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Abstract

Objective: Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent pollutants and have endocrine
disruptive and neurotoxic effects. The association between maternal PFAS concentrations and neuropsychological
development in children is inconclusive. The present study aimed to examine the effect of maternal PFAS
concentrations on neuropsychological development in 4-years-old children.

Methods: We used data from Shanghai-Minhang Birth Cohort, which recruited pregnant women at 12–16
gestational weeks. Among 981 women having PFAS measurement, 533 mother-child pairs were included in
the study. A total of eight PFASs were measured, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid
(PFOA), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA),
perfluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoA), and perfluorotridecanoic acid (PFTrDA).
When infants turned 4 years old, mothers were asked to complete the Ages and Stages Questionnaires® (ASQ)
to assess neuropsychological development of their children. Poisson regression model with robust variance
estimates was used to examine the association between maternal PFAS concentrations and each developmental
subscale of the ASQ.

Results: Prenatal plasma concentrations of most PFASs tended to be associated with increased risk of development
problem in personal-social skills, including PFHxS, PFOS, PFOA, PFNA, PFDA, and PDUdA, and the associations for PFNA
and PFDA were significant (per natural log unit increase: RRPFNA = 1.92, 95% CI: 1.21, 3.05; RR PFDA = 1.66, 95% CI: 1.17,
2.37). In stratified analyses by child’ sex, the consistent pattern of higher risk of developmental problems in personal-
social skills associated with most PFASs was mainly observed among girls (RRPFOS = 2.56, 95% CI: 1.20, 5.45; RRPFOA =
9.00, 95% CI: 3.82, 21.21; RRPFNA = 3.11, 95% CI: 1.36, 7.13; RRPFDA = 2.20, 95% CI: 1.21, 4.00; RRPFUdA = 2.44, 95% CI: 1.14,
5.20; RRPFDoA = 1.62, 95% CI: 1.04, 2.54). Boys with higher maternal PFOA concentrations had a decreased risk of
developmental problems in gross motor skills (RR = 0.47, 95% CI: 0.25, 0.89).

(Continued on next page)

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: renyf1978@163.com
†Jinbo Niu and Hong Liang contributed equally to this work.
7Department of Health Statistics, School of Public Health and Management,
Weifang Medical University, 7166 Baotong west Road, Weifang 261053,
Shandong Province, China
Full list of author information is available at the end of the article

Niu et al. Environmental Health           (2019) 18:53 
https://doi.org/10.1186/s12940-019-0493-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-019-0493-3&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:renyf1978@163.com


(Continued from previous page)

Conclusion: Prenatal plasma PFAS concentrations were associated with neuropsychological development in
girls at 4 years of age, mainly in the subset of personal-social skills.

Keywords: Perfluoroalkyl and polyfluoroalkyl substances, Neuropsychology, Age and stage questionnaire,
Prenatal concentrations

Introduction
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), a
group of synthetic chemicals with hydrophobic (water-
repelling) and oleophobic (oil-repelling) properties, have
been extensively used in many consumer products, in-
cluding oil, stain, grease, and water-repellent coatings on
carpet, textiles, leather, and paper [1]. PFASs are bio-
accumulative and have a long elimination half-life of 2–
9 years [2]. Thus, they have been detected in wildlife and
humans worldwide [3]. Concerns about the health/toxic
effects of PFASs, particularly for in-utero exposure, have
been raised for decades [4].
In animal studies, maternal PFAS exposure during preg-

nancy was associated with somatic growth, e.g., birth
weight and size [5]. Moreover, maternal PFAS exposure
can induce alteration in neuropsychological development
of fetuses and neonates. Deranged spontaneous behavior
was observed in adult mice following perfluorooctane sul-
fonate (PFOS) and perfluorooctanoic acid (PFOA) expos-
ure during neonatal period, manifesting in hyperactivity
and irreversibly reduced habituation [6]. In addition, ma-
ternal PFOS or PFOA exposure during pregnancy can lead
to decreased motor function and delayed learning in rat
offspring [7].
The associations between maternal PFAS exposure

and neuropsychological development in children have
also been examined in human studies, but the findings
are inconsistent [8–11]. A prospective birth cohort study
in Japan showed an association between prenatal PFOA
exposure and mental developmental in girls aged 6
months, but not in those aged 18 months [12]. The bio-
persistent organochlorines in diet and human fertility
(INUENDO) cohort study reported that prenatal expos-
ure to PFOS and PFOA may have adverse effects on
children’s neurobehavioral development, specifically in
terms of hyperactive behavior [13]. However, in the Da-
nish National Birth Cohort (DNBC) established between
1996 and 2002, maternal serum levels of PFOA and
PFOS were not associated with behavioral and motor co-
ordination problems in 7-year old children [10]. A
nested case-control study from the DNBC suggested that
prenatal PFAS exposure did not increase the risk of
attention-deficit/hyperactivity disorder (ADHD) or aut-
ism in children [11]. In a 2005–2006 cohort study in the
Mid-Ohio Valley, children in the highest quartile of

maternal PFOA concentrations had higher intelligence
quotient scores and decreased ADHD scores at ages 6–
12 years compared with those in the lowest quartile [8].
Previous studies examining the associations between

maternal PFAS exposure and child neurodevelopment
focused on PFOS and PFOA. However, other commonly
used PFAS compounds, such as perfluorohexane sulfon-
ate (PFHxS), perfluorononanoic acid (PFNA), and per-
fluorodecanoic acid (PFDA), can be detected in more
than 85% of individuals in China and in France [14, 15]
and 50% of individuals in USA [16] and are less studied.
Maternal concentrations of PFASs, including PFOS,
PFOA PFHxS, PFNA, and PFDA, are much higher in
the Shanghai area than in the United States, Europe and
Asian countries [14]. In the present study, we used data
from the Shanghai-Minhang Birth Cohort Study (S-
MBCS) to examine associations between maternal con-
centrations of eight PFASs and the neurodevelopment of
4-year-old children assessed by the Ages and Stages
Questionnaires, 3rd edition® (ASQ − 3).

Methods
Participants
The Shanghai-Minhang Birth Cohort was established be-
tween April and December 2012 [14, 17]. While attend-
ing routine antenatal examinations at the Maternal and
Child Health Hospital of Minhang district in Shanghai,
all pregnant women at 12–16 weeks of gestation was in-
vited to participate in the study. Inclusion criteria in-
cluded: being registered residents of Shanghai, having no
history of chronic disease of the liver, kidney, or other
organs, planning to deliver in this study hospital, and
willingness to participate in specified interviews during
pregnancy and after delivery.
In total, 1292 eligible pregnant women completed a

structured questionnaire, among them, 981 provided a
fasting blood sample at enrollment. Sixty-seven eligible
pregnant women were excluded due to referral to other
hospitals (n = 28), twin pregnancy (n = 8), and abortion
or stillbirth (n = 31). The remaining 1225 women deliv-
ered singleton live births. Structured questionnaires were
administered postnatally during home visits at 4 years of
age to collect information on the child’s physical and
neuropsychological development. ASQ-3 included in the
structured questionnaire was used to identify children at
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a risk for neuropsychological developmental delay. We
obtained complete ASQ-3 assessment data from 661
participants at 4 years of age. The present study included
533 mother-infant pairs who had measurements of pre-
natal PFAS concentration and child neuropsychological
development at 4 years of age.

Exposure assessment
Maternal blood samples were collected at enrollment.
After separating plasma from whole blood, the plasma
samples were stored at − 80 °C until shipment using dry
ice to the Center for Disease Control and Prevention in
Hubei Province for quantitative analyses of 11 PFASs.
Eleven PFASs in each plasma sample were measured

using high-performance liquid chromatography coupled
with tandem mass spectrometry (Agilent Technologies
Inc., USA). Detailed information on sample preparation,
separation, quantification, quality control, and limit of
detection (LOD) has been described previously [14]. The
following eight PFASs with detection rates ≥90% were
included in the present study for statistical analyses:
PFHxS, PFOS, PFOA, PFNA, PFDA, perfluoroundeca-
noic acid (PFUdA), perfluorododecanoic acid (PFDoA),
and perfluorotridecanoic acid (PFTrDA).

Assessment of children’s neuropsychological
development
ASQ-3, contains 30 items designed to assess infant neuro-
psychological development in children aged 1–60months.
It covers five developmental subscales: communication,
gross motor function, fine motor function, problem-
solving ability, and personal-social skills [18]. A detailed
description of Chinese translation, training, and process of
validation of ASQ-3 has been described elsewhere [19].
The Simplified Chinese version of ASQ-3 has good in-
ternal consistency (Cronbach’s α = 0.80), high test-retest
reliability (correlation coefficient = 0.8), and high validity
(sensitivity = 87.50%, specificity = 84.48%) [19].
At home visits, parents or other caregivers were asked

whether the child performs the described behavior based
on three alternatives: “yes” (10 points), “sometimes” (5
points) and “not yet” (0 points). The score of each ASQ-
3 subscale was highly skewed, with few children scoring
lower than 2 standard deviations (SDs) below the stan-
dardized mean. Thus, the 10th percentile score of each
subscale was used to identify children at a potential risk
of developmental problem/delay, i.e., if scores on any
subscale were less than or equal to the 10th percentile,
the child was classified as having a developmental prob-
lem/delay. Additional file 1: Table S1 presents the rates
of potential developmental problem assessed at 4 years
of age in the study.

Covariates and potential confounders
Trained interviewers used a structured questionnaire at
enrollment to collect information on maternal age, edu-
cation, height, pre-pregnancy weight, parity, health sta-
tus, per capita household income, and lifestyle. Body
mass index (BMI) was calculated as body weight in kilo-
grams divided by squared body height in meters. The in-
formation on child’s sex and gestational age was
extracted from the study hospital’s medical records. Po-
tential confounders were identified based on previous lit-
erature of potential determinants of early childhood
development, available data in the present study, and re-
sults of bivariate analyses examining the relationship
with neuropsychological problems (P < 0.20). Maternal
age at enrollment (years), pre-pregnancy BMI (kg/m2),
parity, per capita household income (< 4000, 4000–8000,
and > 8000 CNY/month), passive smoker (yes/no), gesta-
tional age (weeks), and child’s sex (Boy/Girl) were in-
cluded as covariates in the final model.

Statistical analysis
We first described and compared the demographic char-
acteristics of included and excluded mother-infant pairs.
The distributions of prenatal plasma concentrations of
PFASs were presented by geometric means (GMs), SD,
and percentiles. Risk ratios (RRs) and associated 95%
confidence intervals (CIs) were estimated for the associ-
ation between each PFAS and each developmental sub-
scale of ASQ using Poisson regression analysis with
robust variance estimates [20]. Prenatal PFAS concen-
trations were natural log (ln) transformed to approxi-
mate a normal distribution for regression analysis and
were treated as continuous independent variables in
all models. Values below the LOD were replaced with
LOD/√2.
Considering that a previous study reported the sex-

specific effect of PFASs on neurobehavioral problems
[21], we introduced a cross product term for child’s sex
with each individual PFAS to evaluate potential inter-
action effects. As several interaction items showed statis-
tical significance (P < 0.10), we performed stratified
analyses by child’s sex. PFAS concentrations were also
categorized into tertiles according to its distribution in
the subjects and were analyzed using Poisson regression.
The lowest tertile was used as the reference group.
Additionally, we fit generalized additive models to

investigate a potential nonlinear relationships between
maternal PFAS concentration and neurobehavioral prob-
lems, and visually inspected plots of the smoothed data.
Several associations between ln-transformed PFASs and
children’s neuropsychological development showed non-
linear (Additional file 1: Figure S1-S5). In order to make
our results comparable to other studies and considering
that the aim of our study was inference rather than
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prediction, we still primarily presented the results of linear
models (PFAS concentrations as continuous and categor-
ical variables, respectively),
The Statistical Analysis System (SAS, version 9.3; SAS

Institute, Inc., Cary, NC, USA) was used for statistical
analysis. P values < 0.05 from two-tailed tests were con-
sidered statistically significant.

Results
Table 1 presents characteristics of mother-child pairs in-
cluded and excluded in the study. The mean age of the
included mothers at recruitment was 27.9 years, and
18.7 and 5.9% of them were underweight and over-
weight, respectively. Included parents tended to have
high educational attainment, with 78.0% having college
or above degrees. Among included mothers, the majority
were nulliparous and had household income per capita
> 4000 CNY/month, and over 40% of them were exposed
to secondhand smoke during pregnancy, while only
0.87% of them reported alcohol consumption during
pregnancy. About 18.6% of included mothers had de-
pressive symptoms during pregnancy. The mean gesta-
tional weeks of included mothers at birth of children
was 39.5 weeks and 55.7% of children were boys. The
characteristics of excluded mother-pairs were compar-
able with those included, except that the proportion of
nulliparous women was slightly higher among the in-
cluded than those excluded (86.9% vs. 82.7%).
PFHxS, PFOS, PFOA, PFNA, PFDA, PFUdA, and

PFDoA were detected in all maternal plasma samples,
while PFTrDA was detected in 90.6% of samples. PFOA
had the highest exposure levels (GM = 20.0 ng/ml),
followed by PFOS (GM = 10.8 ng/ml). The concentra-
tions of PFHxS, PFDA, PFNA, and PFUdA were one
order of magnitude lower than those of PFOA and
PFOS, while those of PFDoA and PFTrDA were two or-
ders of magnitude lower (Table 2). Prenatal PFAS con-
centrations were similarly distributed in girls and boys
(Additional file 1: Table S2).
Table 3 and Fig. 1 present associations between mater-

nal ln-transformed PFAS concentrations (as continuous
variables) and children’s neurodevelopmental problems
at 4 years of age. There was a pattern of higher risks of
developmental problem in personal-social skills associ-
ated with higher prenatal plasma concentrations of
PFHxS, PFOS, PFOA, PFNA, PFDA, and PDUdA, with
significant associations for PFNA and PFDA (per natural
log unit increase: RRPFNA = 1.92, 95% CI: 1.21, 3.05; RR
PFDA = 1.66, 95% CI: 1.17, 2.37). Children with higher
prenatal PFTrDA concentrations tended to have a
slightly higher risk of developmental problem in com-
munication, with borderline significance (RR = 1.16 for
per natural log unit increase, 95% CI: 0.99, 1.36), but the
association was not observed for other PFASs. No

statistically significant association was observed between
maternal PFAS concentrations and developmental prob-
lems in gross motor, fine motor, and problem solving
skills.
When evaluating the potential effect modifications by

child’s sex, some interaction items of maternal PFAS
concentrations and child’s sex were statistically signifi-
cant (p < 0.10) in the models examining PFOA and gross
motor, PFNA and fine motor, and PFOS/PFOA and
personal-social skills (Additional file 1: Table S3). The
consistent pattern of higher risk of developmental prob-
lems in personal-social skills associated with most PFASs
shown in Table 3 was mainly observed among girls
(Table 4). Among these associations, those for PFOS,
PFOA, PFNA, PFDA, PFUdA, and PFDoA concentra-
tions were statistically significant (per natural log unit
increase of PFAS concentrations: RRPFOS = 2.56, 95% CI:
1.20, 5.45; RRPFOA = 9.00, 95% CI: 3.82, 21.21; RRPFNA =
3.11, 95% CI: 1.36, 7.13; RRPFDA = 2.20, 95% CI: 1.21,
4.00; RRPFUdA = 2.44, 95% CI: 1.14, 5.20; RRPFDoA = 1.62,
95% CI: 1.04, 2.54). There were no significant associa-
tions between PFAS concentrations and problems in
other subscales in girls (Table 4). No clear association
between PFAS concentrations and problems in each sub-
scale was observed in boys (Table 4). Only boys with
higher prenatal PFOA concentrations had a decreased
risk of developmental problems in gross motor skills
(per natural log unit increase: RR = 0.47, 95% CI: 0.25,
0.89) (Table 4).
We further examined the associations between mater-

nal PFAS concentration as categorical variables and de-
velopmental problems by child’s sex (Table 5). Generally,
the models using categorized PFAS variables showed
similar results as reported in the main analyses. In girls,
there was a consistent pattern of increased risk of prob-
lems in personal-social skills associated with higher ma-
ternal PFAS concentrations except PFTrDA, although
the estimates became imprecise. For PFOA, the regres-
sion model did not converge because there was no child
with developmental problem in the lowest tertile group.
A linear trend was observed between tertiles of PFOS,
PFNA, PFDA, and PFDoA and problems in the subscale
(P for trend =0.0027, 0.0417, 0.0110, and 0.0159,
respectively, Table 5). In addition, prenatal PFNA con-
centrations were associated with a decreased risk of
communication problems; adjusted RRs were 0.73
(95%CI: 0.41, 1.32) for the middle tertile and 0.50 (95%
CI: 0.26, 0.94) for the highest tertile (P for trend =
0.0292). There were no clear associations between ma-
ternal PFAS concentrations and problems in each sub-
scale among boys. However, boys with higher maternal
PFTrDA concentrations were more likely to have com-
munication problem; the adjusted RRs was 1.53 (95%CI:
0.92, 2.55) for middle tertile and 1.83 (95%CI: 1.08, 3.12)
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Table 1 Characteristics of included and excluded mother-child pairs

Characteristics Included (N = 533)
n (%) / Mean ± SD

Excluded (N = 692)
n (%) / Mean ± SD

P-value of Student’s t-test
or Chi-square test

Maternal age at enrollment (years)

Mean ± SD 27.9 ± 3.4 27.8 ± 3.4 0.7451

< 25 81 (15.2) 103 (14.9) 0.7900

25–30 299 (56.1) 404 (58.4)

≥ 30 153 (28.7) 185 (26.7)

Maternal pre-pregnancy BMI (kg/m2)

Mean ± SD 20.6 ± 2.4 20.4 ± 2.4 0.1905

< 18.5 98 (18.7) 146 (21.5) 0.2112

18.5–24.9 395 (75.4) 506 (74.4)

≥ 25 31 (5.9) 28 (4.1)

Maternal education

Blow high school 41 (7.7) 78 (11.3) 0.1064

High School 76 (14.3) 99 (14.3)

College or above 415 (78.0) 514 (74.4)

Paternal education

Blow high school 28 (5.25) 57 (8.28) 0.9430

High School 76 (14.26) 119 (17.3)

College or above 429 (80.49) 512 (74.42)

Per capita household income (CNY)

< 4000 113 (21.3) 140 (20.6) 0.0282

4000–8000 212 (40.0) 277 (40.8)

> 8000 205 (38.7) 262 (38.6)

Parity

Nulliparous 459 (86.9) 569 (82.7) 0.0432

Multiparous 69 (13.1) 119 (17.3)

Maternal alcohol consumption during pregnancy

No 454 (99.13) 508 (98.64) 0.4743

Yes 4 (0.87) 7 (1.36)

Maternal passive smoking before conception

No 307 (57.8) 420 (60.9) 0.2811

Yes 224 (42.2) 270 (39.1)

Maternal prenatal depressive symptoms

No 434 (81.43) 551 (79.62) 0.4309

Yes 99 (18.57) 141 (20.38)

Sex of child

Boy 297 (55.7) 370 (53.7) 0.4816

Girl 236 (44.3) 319 (46.3)

Gestational age (weeks)

Mean ± SD 39.5 ± 1.3 39.51 ± 1.5 0.6182

< 37 19 (3.6) 26 (3.8) 0.8640

≥ 37 513 (96.4) 666 (96.2)

Missing data: Included: pre-pregnancy BMI (n = 9), maternal education (n = 1), per capita household income (n = 3), parity (n = 5), maternal alcohol consumption
during pregnancy (n = 75) and maternal passive smoking before conception (n = 2); Excluded: pre-pregnancy BMI (n = 12), maternal education (n = 1), paternal
education (n = 4), per capita household income (n = 13), parity (n = 4), maternal alcohol consumption during pregnancy (n = 177), maternal passive smoking before
conception (n = 2), and maternal prenatal depressive symptoms (n = 1)
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for the highest tertile (P for trend = 0.0218). Boys in the
middle tertile of maternal PFUdA concentrations had
more problems in fine motor scale (RR = 2.19, 95%CI:
1.16, 4.17) (Table 5).

Discussion
We found that girls with higher maternal concentrations
of PFHxS, PFOS, PFOA, PFNA, PFDA, PFUdA, and
PFDoA tended to have more problems in personal-social
skills, while there was little evidence for consistent asso-
ciations in boys.
In the study, median concentrations for maternal

PFOS and PFOA were 10.8 and 19.9 ng/ml, respectively,
which are one of the highest levels reported among
pregnant women during the similar period (around
2012) compared to those of the studies conducted in the
US (2.4 and 1.1 ng/ml) [16], Canada (4.6 and 1.7 ng/ml)
[22], Denmark (8.23 and 2.0 ng/ml) [23], Australia (1.99
ad 0.86 ng/ml) [24], and Japan (3.52 and 1.27 ng/ml)
[25], especially for PFOA. However, compared to the
studies on prenatal PFAS concentrations and child’s neu-
rodevelopment where the samples were collected mainly
around 2000, PFOS concentrations were lower than
most of the studies (ranged from 13.2 to 34.4 ng/ml) [10,
26] except the Hokkaido study in Japan [12, 27], while
PFOA concentrations were much higher (ranged from
1.2 to 5.6 ng/ml in previous studies) [12, 28]. Different
from other studies where PFOS has the highest concen-
trations, PFOA was the most predominant compound in
the present study, which was also observed in another
cohort study in Shanghai [29]. This may be explained by
the findings that PFOA is the most prevalent compound
in the surface water of Shanghai, accounting for 51–86%
of total PFAS concentrations [30].
Results from epidemiological studies on neurodevelop-

mental impact of in utero PFAS exposure are inconsist-
ent [10, 28, 31, 32]. A cohort study from Taiwan showed
that prenatal exposure to PFOS might affect child

neurodevelopment, especially gross motor development
at 2 years of age [32]. Among 432 mother-daughter pairs
from the Avon Longitudinal cohort, a 1 ng/mL increase
in PFOS was associated with a 3.82-point (95% CI: −
6.18, − 1.47) lower vocabulary score at 15 months and a
0.80-point (95% CI: − 1.74, 0.14) lower language score at
38 months in daughters of mothers aged < 25 years [33].
A birth cohort study between 2002 and 2005 suggested
an association between prenatal PFOA exposure and
neurodevelopmental delay in 6-month-old females, as
measured by mental scales of the second edition of the
Bayley Scales of Infant Development [12]. In Oulhote et
al.’s study, cross-sectional analyses at 7 years of age
showed possible sex-dimorphic associations between
PFAS concentrations and the Strengths and Difficulties
Questionnaire (SDQ) scores; girls had consistently posi-
tive associations with SDQ scores, whereas boys exhib-
ited a pattern of negative or null associations [9].
However, in a prospective study from the DNBC, mater-
nal plasma levels of PFOA or PFOS were neither associ-
ated with mental developmental nor fine and gross
motor developmental milestones in infants [28], and
there was no association between PFAS concentration
and behavioral and motor coordination problems at 7
years of age [10]. In a Norwegian birth cohort study,
PFOA or PFOS measured in breast milk was not associ-
ated with child neuropsychological development
assessed by ASQ at 12 and 24 months [31]. Moreover,
behavioral development assessed by the Infant-Toddler
Symptom Checklist (ITSC) found no consistent increase
in behavioral problems at 12 and 24 months [31]. The
inconsistent findings between the current study and pre-
vious studies may be due to differences in screening
tools, children’s ages at assessment, and PFAS com-
pounds measured and their concentrations [10, 28, 31].
The mechanism of the effect of PFASs on neurobehav-

ioral development remains unclear. In animal studies,
some PFASs may affect the cholinergic or dopaminergic
system, resulting in altered responses to nicotine or im-
balanced expression of the acetylcholine/dopamine
phenotype [6]. PFASs also affect synaptogenesis and
functional protein levels during neuron growth [34].
PFOA and PFOS significantly increased the levels of
synaptophysin and tau in the cerebral cortex and hippo-
campus. Because these proteins are important for normal
brain development, altered levels during a critical period
of brain growth spurts could be one of the mechanisms of
behavioral defects [34]. Other possible mechanisms in-
clude the endocrine-disrupting properties of PFASs in
glucocorticoid, sex hormone [27] and thyroid hormone
balance [35, 36]. Prenatal and postnatal exposure to PFASs
interferes with thyroid hormone balance in humans,
resulting in higher thyroid-stimulating hormone, de-
creased total/free triiodothyronine, and decreased total/

Table 2 Maternal PFASs concentrations (ng/mL) at 12–16
gestational weeks (N = 533) in Shanghai, China

PFAS LOD >LOD (N
%)

GM
(GSD)

Percentiles

5th 25th 50th 75th 95th

PFHxS 0.015 533 (100) 2.7 (1.6) 1.4 2.1 2.8 3.5 5.7

PFOS 0.02 533 (100) 10.8 (1.8) 4.5 7.6 10.8 15.8 25.2

PFOA 0.01 533 (100) 20.0 (1.6) 9.3 15.3 19.9 27.4 38.9

PFNA 0.02 533 (100) 1.8 (1.6) 0.8 1.3 1.8 2.5 3.9

PFDA 0.01 533 (100) 2.1 (1.9) 0.7 1.4 2.1 3.2 6.3

PFUdA 0.01 533 (100) 1.6 (1.9) 0.5 1.0 1.6 2.5 4.4

PFDoA 0.015 533 (100) 0.1 (2.9) LOD 0.1 0.1 0.2 0.4

PFTrDA 0.02 483 (90.6) 0.1 (2.9) LOD 0.1 0.1 0.2 0.4

LOD Limit of detection, GM Geometric mean, GSD Geometric
standard deviation
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free thyroxine levels [37–39], which may play a role in
how PFASs affect human neurodevelopment.
Additionally, we found a consistent pattern of adverse

effects on personal-social skills in girls but not in boys
following prenatal PFAS exposure. Although chance
findings may be incompletely excluded, mechanism in-
vestigations are warranted to understand the sex-specific
association. In previous studies, prenatal PFOA exposure
was associated with decreased Mental Developmental in-
dices scores of female infants at 6 months of age [12],
and PFOS exposure was associated with poorer meta-
cognition scores only among school-aged girls [26].
These findings are in line with our results on personal-
social skills which evaluate children’s abilities of self-
helping and interacting with others. Human studies
suggested that prenatal PFOA/PFOS exposure was sig-
nificantly associated with testosterone/estradiol in male
infants, progesterone levels, glucocorticoid levels, and
DHEA levels in cord blood samples of both sexes [27,
40]. In addition, effects of PFAS exposure on thyroid
hormone homeostasis may differ across sexes [41]. The
hormonal effects of PFAS may differently affect the neu-
robehavioral development of males or females. However,
whether the sex-specific difference is inherited due to
sex or due to hormonal effects of PFAS exposure war-
rants further investigation.
One strength of our study is that the prospective de-

sign provides strong causality between PFAS exposure
levels and child neurodevelopment. We measured two of
the most frequently detected PFASs, PFOS and PFOA,
as well as other PFAS compounds to provide a profile of
the effects of commonly detected PFAS compounds.
However, some potential limitations of the current study
should be mentioned. First, there was considerable loss
to follow-up for neurodevelopmental assessment during
the study period, which increased the potential for selec-
tion bias. However, the characteristics of subjects in the
original cohort were similar to those in the final sample
in terms of maternal age, pre-pregnancy BMI, parity,
and gestational age. Thus, the loss to follow-up was less
likely to lead to substantial bias. Second, parental
intelligence quotient (IQ) may affect the children’s ASQ
score, however, the information about parental IQ has
not been collected in the study. We adjusted for parental
education in the models, which may partially control for
the confounding effects of parental IQ. In addition, the
relationship between PFASs and ASQ measures may
have been confounded by postnatal environmental risk
factors [42, 43]. The confounding effect of uncollected
factors, e.g., child sleepiness and maternal self-
regulation, cannot be adjusted for. Third, multiple com-
parisons may also be of concern because we examined
the associations between eight PFASs and five subscales.
However, for our main findings on the associations

Fig. 1 Associations between maternal PFAS concentrations (ln-
transformed) and neuropsychological problems of ASQ scales at 4
years of age in Poisson regression with robust variance estimates
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between PFAS concentrations and personal-social skills
among girls, patterns were consistent across PFAS com-
pounds, which were less likely to be due to chance
alone.

Conclusions
Maternal PFAS concentrations during pregnancy were
inversely associated with neuropsychological develop-
ment assessed by ASQ in 4-year-old children. Further
investigation of the underlying mechanism of the effect
of prenatal PFAS exposure on neuropsychological devel-
opment is needed.
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