pathway structure and information transfer, as well as a
clear technological strategy to identification of their
function.

The first challenge is presented by the lack of an ex-
haustive definition of the full cancer transcriptome, re-
gardless of the cell or tissue type. Currently, a major
obstacle to analysis of cancer transcriptome is the align-
ment of sequence reads to the consensus human gen-
ome. Ideally, all the reads would be aligned to a genome
sequenced by single-molecule DNA sequencing, but the
cost and the quality of this technology are still keeping it
away from mainstream research. The next issue is the
limited dynamic range of transcript detection for RNA
sequencing. This can already be solved by applying the
recently developed CaptureSeq method for targeted en-
richment of transcripts from specific regions of interest
[41]. Furthermore, long read sequencing will be essential
for discovery of IncRNAs isoforms and novel exons
[127]. In combination with single cell sequencing it will
allow identification of individual IncRNAs species from
cancer subpopulations, avoiding the heterogeneity of tis-
sue mixture.

After defining the non-coding elements of the transcrip-
tome, the second challenge is the systematic identification
of IncRNAs properties that could lead to identifying their
cellular function. This can be achieved by investigating
their location in the cellular compartments, structural
properties as well as possible interactors.

Quantified localization of IncRNAs through micros-
copy techniques can provide important information
about their properties. RNA-Fish as an established tech-
nique for RNA localisation has recently been used to
identify subcellular location of multiple IncRNAs, in
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addition to their expression across a population of cells,
spatio-temporal behaviour and coexpression with prox-
imal mRNAs [128].

Structure of biological molecules is vital to their func-
tion, and several techniques have been developed to in-
vestigate secondary and tertiary structures of IncRNAs.
Techniques such as Parallel Analysis of RNA Structure
(PARS) [129] and Fragmentation Sequencing (FragSeq)
[130] sequence RNAs after specific cleavage of single
(FragSeq) or single and double stranded (PARS) nucleic
acids, allowing for identification of loops in RNA-
structure. Another way to investigate structure is to tag
the flexible 2'-hydroxyl groups in the RNA backbone by
Selective 2'-hydroxyl Acylation and Primer Extension
(SHAPE) [131]. Finally, similarly to DNA, RNA can be
edited with chemical modifications that modify its structure
and binding properties. Two established methods can be
used to identify methylated RNA sites: Methylated RNA
Immunoprecipitation with next-generation sequencing
(MeRIP) [132], or its adaption for hydroxymethylcytosine
sites — hMeRIP [133]. Another common RNA-modification
is chemical change of nucleotides adenosin to inosin, which
can be detected by inosine chemical erasing sequencing
(ICE-seq) [134].

Assessing the function of IncRNAs by identifying their
binding partners can be performed depending on the type
of interaction. Binding of RNA to DNA or proteins can be
assessed with ChIRP-seq or ChIRP-MS respectively (Chro-
matin Isolation by RNA purification followed by sequen-
cing or mass spectrometry) [135, 136]. The specificity of
ChIRP is guaranteed by selection of only those RNA that
are bound by biotinylated oligonucleotides, similar to RAP
[137] and CHART [138], as well as by crosslinking of RNA
with DNA or protein by UV or formalin. A recent modifi-
cation to the protocol can detect individual RNA domains
that interact with DNA, RNA or proteins [139]. Instead of
biotinylated oligonucleotides, RNA-guided chromatin con-
formation capture (R3C) reverse-transcribes RNA bound to
DNA into cDNA with biotin labelling and joins it with the
adjacent genomic DNA with T4 DNA ligase, allowing for
streptavidin selection and sequencing [140]. Furthermore,
identification of IncRNAs that bind to a protein of interest
such as PRC2 [141] can be performed through RNA Im-
munoprecipitation [142] that was later coupled with se-
quencing (RIP-Seq) [65]. The specificity of RIP has been
improved in by UV crosslinking of RNA and protein in
Cross-Linking ImmunoPrecipitation (CLIP) [143] and the
later modifications with sequencing (HITS-CLIP) [144] and
iClip [145]. Finally, the affinity of a protein for multiple
RNA can be assessed in a high-throughput manner. This
can be achieved either on a microfluidic platform by RNA-
mechanically Induced Trapping of Molecular Interactions
(RNA-MITOMI) [146], or on a flow cell in RNA-MaP
(massively parallel array) [147].
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The final challenge in defining IncRNA functions is de-
veloping loss- and gain-of-function IncRNA studies. The
RNA interference technology is being supplemented by
the powerful CRISPR/Cas-9 system, a newly developed
genome-editing technology that allows easier manipula-
tion of IncRNAs behaviour [148]. CRISPR allows multiple
types of manipulation, from deletion of various parts of
genomic IncRNAs loci, to insertion of promoters, and
novel exons. A recent modification of the CRISPR tech-
nique that was developed in Rinn group allows insertion
of RNA domains to genomic loci, allowing for identifica-
tion of in cis behaviour of IncRNAs [149].

Conclusion

Long non-coding RNAs are fine-tuners and regulators of
key biological processes. Though we have only started to
annotate their function in various aspects of cell trans-
formation and metastasis, they are already filling in the
major gaps of our understanding of cancer biology. It
will be exciting to see the next decade migrate from the
perception of IncRNAs as a side act in biological regula-
tion to the center of new biological concepts, paradigms
and drug therapies. Watch this space.
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