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Abstract 

Background:  Individuals with gaming disorder (GD) exhibit autonomic nervous 
system responses that indicate dysfunctional emotion regulation. Pulse rate variabil‑
ity (PRV) is a valuable biomarker for investigating the autonomic function of patients 
with mental disorders. Because individuals with GD dynamically regulate emotions 
during gaming, the PRV response relating to GD is not well understood. To investigate 
the dynamic PRV responses of individuals with GD, this study proposed the indexes 
of instantaneous PRV (iPRV) and instantaneous respiratory frequency (IFresp) of arterial 
blood pressure signals using empirical mode decomposition and normalized direct-
quadrature algorithms. iPRV consists of low-frequency (LF), high-frequency (HF), and 
very high-frequency (VHF) bands. Moreover, a novel method of extended classifier 
system with continuous real-coded variables (XCSR) was used to detect GD and extract 
GD-related iPRV features using iPRV and IFresp as input data.

Results:  A total of 32 college students without depressive and anxiety symptoms or 
cardiovascular diseases were recruited in this study. Participants were grouped into the 
high-risk GD and low-risk GD using both Chen Internet Addiction Scale and Internet 
Gaming Disorder Questionnaire. Their arterial blood pressures signals were measured 
while they watched gameplay videos with negative or positive emotional stimuli. 
Seven participants with high-risk GD exhibited significantly increased normalized VHF 
(nVHF) PRV and IFresp readings and significantly decreased normalized LF (nLF) PRV 
readings and LF/HF PRV ratios (from baseline) during negative or positive gameplay 
videos stimuli. These participants also exhibited higher nVHF PRV and lower nLF PRV 
readings and LF/HF PRV ratios when they experienced negative gameplay video 
stimuli relative to 17 participants with low-risk GD. The classification accuracy of the 
XCSR reached 90% for both negative and positive video stimuli, and nVHF PRV was 
most frequently used to detect GD risk.

Conclusions:  iPRV and IFresp can be used to detect GD and analyze the autonomic 
mechanism of individuals with GD.
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Background
With the rapid development of the gaming industry, students can play online games 
using desktop computers, laptops, smartphones, and other mobile devices. For the 
age distribution of gamers, 35% of gamers worldwide were between the ages of 21 and 
35 years in 2017, and 28% of gamers were under the age of 18 in the USA in 2018 [1]. 
Some gamers, however, exhibit loss of control and excessive and persistent gaming 
behavior that may limit their educational opportunities, relationship with their family 
and friends, and psychological and physical development [2]. Students can access the 
Internet easily which makes them be a potential GD risk [3]. In 2013, Internet gaming 
disorder (GD) was provisionally listed in Section III of the Diagnostic and Statistical 
Manual of Mental Disorders, 5th Edition [2]. In 2019, GD was officially classified by 
the 72nd World Health Assembly as a type of mental, behavioral, or neurodevelop-
ment disorder, and it was added to the 11th revision of the International Classifica-
tion of Diseases [4]. GD has become a major problem worldwide.

In the neurobiological mechanism of addiction, emotion plays a key role in deci-
sion-making relating to substance use and activities involving drugs, gambling, and 
Internet use [5, 6]. Some researchers have suggested that individuals with GD are at a 
heightened risk of dysfunctional emotional regulation, which is characterized by neu-
roticism, aggression, poor self-control, anxiety, and depression [7–9]. Emotional reg-
ulation affects the cardiac autonomic function of individuals with GD [10–13]. Heart 
rate variability (HRV), which is the variation in the time interval between consecutive 
heartbeats, has been used to investigate the cardiac autonomic function of individuals 
with GD. In a study in which participants were subjected to familial stresses lasting 
5  min, the GD risk was discovered to be negatively related to the respiratory sinus 
arrhythmia, which is a measure of HRV [11]. Gamers with GD exhibited a decrease in 
the natural logarithm of high-frequency (HF) HRV when they focused on gaming for 
5 min [12]. Compared with the non-GD control group, a GD group exhibited a lower 
logarithm of low-frequency (LF) and HF HRV; they also experienced greater negative 
affectivity and inhibition of emotional expression [13]. Individuals with GD exhibited 
decreased HF HRV and increased LF/HF HRV ratios when playing online games for 
5 min [10]. Although the HRV responses of gamers with GD have been investigated, 
the neurobiological mechanism is still unclear.

Moreover, HRV analysis has three limitations. First, HRV analysis mainly involves 
using fast Fourier transform, which cannot analyze nonlinear and nonstationary 
signals because it is a linear stationary mathematic framework. Second, HRV anal-
ysis uses interpolation to produce a tachogram, which affects the time resolution 
of the power spectrum. Third, HRV is primarily evaluated using 5-min electrocar-
diogram readings, and few studies have investigated instantaneous changes in HRV. 
Researchers have proposed the use of empirical mode decomposition (EMD), which 
is an adaptive filter algorithm that can decompose nonlinear or nonstationary signals 
[14]. The normalized direct-quadrature (NDQ) method is a time–frequency analy-
sis method that can calculate the instantaneous frequency of continuously nonlinear 
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signals [15]. The EMD and NDQ methods can be applied to overcome the limitations 
of HRV analysis.

An EMD-based method can decompose an arterial blood pressure (ABP) signal into 
pulse beat- or respiratory-related oscillation components [16–18]. ABP signal, which 
reveals information on changes in the pulse-to-pulse interval of peripheral tissue, is 
related to heartbeat. Pulse rate variability (PRV) is the variation of time series intervals 
between the pulse-to-pulse interval of ABP signals, and it provides more information 
on cardiac and vascular autonomic responses than HRV [19]. The relationship between 
pulse beat and respiration can also be used to investigate cardiorespiratory adjustments 
[16, 18]. PRV has been used to evaluate the autonomic function of individuals with men-
tal illness [20, 21]. The pulse beat waveform can be transformed into instantaneous PRV 
(iPRV) using time–frequency analysis methods, and iPRV responses provide informa-
tion on not only parasympathetic nervous system (PNS) and sympathetic nervous sys-
tem (SNS) activities, but also peripheral circulation [17, 18]. Psychologists can use iPRV 
to explore instantaneously autonomic and peripheral regulation and thus understand 
the neurobiological mechanisms underlying GD-related emotions.

Some researchers have also suggested using psychophysiological features as data sets 
and inputting them into machine learning systems designed to detect addiction [22–
24]. However, these researchers may not know the key psychophysiological features 
that can be used as indexes. An extended classifier system with continuous real-coded 
variables (XCSR) is a rule-based learning classifier system [24, 25], and the rule is lin-
ear combiners [26]. The XCSR can interact with the environment to solve real-value 
problems; moreover, researchers can use an XCSR to observe the weight of each input 
feature [24, 25]. The hypotheses of this study are that iPRV of ABP signals can be evalu-
ated using EMD-based and NDQ methods, and an XCSR can detect GD risk and extract 
GD-related psychophysiological features. Therefore, this study aimed to (1) calculate the 
iPRV of gamers with high-risk GD (HGD) using a combination of EMD-based and NDQ 
methods and to (2) assess the classification performance of an XCSR and the selection 
rate of each iPRV feature.

Results
17 participants (13 men) and 7 participants (6 men) were classified into low-risk 
GD (LGD) and HGD using both Chen Internet Addiction Scale (CIAS) and Internet 
Gaming Disorder Questionnaire (IGDQ), respectively. CIAS and IGDQ were used to 
assess Internet addiction [27] and GD [28], respectively. Table 1 presents the demo-
graphic information and questionnaire scores of participants with LGD and HGD. 
The Internet Gaming Disorder Questionnaire (IGDQ) and Chen Internet Addiction 
Scale (CIAS) scores of participants with HGD were both significantly higher than 
those of participants with LGD (Mann–Whitney U test, p < 0.001). No significant 
difference was observed between the two groups for age and Self-Assessment Mani-
kin (SAM, assessment of emotional valence and arousal [29]) and Discrete Emotions 
Questionnaire (DEQ, assessment of intensities of happiness, surprise, anger, disgust, 
fear, and sadness) scores (Mann–Whitney U test, p > 0.05). After LGD and HGD 
groups watched a League of Legends gameplay video of 6 min (also called Stimulus 1), 
the emotional valence scores were higher than 5, and happiness and surprise scores 
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were higher than anger, sadness, disgust, and fear scores. Stimulus 1 was approaching 
the elicitation of positive emotions. After two groups watched a Resident Evil game-
play video of 6 min (also called Stimulus 2), the emotional valence scores were lower 
than 5, and surprise, disgust, and fear scores were higher than happiness, anger, and 
sadness scores. The Stimulus 2 was approaching the elicitation of negative emotions.

Table  2 summarizes the iPRV and instantaneous respiratory frequency (IFresp) 
results of the two groups for the two trials. Trial 1 contains gazing at a gray picture of 
6 min (Baseline 1) and Stimuli 1. Trial 2 contained gazing at a gray picture of 6 min 
(Baseline 2) and Stimuli 2. The iPRV and IFresp of ABP signals were calculated using 
complementary-ensemble EMD (CEEMD) and NDQ methods. The iPRV includes 
LF, HF, very high-frequency (VHF), LF/HF, nLF (LF/(LF + HF + VHF)), nHF (HF/
(LF + HF + VHF)), and nVHF (VHF/(LF + HF + VHF)). The results in Trial 1 indi-
cated that participants with HGD exhibited higher VHF PRV, nVHF PRV, and IFresp 
and lower LF/HF PRV ratios and nLF PRV during Stimulus 1 relative to Baseline 1 
(factorial ANOVA, p < 0.01). Participants with LGD exhibited higher nVHF PRV and 
IFresp and a lower LF/HF PRV ratio during Stimulus 1 relative to Baseline 1 (factorial 
ANOVA, p < 0.01). Compared with the LGD group, the HGD group exhibited higher 
LF PRV and lower IFresp at Baseline 1 and higher LF, HF, and VHF PRV during Stimu-
lus 1 (factorial ANOVA, p < 0.01). The results in Trial 2 showed that participants with 
HGD exhibited higher nVHF PRV and IFresp, but a lower LF PRV, LF/HF PRV ratio, 
and nLF PRV during Stimulus 2 relative to Baseline 2 (factorial ANOVA, p < 0.01). 
Compared with the LGD group, the HGD group exhibited higher LF PRV and lower 

Table 1  Demographic information and questionnaire scores of the LGD and HGD groups

CIAS: Chen Internet Addiction Scale; DEQ: Discrete Emotions Questionnaire; HGD: high-risk gaming disorder; IGDQ: Internet 
Gaming Disorder Questionnaire; LGD: low-risk gaming disorder; SAM: Self-Assessment Manikin; p value for Mann–Whitney U 
test comparing LGD and HGD

Characteristic LGD (n = 17) HGD (n = 7) p-value

Gender (men, women) 13, 4 6, 1 0.62

Age 23 ± 3 22 ± 1 0.58

IGDQ 0.94 ± 1.20 6.57 ± 1.51  < 0.001

CIAS 57.24 ± 4.35 78.71 ± 10.23  < 0.001

Stimulus 1 SAM_valence 6.59 ± 1.33 7.29 ± 0.76 0.21

SAM_arousal 4.18 ± 2.35 5.71 ± 2.50 0.14

DEQ_happiness 3.82 ± 1.74 5.86 ± 2.61 0.09

DEQ_surprise 2.35 ± 1.77 3.86 ± 3.08 0.35

DEQ_anger 1.41 ± 1.23 2.43 ± 1.81 0.11

DEQ_sadness 1.29 ± 0.99 2.29 ± 1.98 0.23

DEQ_disgust 1.29 ± 1.21 1.14 ± 0.38 0.80

DEQ_fear 1.00 ± 0.00 1.43 ± 1.13 0.62

Stimulus 2 SAM_valence 4.65 ± 1.22 5.14 ± 1.77 0.58

SAM_arousal 6.59 ± 1.77 6.29 ± 1.98 0.70

DEQ_happiness 2.82 ± 1.70 3.14 ± 2.04 0.80

DEQ_surprise 5.12 ± 1.45 5.86 ± 2.54 0.49

DEQ_anger 1.29 ± 0.85 2.00 ± 1.00 0.13

DEQ_sadness 2.00 ± 1.46 1.57 ± 0.79 0.85

DEQ_disgust 5.65 ± 2.26 4.86 ± 3.34 0.62

DEQ_fear 5.18 ± 2.24 4.00 ± 2.31 0.26
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IFresp at Baseline 2 and higher HF, VHF, and nVHF PRV and a lower LF/HF PRV ratio 
and nLF PRV during Stimulus 2 (factorial ANOVA, p < 0.01).

The classification accuracy of the XCSR was examined using the moving average 
per 50 exploitations. Figure 1 presents the classification accuracies of the XCSR of an 
average of 30 repetitions, which were determined with iteration number 8,400 using 
iPRV and IFresp as input features in Stimuli 1 and 2. The results exhibit that the clas-
sification accuracies for Stimulus 1 and 2 were above 90%. If the conditions of classi-
fiers in the XCSR did not match the input features (LF PRV, HF PRV, VHF PRV, LF/
HF PRV ratio, nLF PRV, nHF PRV, nVHF PRV, and average of IFresp), these conditions 
were ignored. The selection rate of each feature was determined by dividing the total 
number of the collected classifiers by the number of conditions that were not ignored. 

Table 2  Mean ± standard deviation of the iPRV and IFresp of participants with LGD and HGD

*p < 0.01 for factorial ANOVA comparing baseline and stimulus
§ p < 0.01 for factorial ANOVA comparing LGD and HGD groups

feature LGD HGD

Trial 1 Baseline 1 Stimulus 1 Baseline 1 Stimulus 1

LF × 103 (ms2) 4.77 ± 3.00 4.61 ± 4.30 9.64 ± 8.82§ 9.33 ± 12.62§

HF × 103 (ms2) 4.36 ± 4.85 5.30 ± 8.46 4.94 ± 3.72 10.22 ± 13.58§

VHF × 103 (ms2) 7.19 ± 9.08 9.30 ± 14.19 10.34 ± 7.60 27.61 ± 41.37*§

LF/HF ratio 2.22 ± 2.16 1.55 ± 1.03* 2.60 ± 2.11 1.37 ± 0.56*

nLF (%) 37.31 ± 17.44 32.02 ± 15.31 37.11 ± 14.35 27.70 ± 8.45*

nHF (%) 23.87 ± 8.83 23.89 ± 5.96 21.26 ± 9.76 23.08 ± 7.97

nVHF (%) 38.82 ± 11.53 44.09 ± 11.93* 41.62 ± 7.76 49.21 ± 10.04*

IFresp 0.19 ± 0.08 0.23 ± 0.10* 0.14 ± 0.07§ 0.21 ± 0.10*

Trial 2 baseline_2 stimuli_2 baseline_2 stimuli_2

LF × 103 (ms2) 6.19 ± 6.17 4.73 ± 4.04 12.69 ± 13.81§ 6.68 ± 5.43*

HF × 103 (ms2) 5.50 ± 7.31 4.61 ± 4.27 7.59 ± 7.92 9.47 ± 11.20§

VHF × 103 (ms2) 10.11 ± 14.40 8.52 ± 8.50 16.36 ± 15.01 18.05 ± 18.17§

LF/HF ratio 1.69 ± 1.40 1.34 ± 0.77 2.15 ± 1.10 1.03 ± 0.39*§

nLF (%) 32.44 ± 15.44 29.79 ± 13.97 36.64 ± 10.41 23.05 ± 7.48*§

nHF (%) 23.90 ± 6.90 24.37 ± 6.34 20.78 ± 7.93 23.91 ± 5.98

nVHF (%) 43.66 ± 11.32 45.84 ± 12.96 42.58 ± 7.00 53.05 ± 9.07*§

IFresp 0.22 ± 0.08 0.24 ± 0.07 0.16 ± 0.07§ 0.22 ± 0.10*

Fig. 1  Classification accuracies of the XCSR for Stimuli 1 (a) and 2 (b)
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Figure 2 presents the selection rates of the features of IFresp and LF, HF, VHF, LF/HF 
ratio, nLF, nHF, and nVHF PRV during Stimulus 1 and 2. For the two stimuli, the fea-
ture evaluated for nVHF PRV exhibited the highest selection frequency.

Discussion
This study evaluated the instantaneous pulse rate and IFresp of ABP signals through the 
combined application of CEEMD and NDQ methods. The power spectrum of instan-
taneous pulse rate (i.e., iPRV) contained LF, HF, and VHF values. iPRV was examined 
to determine the autonomic function and peripheral circulation of participants with 
HGD and LGD when they watched League of Legends (positive emotional stimuli) and 
Resident Evil (negative emotional stimuli) gameplay videos. Furthermore, the XCSR was 
used to assess the classification accuracy for GD and investigate the selection rates of 
iPRV features (LF, HF, VHF, LF/HF ratio, nLF, nHF, and nVHF) and IFresp.

In the present study, we observed a statistically significant increase in nVHF PRV, and 
IFresp and decrease in nLF PRV and LF/HF PRV ratios among participants with HGD 
with respect to the baseline versus positive and negative emotional stimuli results. The 
participants with LGD also exhibited statistically significantly increased nVHF PRV and 
IFresp and a decreased LF/HF PRV ratio with respect to baseline versus positive emo-
tional stimuli results. Our findings, however, do not fully correspond to those of previ-
ous studies. Relevant studies have reported the following: posttraumatic stress disorder 
symptom is negatively associated with HF PRV during rest [20], gamers with GD tend 
to exhibit an increased LF/HF HRV ratio [10] and respiratory rates [22] and decreased 
natural logarithm of LF HRV [12] when playing online games, gamers with GD exhibit 
increased respiratory rates when watching gameplay videos [30], and individuals exhibit 
increased total peripheral resistance when performing negative memory recall [31] and 
experiencing positive video stimuli [32]. This inconsistency can be attributed to the var-
ying respiratory and cardiovascular responses triggered by varying emotional stimuli, 
particularly in the HGD group. Furthermore, respiration influences HR and BP through 
the vagus nerve, which modulates the balance between SNS and PNS [33]. When indi-
viduals’ breathing rates are between 0.15 and 0.20 Hz or 0.15 and 0.25 Hz, they exhibit a 
decreased LF HRV and LF/HF HRV ratio [34]. Compared with individuals who are spon-
taneously breathing, individuals with a 0.1 Hz breathing rate exhibit increased LF iPRV, 
and those with a 0.5 Hz breathing rate exhibit increased VHF iPRV [18]. Our findings 
suggest that the positive and negative game-related cues may increase the respiratory 
rates of gamers with HGD and that these respiratory rates may affect their autonomic 

Fig. 2  Selection rates of iPRV and IFresp for both stimuli
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function and peripheral vascular regulation. How respiration influences the cardiovas-
cular responses of gamers with HGD is a topic requiring further investigation.

Compared with the participants with LGD, those with HGD exhibited statistically sig-
nificantly higher VHF, HF, and LF PRV when experiencing positive emotional stimuli 
and higher nVHF, VHF, and HF PRV as well as a statistically significant lower nLF PRV 
and LF/HF PRV ratio when experiencing negative emotional stimuli. These results con-
tradict those of previous studies, which reported that gamers with GD exhibit lower HF 
HRV [10] and lower logarithm of LF and HF HRV [13] when they are playing games. 
This inconsistency may be explained by the psychophysiological differences between 
participants and the fact that VHF HRV was not considered. The replacement of HRV 
with PRV is still a debated topic [19]. Nonetheless, our results may be explained by the 
roles of external and internal stimuli in encouraging cerebral cortices to regulate emo-
tions, cognition, or attention. Neurotransmitters output from these cerebral cortices via 
the preganglionic nerves of the SNS and PNS, which, in turn, influences cardiovascular 
responses [35]. Relative to gamers without GD, gamers with GD exhibit higher blood 
flow in the cerebral cortices when experiencing negative picture stimuli, which suggests 
that gamers with GD focus more on coping with negative emotions than positive emo-
tions [36]. Our findings suggest that gamers with HGD have dysfunctional emotional 
regulation, particuarly with respect to negative emotions. This dysfunction may have 
led to differences in the autonomic function and peripheral circulation of the HGD and 
LGD groups.

The classification accuracy of the XCSR when iPRV and IFresp were used as features 
was more than 90% for both positive and negative video stimuli. Researchers have rec-
ommended biosignals (including eye blinking, skin conductance, and heart and respir-
atory rates) with the use of support vector machines to classify the cravings of HGD 
groups during gaming activities [22]. Respiratory muscle contraction and respiratory 
wall movement frequency were also used in an XCSR to determine the GD risk [24]. 
Therefore, we infer that iPRV and IFresp can be used as psychophysiological indexes to 
detect LGD and HGD. Our results also indicated that nVHF PRV was most frequently 
selected to detect GD risk; however, its selection rate was less than 50%. This can be 
explained by the small sample size and the parameter setup of the XCSR, which may 
have affected the generation of classifiers in [P]. Despite the limitations of sample size, 
some studies have used VHF PRV readings to investigate the autonomic nervous func-
tion of patients with chronic heart failure [37] and cardiac autonomic neuropathy [38]. 
VHF readings can be used as an index for evaluating GD risk. More data are required 
to clarify the physiological interpretation of VHF PRV readings with respect to gamers 
with HGD.

This study had several limitations. First, the majority of gamers are male; only four 
female gamers were enrolled in this study; therefore, our findings may contain gender 
bias. Second, different cue stimuli (such as the use of different game types, technologi-
cal devices, and passive and active stimuli) may trigger different iPRV responses. Third, 
some participants were not familiar with the League of Legends or Resident Evil games, 
which is a factor that might have also introduced bias into the results. Fourth, the setup 
of parameters for the CEEMD method might have influenced the decomposition of 
ABP signals. Fifth, we did not investigate the differences between iPRV and HRV; these 
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differences might have provided more information on the cardiovascular responses of 
participants with HGD. Sixth, we didn’t compare our approach with other studies’ meth-
ods. Further research will investigate this comparison.

Conclusion
The present study evaluated the iPRV and IFresp of participants with LGD and HGD. Fur-
thermore, the frequency bands of iPRV and IFresp were used as data sets and input into 
an XCSR to assess the classification power for GD risk. The XCSR was also used to eval-
uate the selection rate of each feature. The results indicated that relative to their base-
line readings, participants with HGD exhibited higher nVHF PRV and IFresp and lower 
nLF PRV and LF/HF PRV ratios when watching positive or negative gameplay videos. 
Compared with participants with LGD, those with HGD also exhibited higher nVHF 
PRV and lower nLF PRV and LF/HF PRV ratios when experiencing negative stimuli. The 
classification accuracy was above 90% for both positive and negative video stimuli, and 
nVHF PRV was the most frequently selected GD-related psychophysiological feature. 
We infer that games aroused emotional responses in participants with HGD, whose res-
piratory frequency increased to enable both autonomic function and peripheral circula-
tion adjustments. This study has two contributions, iPRV and IFresp evaluations using a 
combination of EMD-based and NDQ methods, and detection of IA risk and extraction 
of GD-related iPRV features using XCSR method, respectively. iPRV may be useful as 
a feature for exploring the dynamically psychophysiological regulation of gamers with 
HGD, particularly for nVHF PRV responses. The XCSR model may provide researchers 
to extract the psychophysiological properties of GD. Future studies could investigate the 
effect of respiration of gamers with HGD on their cardiovascular responses when they 
play online games for long durations.

Method
Participants and data collection

In total, 32 college students (28 male and 4 female students aged between 20 and 
33  years) without depressive and anxiety symptoms or cardiovascular diseases were 
recruited at National Chiao Tung University, Taiwan. All participants signed an 
informed consent form and were evaluated for risk of Internet addiction and Internet 
GD using the CIAS [27] and IGDQ [28], respectively. The CIAS is a 26-item question-
naire answered on a 4-point Likert-type scale. It evaluates respondents’ experience of 
Internet use. The IGDQ is a 9-item questionnaire that uses dichotomous items to assess 
respondents’ experience of playing online games. Participants were categorized as hav-
ing HGD if they had CIAS and IGDQ scores of > 64 and > 5, respectively. The SAM, a 
commonly used questionnaire, was adopted to evaluate emotional valence and arousal 
[29]. The DEQ was used to assess discrete emotions such as happiness, surprise, anger, 
sadness, disgust, and fear. Both the SAM and DEQ use answered on a 9-point Likert-
type scale ranging from 1 to 9. The emotional valence score is 5 that represented neu-
tral emotion. The emotional valence scores are higher than 5 that represented positive 
emotions, and the emotional valence scores are lower than 5 that represented negative 
emotions. The emotional arousal and DEQ expressed emotional intensity from 1 (low) 
to 9 (high). League of Legends and Resident Evil gameplay videos were used as passive 
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stimuli to elicit the desire to play online games. League of Legends is a popular game 
worldwide [39]; Resident Evil has been classified as a violent game that is positively asso-
ciated with aggression [40].

The experimental procedure was as follows. A participant first executed the isovol-
ume maneuver [41] (i.e., abdominal breathing exercises) for 10 min to attain a state of 
calmness. Next, the participant was asked to complete Trials 1 and 2. For each trial, 
the participant gazed at a gray picture for 6 min to achieve relaxed psychophysiological 
responses (which were used as the baseline), viewed a gameplay video (which was used 
as an emotional stimulus) for 6 min, and then filled out the DEQ and SAM questionnaire 
(which were used as emotional assessment tools) under no time constraints. During the 
stimulus phase, the participant watched a League of Legends gameplay video (Stimu-
lus 1) for Trial 1 and a Resident Evil gameplay video (Stimulus 2) for Trial 2. The order 
in which the two trials were conducted was randomized. During the experiment, ABP 
signals were measured using a noninvasive blood pressure system (CNAP Monitor 500, 
CNSystems Medizintechnik, Graz, Austria), which was acquired using DAQCard (USB 
6218, NI, Austin, TX, USA) with a sampling rate of 1 kHz. The signal analysis procedure 
is presented in Fig. 3. The ABP signals recorded during the 6-min baseline and stimu-
lus phases were analyzed. Data collection and analysis were performed using LabVIEW 
(version 2020, NI, Austin, TX, USA).

Signal decomposition through complementary‑ensemble EMD

The analysis process for EMD is as follows [14]

1) Detect the peak and valley points of signal x(t) to draw local maxima and minima, 
respectively.
2) Generate the upper envelope u0(t) and lower envelope l0(t) using a cubic spline 
and calculate the mean envelope m0(t) using the following equation (1):

Fig. 3  Processing procedure for ABP signals
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3) Subtract m0(t) from x(t) to compute the local oscillation h0(t) using the follow-
ing equation (2):

4) Repeat Steps 1 to 3 until mj(t) approaches zero, at which point hj(t) is consid-
ered the first intrinsic mode function (IMF) and referred to as IMF1(t).
5) Subtract IMF1(t) from x(t) to compute the first residue r1(t), which is then input 
into step 1.
6) Iterate steps 1 to 5. After n iterations, the signal x(t) is decomposed into n IMFs 
and expressed using the following equation (3):

To overcome the mode mixing shortcomings of EMD, CEEMD was proposed; the 
decomposition procedure for CEEMD is as follows [42]:

1) Add the positive and negative Gaussian white noises to signal x(t) to establish, 
respectively, the two new signals x+(t) and x-(t).
2) Decompose x+(t) and x-(t) using EMD, which expressed the following equation 
(4) and (5):

3) Repeat Steps 1–2 for N times to construct two ensembles of IMFs for x+(t) and 
x-(t).
4) Compute the final IMF using the following equation (6):

In this study, ABP signals were downsampled from 1000 to 200 Hz and subsequently 
decomposed into 10 IMFs by using CEEMD and a sifting process. Figure 4 shows one 
of the ABP signals and corresponding 10 IMFs. On the basis of the frequency bands 
of the IMFs [16–18], IMF5 and IMF7 were selected as the pulse beat and respiratory 
oscillation components, respectively.

(1)m0(t) =
u0(t)+ l0(t)

2

(2)h0(t) = x(t)−m0(t)

(3)x(t) =
n∑

i=1

IMFi(t)+rn(t)

(4)x
+(t) =

n∑

i=0

IMF
+
i
(t)+ r

+
n (t)

(5)x
−(t) =

n∑

i=0

IMF
−
i
(t)+ r

−
n (t)

(6)IMFi(t) =
1

2N

N∑

k=1

[IMF
+
ki
(t)+ IMF

−
ki
(t)]
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Computation of instantaneous frequency and period using the NDQ method

The NDQ method was adopted to compute the IFresp and instantaneous period of 
pulse beat components. The steps of the NDQ method are as follows [15]:

1) Detect local maxima values of the absolute IMF.
2) Generate the upper envelope using a cubic spline.
3) Divide the IMF by the upper envelope to compute the normalized component 
y(t).
4) Repeat steps 1 to 4 until y(t) is equal to or less than unity, at which point y(t) is 
identified as the frequency-modulated F(t).
5) Compute instantaneous phase φ(t) using the following equation (7):

Fig. 4  ABP signal and its ten corresponding IMFs
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6) Evaluate instantaneous frequency using the derivative ofφ(t) and calculate the 
instantaneous period using the inverse instantaneous frequency.

Instantaneous PRV

The instantaneous period of pulse beat was treated as the instantaneous pulse rate. To 
increase our sample size, the instantaneous pulse rate and IFresp of 6-min time series 
were both segmented into a 5-min window size with a sliding increment of 10 s [43]. The 
frequency domain of iPRV was evaluated by examining each segment of the instantane-
ous pulse rate using the auto-power-spectrum method; LF PRV (0.04‒015 Hz; SNS and 
PNS activities), HF PRV (0.15‒0.4 Hz; PNS activity), LF/HF PRV ratio (balance between 
SNS and PNS), and VHF PRV (0.4‒0.9  Hz; peripheral regulation) were examined [15, 
16]. To reduce the physiological difference between participants, LF, HF, and VHF PRV 
values were normalized as nLF, nHF, and nVHF PRV values, respectively.

Determining the selection rates of features and the classification accuracy of the XCSR

LF PRV, HF PRV, VHF PRV, LF/HF ratio, nLF PRV, nHF PRV, nVHF PRV, and average 
of IFresp were input as features into the XCSR for classification accuracy. The selection 
rate of each feature was also computed in the XCSR. The XCSR is a rule-based learn-
ing classifier system in which every classifier contains the following: a condition, which 
is encoded as intervale = (ce, se), e = 1…d, where ce, se, and d are the center value, spread 
value, and dimension of attributes, respectively; an action, which is a reaction of the 
XCSR to the environment; a prediction, which is the expected reward; a prediction error, 
which is the error of the aforementioned prediction; and a fitness parameter, which is the 
quality of the classifier. The iterative process of the XCSR is as follows [24, 25] (Fig. 5).

1) The data from the environment are input into the XCSR, which then checks the 
condition of each classifier in the population [P] that contains the rule set. If the 
range of [ce − se, ce + se] of the condition matches the input data ze, all the matched 

(7)φ(t) = arctan

√
1− F2t

F(t)

Fig. 5  Overview of an XCSR (modified [24, 25])
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classifiers are placed into the match set [M]. If no matched classifiers exist in [M], the 
covering operator of the XCSR generates a new classifier that covers the input data. 
The new classifier is input into [P]. The XCSR then searches the matched classifiers 
in [P] again.
2) The classifiers with the same action in [M] are used to calculate the fitness-
weighted average of predictions. An action is then selected using the roulette-wheel 
method or maximum predicted value. All classifiers with the selected action are 
input into the action set [A]. The effector of XCSR outputs the selected action into 
the environment and receives a reward from the environment.
3) On the basis of this reward, the prediction, prediction error, and fitness values in 
[A] are updated using the reinforcement learning operation.
4) The XCSR also updates the classifiers in [P] per the classifiers in [A]. Furthermore, 
the genetic algorithm is executesd on [A] to generate better classifiers.

In the present study, the parameter setup of the XCSR was based on those used in 
previous empirical studies [24, 25, 44]. Population size was set to 400, and the number of 
rewards was set to 1000 and 0 for HGD and LGD, respectively. The classification accu-
racy of the XCSR was examined using the moving average per 50 exploitations, and the 
XCSR procedure was repeated 30 times to calculate the average accuracy. During these 
30 repetitions, all classifiers in [P] were investigated. If the numerosity of the classifier 
(i.e., the number of copies of the same classifier) was higher than 2 and the prediction 
value of the classifier was 1000, this classifier was collected. Next, if the ranges of [ce − se, 
ce + se] of the conditions for these collected classifiers did not match the input features 
(LF PRV, HF PRV, VHF PRV, LF/HF PRV ratio, nLF PRV, nHF PRV, nVHF PRV, and 
average of IFresp), these conditions were ignored [24, 25]. The selection rate of each fea-
ture was determined by dividing the total number of the collected classifiers by the num-
ber of conditions that were not ignored.

Statistical analysis

The Mann–Whitney U test was adopted to test for significant differences between par-
ticipants with LGD and HGD in terms of their age and CIAS, IGDQ, SAM, and DEQ 
scores. To compare the difference between the baseline and stimulus results of partici-
pants with LGD and HGD, factorial analysis of variance (factorial ANOVA) was per-
formed using time (the first, second, third, fourth, fifth, sixth, and seventh segments) as 
a within-subjects factor and state (baseline and stimulus) as a between-subjects factor. 
Factorial ANOVA was also used to test for differences between participants with HGD 
and LGD at baseline and during the stimulus experiment, with time (the first, second, 
third, fourth, fifth, sixth, and seventh segments) being used as a within-subjects factor 
and grouping (HGD and LGD) as a between-subjects factor. SPSS (version 22; IBM, 
Armonk, NY, USA) was used to perform the statistical analyses, and statistical signifi-
cance was set at p < 0.01.
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