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Background
Emerging sensing and communication technologies are driving the innovation of a vast 
number of application fields, including fitness, healthcare and rehabilitation therapy [1]. 
Major drivers of healthcare innovation include the priority changes from treatment to 
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prevention, and the search to provide personalized and patient-centric solutions. Both 
trends are enabled by unobtrusive sensing technologies, allowing for continuous moni-
toring and increased engagement with the patient outside the clinic [2]. Movement 
analysis and its use for motor rehabilitation is one of the many application fields where 
innovative technical solutions for unconstrained and autonomous monitoring of the 
patients are being adopted [3].

Standard practices for motor rehabilitation include the clinician’s supervision and 
evaluation of the patient’s movements, when performed during therapy sessions in 
clinic, and no supervision or any feedback when the exercises are executed at home. 
Computer vision and stereophotogrammetry-based technologies have been widely 
proven as accurate and reliable tools for objective measurement of human motion [4, 5]. 
However, the costs and difficulties of operation of such systems have limited their use to 
research rather than in everyday clinical and rehabilitation practice. The development 
of miniaturized inertial sensors paved the way for the development of wearable Inertial 
Measurement Units (IMUs) and their use for motion capture [6, 7]. Such technologies 
have also been validated in lab environments for medical applications and motor reha-
bilitation analyses [8, 9]; however, the available solutions involve cost and complexity-
related limitations.

Nowadays, both research and commercial applications are experiencing a push in 
ubiquitous computing and the use of wearable and interconnected sensing devices for a 
wide range of applications, from entertainment to fitness and wellbeing [10]. The adop-
tion of the use of fitness and activity trackers is driven by their low cost and ease of use, 
but these have usually limited accuracy in the reported data [11]. For a successful adop-
tion of these new technologies in rehabilitation, there is a need to evaluate their accuracy 
and reliability and to provide insights on their proper use in order to define best prac-
tices and standardized protocols [12]. The recent innovative low-cost sensing solutions 
and relevant algorithms for data analysis, once validated, can be effectively introduced 
in rehabilitation protocols both in specialized centers and at home, and truly enable a 
patient-centric, preventive and smart healthcare revolution [13].

In the field of human motion analysis, both video and inertial-based solutions have 
now low-cost options, suitable for wide adoption and everyday use; examples include 
the Kinect camera [14] and various activity tracking and wearable inertial sensors [15]. 
Their integration into bio-feedback-based systems and combination with exergames and 
appropriate back-end infrastructure allows for the development of innovative solutions 
for real-time monitoring of home-based rehabilitation therapies and for a continuous 
remote supervision by the clinician [16]. The first platforms providing such function-
alities include DoctorKinetic (DoctorKinetic, Netherlands), SilverFit (SilverFit, Nether-
lands) and Riablo (Corehab, Italy).

This paper reports an overview of these major systems, analyzing in the literature 
the state-of-the-art of the Kinect and of wearable motion sensing in rehabilitation, 
but mainly focuses on a validation work for the quantitative assessment of these sys-
tems. Since there is a lack of direct comparison and discussion on the differences of 
the two technologies, an original experimental study was performed and here reported 
to evaluate and directly compare the Kinect v2 and a commercially available wearable 
IMU (EXLs3 by Exel srl, Italy). Their technological characteristics and state-of-the-art 
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algorithms for IMU-based analysis were assessed, using a marker-based stereophoto-
grammetry motion analysis system as the gold standard. In addition to laboratory tests, 
the two systems were also assessed in a typical home environment, to evaluate and fully 
compare their final usability and robustness. The two systems are here compared based 
on exactly the same human motion exercises, both in a laboratory setting for a thor-
ough comparison with state-of-the-art motion analysis, and at home, for simulation of 
final users’ conditions. Finally, drawing from the current state-of-the-art and from the 
present experimental comparisons, the main advantages and disadvantages of the two 
systems are discussed, analyzing their strengths and weaknesses, and highlighting the 
challenges for their successful future adoption in the rehabilitation context.

Review of sensing technologies for motion analysis in rehabilitation
This section will analyze current systems in human motion analysis, starting from the 
well-established video motion capture used in gait laboratories, and then focusing on 
innovative and low-cost alternatives, suitable for autonomous use at home. The reported 
references are summarized and compared in Table 1.

Video‑based motion capture

The use of cameras and computer vision algorithms for the analysis of human motion 
is a well-established application field, and has notable contributions from both research 
and industry [17]. Video-based motion capture and Marker-Based Stereophotogramme-
try systems (MBS) are now the de-facto standard for high-precision applications, includ-
ing biomechanics research and clinical gait analysis [4].

In MBS systems, multiple cameras employ Infra-Red (IR) illuminators and triangula-
tion algorithms to track the 3D position of reflective markers moving within a calibrated 
field of view. When used for human motion capture, the subject is instrumented with a 
set of reflective markers to identify and track relevant anatomical landmarks, and the 
system uses their positions to reconstruct and track subject’s body segments and joints 
[18]. These systems have been proven to offer accurate and reliable motion tracking and 
are being widely used in human motion research and clinical studies. The established 
accuracy is less than 1 mm error for the position of single markers, which translates in 
the errors in the range of 1–4 degrees for the estimation of joint angles, according to the 
specific marker cluster configuration [18, 19]. There are a number of commercially avail-
able systems, equipped with high-performance cameras and different software solutions 
for out of the box motion analysis, including Vicon Nexus (Vicon Motion Systems, UK), 
Elite (BTSengineering, Milan) and Optitrack Motive (NaturalPoint, USA).

The main downside of the MBS is the high cost and the complexity of its setup and 
use. To address these issues, research solutions explore the use of marker-less motion 
capture systems and their integration with depth sensors [20, 21]. Despite promising 
results, the accuracy and reliability implied with these new techniques do not yet meet 
the needs of healthcare applications, due to cumbersome hardware and extensive data 
processing requirements [22, 23].
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Table 1 Summary of  the  main validation studies analyzing motion capture accuracy 
of the Kinect (v1 and v2) and of wearable IMUs

Refs. Sensor(s) Participants Exercises Parameters Applications Performance

[49] Kinect v1 1H 6 primary 
movements

Joints posi-
tions, bone 
lengths

At-home 
elderly reha-
bilitation

RMSE < 10cm

[50] Kinect v1 20H Reaching, 
standing 
balance

Joints positions Postural control ICC < 0.16

CV < 11.6%

[51] Kinect v1 48H, 2 sessions 4 primary 
movements

Joints angles Funct. assess-
ment

RMSE < 9%

[52] Kinect v1 10H + 9PD 12 primary and 
functional 
movements

Joints positions 
and angles, 
timings

PD assessment LoA < 10%

ICC > 0.9

[53] Kinect v1 20H Standing sway Marker posi-
tions

Exergaming SDev < 30%

[54] Kinect v1 15H Squat Lower limb 
joints angles

Kinect evalu-
ation

RMSE < 5
◦

ICC > 0.9

[36] Kinect v2 30H, 2 sessions Standing bal-
ance

Trunk and pel-
vis angles

Balance and 
postural 
control

r > 0.75

ICC > 0.7

[42] Kinect v2 30H, 2 sessions Walking Lower limbs 
joints angles

Gait analysis 0.4 < r < 0.75

[39] Kinect v2 20H 5 primary 
shoulder 
movements

Upper limbs 
joints angles

Clinic and 
home reha-
bilitation

RMSE = 3.9◦

[43] Kinect v2 20H Walking Stance and 
step time, 
step length, 
time, velocity

Gait analysis LoA < 11%

ICC > 0.9

[41] Kinect v2 30H Standing and 
sitting exer-
cises

Upper body 
joint posi-
tions

Rehabilitation RMSE < 5%

r > 0.9

[55] 4 IMU (custom) 
on thighs, 
shanks

3H Walking Hip and knee 
joint angles

Gait analysis RMSE < 8.7
◦

r > 0.7

[6] 2 IMU (Xsens 
MTx) on 
pelvis, thigh

20H Walking Hip joint angle Gait analysis LoA = 1.6
◦

[56] 8 IMU (Xsens 
MTx) on 
thorax, lower 
back, thighs, 
shanks, feet

9H (children) Static postures Hip and knee 
joint angles

Knee amputees 
and cerebral 
palsy

RMSE = 1.8
◦

[57] 6 IMU (not 
specified) on 
pelvis, thigh, 
shank

9H + 1INJ Running and 
outdoor 
training 
routines

Activity clas-
sification, 
hip and knee 
joints angles

Athlete train-
ing, injury 
prevention

98%

[58] 3 IMU (Shim-
mer) on 
thigh, shank, 
foot

58REH Primary move-
ments

Exercise recog-
nition

Clinic and 
home reha-
bilitation

83%

[8] 5 IMU (Riablo) 
on trunk, 
thigh, shank

22H, 2 sessions 4 knee exer-
cises

Hip and knee 
joint angles

Clinic and 
home reha-
bilitation

RMSE = 3.1
◦

[59] 2 IMU (Opal) on 
lower back, 
upper arm

6H ADL routines,
walking

Trunk and 
upper limb 
joints angles

IMU evaluation RMSE < 5.5
◦

[60] 6 IMU (Xsens 
MTx) on 
thigh, shank, 
foot

1AMP Walking Knee angle Gait analysis RMSE < 3
◦
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Low‑cost video sensing: the Kinect

Microsoft first introduced the Kinect sensor in November 2010 to be used as a motion 
capture input device, as an add-on for the Xbox game console. It featured a standard dig-
ital video camera, a depth sensor based on structured IR illumination, and a directional 
microphone. The integration of the Kinect with dedicated algorithms allowed marker-
less tracking of the user’s segments pose and movements, creating a natural user inter-
face based on gestures [24]. Although it was developed and sold as a game controller, 
its offer of RGB video and IR-based depth sensing (RGB+D), at a very low price, made 
it appealing for a wide range of users, also in biomechanical and clinical research [25, 
26]. With the availability of drivers and of a Software Development Kit (SDK) for a more 

Participants are labeled as healthy (H), Parkinsons (PD), injured (INJ), in rehabilitation (REH) and amputees (AMP). All 
experiments were conducted in lab unless otherwise stated. Reported performance metrics include Root Mean Square Error 
(RMSE), Interclass Correlation Coefficient (ICC), Coefficient of Variation (CV), Limits of Agreement (LoA), Standard Deviation 
(SDev) and Pearson’s correlation coefficient (r)

Table 1 (continued)

Refs. Sensor(s) Participants Exercises Parameters Applications Performance

[61] 7 IMU (Opal) on 
trunk, upper 
arm, forearm, 
hand

8H 2 swimming 
styles

Upper limb 
joints angles

swimming 
analysis

RMSE < 7
◦

[62] 3 IMU (Opal) on 
waist, thigh, 
shank, 1 resis-
tive strip

14H Sit-to-stand, 
walking

Exercise tim-
ings, stride 
length

Clinic and 
home reha-
bilitation

r > 0.7

ICC > 0.95

[63] 17 IMU (Syner-
tial) full body

20H 5m timed up 
and go

Full body joints Clinic evalua-
tion

RMSE < 13.6
◦

[64] 2 IMU (APDM)
thigh and 

shank

18REH Knee ROM, 
walking

Knee angle Clinic rehabili-
tation

–

[9] 17 IMU (Xsens 
MVN) full 
body

12H Functional 
movements, 
work actions

Full body 
model

Occupational 
biomechan-
ics

RMSE < 5
◦

[65] 3 IMU (I2M MT) 
on pelvis, 
trunk, upper 
arm

6H lab + 10H 
workplace

Work actions Trunk orienta-
tion, shoulder 
joint angles

Occupational 
biomechan-
ics

RMSE < 12.1
◦

[47] Kinect v1, 
Kinect v2

20H (v1) + 20H 
(v2)

15 static poses Joints positions Posture evalu-
ation

RMSE(v1) 
= 76mm

RMSE(v2) 
= 87mm

[48] Kinect v1, 
Kinect v2

10H, 3 camera 
angles

Sitting and 
standing 
postures

Joints positions Motion capture RMSE < 100mm

[33] Kinect v1, 
Kinect v2

13H ROM and static 
stretching 
exercises

Joints positions Rehabilitation RMSE = 15mm

(wrist)
RMSE < 10mm

(other)

[66] Kinect v1 + 
2IMU (Iner-
tiaCube3) on 
upper limb

1H Hand-to-
mouth

Upper limb 
position

Motion capture –

[67] Kinect v1 + 1 
x-IMU

1H Knee flexion/
extension

Knee angle Motion capture RMSE < 14.2
◦

[68] Kinect v1 Vs 
Kinovea 
(MBS) Vs Hill-
crest (IMU)

2H Walking Hip and knee 
angles

Gait rehabilita-
tion

RMSE = 3
◦ (IMU)

RMSE = 10
◦ (Kin.)
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general use beyond gaming, the Kinect has been applied to a vast range of academic and 
industrial projects, including the fields of interaction, robotics and, in fact, biomechan-
ics [27]. The first version of the Kinect (Kinect v1) was followed by a re-designed sensor 
presented in 2013 (Kinect v2), which introduced an improved RGB camera and a new IR 
time-of-flight depth sensor [28]. Kinect v2 and its new SDK improved the sensor’s track-
ing capabilities and enhanced its use in applications based on human motion tracking 
[29].

The Kinect sensors have been extensively evaluated in relation to several application 
fields. The accuracy of the sensors and their depth estimation capabilities have been ana-
lyzed carefully [30], as well as the differences between the two versions [31–33]. Focus-
ing on human motion capture applications, the use of the Kinect v1 in such scenario was 
triggered by the release of reverse-engineered open-source drivers and tracking software 
[34] and then propelled by the release of the Microsoft’s SDK [35]. The second-genera-
tion device and its updated algorithm have been validated further within the context of 
clinical motion analysis, with applications such as posture and balance evaluation [36, 
37], fall detection [38], rehabilitation exercises [39–41], and gait assessment [42–44]. 
Moreover, the usability of Kinect-based home rehabilitation systems has been investi-
gated, providing insights on the user acceptance with good results and indications for 
future improvements [45, 46].

The two generations of Kinect sensors have been compared in validation studies: when 
applied to posture or movement evaluations, these showed similar results, with the 
Kinect v2 just slightly outperforming its predecessor [47, 48]. The new sensor achieved 
good overall performance in the tracking of human pose and elementary movements, 
but showed obvious limits when dealing with more complex exercises or when the 
movements were not performed with the subject standing facing the sensor. These 
results necessarily reduce the use of the Kinect as an accurate tool for possible exploita-
tions in the clinical context, but open the door for a possible use in somehow qualitative 
evaluations of posture and exercise, and also show the potential of such system for at-
home monitoring of rehabilitation therapies.

Inertial‑based motion capture

The availability of Microelectromechanical Systems (MEMS) and their development for 
miniaturized sensors, combined with integrated processing and communication tech-
nologies, enabled the development of wearable sensing devices for human body moni-
toring [1, 15]. To obtain information regarding specific human locomotion parameters, 
one or more sensing devices are worn directly on relevant body parts and connected to a 
central processing hub for data collection and processing, forming a so-called Body Sen-
sor Network [69]. However, this multi-sensor setup presents a number of technological 
requirements in terms of sensing capabilities, signal bandwidth, throughput and other 
general challenges such as device wearability, system usability, and data reliability [70].

There are several commercial examples, starting with high-end solutions for body 
motion capture [71], which are mainly used for animation and clinical movement anal-
ysis, all the way to ubiquitous motion trackers and sensors embedded in smartphones 
[72]. Notable examples include MVN Biomech (Xsens Technologies, Netherlands) and 
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Opal (APDM Technologies, USA). The research and academic community is also very 
active on this topic, with several proposed platforms [73–78].

A wearable IMU provides unobtrusive methods to collect motion data relative to the 
body segment where it is worn; by combining a network of sensors, to form a whole-body 
model, joint motion can also be deduced. The integration of multiple sensors within the 
same device (accelerometer, gyroscope and magnetometer) allows to deploy robust sen-
sor fusion algorithms in order to provide reliable and detailed information in a wide range 
of dynamic conditions and application contexts. In biomechanics, the most used applica-
tion is the estimation of the device’s orientation from the embedded sensors and its use for 
the estimation of joint angles [79, 80]. Algorithms derived from navigation applications are 
adapted to infer the orientation of the body segment of interest and include the Kalman Fil-
ter (KF), its extended and unscented variations, and also several implementations of Com-
plementary Filters (CF) [81–84]. Moreover, IMU sensor data can be exploited to analyze 
various features of human motion and dedicated algorithms have been developed for tasks 
such as activity recognition [85], exercise recognition and evaluation [86, 87], gait analysis 
[63, 88, 89] and jump analysis [90, 91].

Research and clinical studies have validated the use of wearable IMUs also in various con-
ditions and applications [80, 92]. Notable examples include balance and postural evaluation 
[93, 94], fall monitoring and prediction [95], gait analysis [96] and rehabilitation [64]. Lab-
oratory evaluations and comparisons with high-precision MBS systems have shown high 
accuracy and reliability of wearable motion sensors. Hence, these can be used in clinical 
practice for the evaluation of human motion and can provide a valuable and portable tool 
for standardized motor tests [97]. Usability aspects of the employment of such systems for 
home rehabilitation evaluation have also been investigated providing encouraging results 
[98–100]. However, the scientific community still faces the challenges implied in the devel-
opment of accurate, reliable and easy to use wearable solutions for motion analysis, and in 
their extensive validation in real-life contexts.

Another emerging approach is to combine the outputs of the two systems [66, 67, 101]. In 
[67] the authors propose a sensor fusion algorithm to combine the Kinect and a set of wear-
able IMUs showing how the combined result achieves higher accuracy than any of the two 
systems. Additionally, in [66] an integration of IMUs and Kinect for the tracking of upper 
limb motions is proposed, showing again improved results when compared to the two 
separate systems. The work in [68] compares the use of IMUs and a Kinect-based system 
(Reha@Home) for gait analysis. This comparison, however, was limited to only one subject 
performing a short walk in front of the camera. In addition, the typical major problem of 
Kinect, i.e., the occlusions of body segments during the motion exercise, was promoted by 
the experimental setup adopted and the exercise performed.

Separately, the different systems have been extensively evaluated, but direct comparison 
and the discussion of their tradeoffs are still very limited. Moreover, all the reported studies 
focus on laboratory-based validation, despite huge potential of such systems lies in at-home 
use and therefore these systems should be evaluated also in this context. This work provides 
a detailed analysis of the literature on the two approaches (see Table 1) and an original com-
parison performed both in laboratory with a state-of-the-art motion tracking reference and 
in different home settings.
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Review of segment and joint kinematics estimation algorithms
The estimation and tracking of human segment and joint kinematics using video or 
wearable sensing is a well-documented research field, with several available solutions. 
This section will outline the main methods used in this work with the Kinect and with 
inertial sensors, whose estimates will be directly compared.

Kinect

Microsoft provides a comprehensive SDK for the Kinect, which includes a ready-to-use 
algorithm for the estimation and tracking of the user’s complete body pose. The latest 
update provides real-time tracking for up to six people and it provides estimated 3D 
position for a complete skeletal model formed of 21 body joints and quaternion-based 
rotations of the relevant segments. The algorithm is based on the identification of the 
different body segments from the RGB+D video stream and uses a Random Forest rec-
ognition approach, which was trained with a wide dataset composed by real and syn-
thetic data [24]. The research community has proposed some alternatives and there is 
still on-going work on pose estimation from RGB+D streams [102]. However, Micro-
soft’s solution is the de-facto standard thanks to its robustness and ease of use. For these 
reasons, it was used in several validation and exploitation studies [36, 39, 42, 43] and is 
also used in the present work. The provided data are only low-pass filtered to eliminate 
noise. Further offline smoothing or any other processing was avoided because, in the 
present study, real-time tracking of the exercise was targeted.

Inertial sensing

Most of the previous validation studies used commercial solutions to obtain the orien-
tation of the wearable sensors, which are used to estimate the orientation of the body 
segment they are attached to. Their outputs are then combined to form a partial or com-
plete body pose estimation, based on the number of sensors in use [9, 59–64]. While 
there are several proposals for algorithms for the estimation of orientation from inertial 
sensors’ data, the present work analyzes the most used ones, to provide a comparative 
analysis targeting robust and well-established solutions. Moreover, to evaluate the stand-
ard use at-home of these systems, robust but ready-to-use approaches, without the need 
for system calibration or additional operations, were considered. In particular, although 
all the proposed methods provide the full orientation of the device, its horizontal com-
ponent is not frequently considered, since it is heavily affected by the environmental 
ferro-magnetic disturbances. Although inertial and magnetic sensors may be influenced 
by the environment (e.g., temperature [103, 104]), environment-aware calibration and 
rejection techniques are out of the scope of the present work. The EXLs3 sensors used 
in the present study are calibrated in factory, and all the experiments had a limited dura-
tion with standard and stationary environmental conditions, therefore effects from the 
environment are assumed to be null.

All the orientation estimation algorithms are based on a combination of triaxial sen-
sor inputs composed by accelerometer readings a = {ax, ay, az} , gyroscope readings 
ω = {ωx,ωy,ωz} and magnetometer readings m = {mx,my,mz} , providing as output 
the orientation of the sensor, expressed either in quaternions ( q = {q0, q1, q2, q3} ), Euler 
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angles ( E = {Ex,Ey,Ez} ) or rotation matrix ( R ). Each of these three orientation repre-
sentation methods has its advantages, but usually the quaternions are preferred for the 
computation efficiency and the results are converted to Euler angles because of their 
better clarity [105].

Orientation estimation from accelerometer (ACC)

Using accelerometer (or accelerometer and magnetometer) outputs, the sensor’s orien-
tation is estimated by applying trigonometric functions. This approach assumes that the 
accelerometer is measuring only the gravity acceleration, and hence it is reliable only in 
static conditions. Accelerometer readings are used to estimate a partial orientation of 
the device, Ea as

From the magnetometer measures, the missing horizontal heading is estimated as

where ma is the magnetometer reading projected to the accelerometer-estimated orien-
tation plane identified by Ea.

Gyroscope integration (GYR)

Orientation of the sensor can also be estimated by integration of the angular velocity 
provided by the gyroscope. This estimate is reliable in dynamic situations, but suffers 
from drifts due to numerical integration errors. According to the chosen orientation 
representation, there are several implementations of its derivative; here, the quaternion 
one is adopted resulting in q̇ = �q , which is integrated as

where I is a (4 × 4) identity matrix and q(0) computed using the ACC estimation during 
a short static initialization.

Kalman filter (KF)

The Kalman filter is a widely used approach for optimal fusion of accelerometer and 
gyroscope orientation estimates [79, 81]. Several variations have been proposed and 
here a straightforward application of a quaternion-based KF is applied, using the GYR 
derivate as the state equation, which is then corrected by the ACC measurement. The KF 
state and measurement equations are implemented as

(1)Ea
x = atan2(ay, az)

(2)Ea
y = atan2(ax,

√

a2y + a2z).

(3)Ez = atan2(−ma
y ,m

a
x)

(4)q(t) =

(

I +
1

2
�dt

)

q(t − dt);

(5)� =







0 − ωx − ωy − ωz

ωx 0 ωz − ωy

ωy − ωz 0 ωx

ωz ωy − ωx 0
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where q(t) is the state estimate, w ∼ N (0,R) the zero-mean gaussian process noise with 
covariance matrix R , qa the accelerometer-based orientation estimate and v ∼ N (0,Q) 
the measurement noise with covariance matrix Q . The two covariance matrices were set 
to be diagonal with constant coefficients: 0.0001 for Q and 0.1 for R.

Madgwick filter (MAD)

Another approach for a quaternion-based iterative fusion of ACC and GYR estimates 
has been proposed by Madgwick [84] and it has been well received because of its high-
quality estimate and limited computational and memory requirements. It is based on 
a gradient descent algorithm, which iteratively finds the optimal orientation given the 
input signals and it is governed by the following differential equations:

The filter calculates the orientation q by numerically integrating the estimated orienta-
tion rate q̇est , which is computed as the rate of change of orientation measured by the 
gyroscopes, q̇ω , with the magnitude of the gyroscope measurement error, β , removed in 
the direction of the estimated error, q̇a , computed from accelerometer and magnetom-
eter measurements. q̇a is computed with the gradient descent method and f represents 
the function that provides the orientation from accelerometer and magnetometer read-
ings. The implementation of the algorithm makes use of established matrix and quater-
nion operations, and the correction parameter β was empirically set to 0.01 [84].

Complementary filter (CF)

Another class of orientation estimation algorithms was developed by Mahony et  al. 
using non-linear complementary filters [83]. Such approach is also becoming popular 
for its accuracy and reduced computational complexity when compared to KF. In this 
case, a rotation matrix representation is used and, contrary to the KF, the filter combines 
accelerometer and gyroscope estimates with a constant correction factor, following the 
equation:

(6)
{

q̇(t) = �q(t)+ w(t)
qa(t) = q(t)+ v(t),

(7)q(t) = q(t − 1)+ q̇est(t)dt

(8)q̇est(t) = q̇ω(t)− βq̇a(t)

(9)q̇a(t) =

∇f

�∇f �
.

(10)Ṙ =[R[ω]x + kpRγ ]xR;

(11)[ω]x =





0 − ωz ωy

ωz 0 − ωx

−ωy ωx 0
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where R is the rotation matrix, kp the filter gain empirically set to 0.5 and γ the correc-
tion term given by the difference of the previous estimate and the current one from the 
accelerometer [83].

Results
The experimental part of this work directly compared the two systems in a laboratory 
setting, using a high-precision MBS tracking system together with an internationally 
established technique as the gold standard. In addition, the use of these two systems out 
of the laboratory was compared, performing a pilot evaluation in unconstrained envi-
ronments such as patient’s house. Detailed description of experimental methodology 
and protocols is provided in “Methods” section.

Laboratory evaluation

Table  2 reports the mean differences, i.e., root mean square errors (RMSE), and the 
standard deviation for the considered techniques for IMU orientation estimation and 
for the estimates provided by the Kinect, when compared to the corresponding results 
established through MBS. The different IMU approaches have a similar performance, 
with the KF and MAD algorithms outperforming the others. It is interesting to note 
that the single-sensor algorithms have only limited degradation compared to the sensor 
fusion ones and in some cases even outperform the CF. This is mainly due to a combi-
nation of the type of performed exercises (large motions with a relatively low dynamic) 
and their short duration, which allow also ACC or GYR estimates to have limited RMSE. 
The IMU estimates employing sensor fusion algorithms outperform the Kinect’s output, 
though by a limited margin, revealing that both approaches (by sensors or cameras) have 
a good overall performance, with errors in the range of 3 to 8 degree for all the joint 
angles analyzed, which is consistent with existing literature [39, 55, 59–61, 68].

As expected, the exercises performed while wearing clothes show a slightly higher 
RMSE and deviations; however, they are consistent with the standard GA case. The com-
parison between the different approaches confirms again that the sensors fusion algo-
rithms outperform the single-sensor estimates and are aligned with the Kinect ones. 
Given the limited sample size, a thorough analysis on the performance degradation can-
not be provided; however, additional errors in this case can be attributed to the motion 
artifacts caused by clothing, which allows for relative motion also between the mark-
ers and the underlying anatomical landmarks and also between IMUs and markers. Fig-
ure 1 shows resulting angles for the frontal lunge exercise in standard gait analysis while 
undressed (left), and the corresponding with clothing (right) from the same subject. Pat-
terns from both IMU and Kinect match generally well with the gold standard from gait 
analysis, with consistent results for all the executed exercises and across all users. Tim-
ing of the waveforms is exactly the same, whereas peak values show differences, though 
consistent over repetitions. These can be accounted for the different technique applied 
for calculation of orientation, i.e., IMU tracking a single limited area of the body seg-
ment, while the Kinect is searching for the overall orientation of this segment, this being 
affected also by its deformation during motion.
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At‑Home evaluation

Without the availability of a gold standard, it is not possible to calculate errors for the 
two systems for a quantitative evaluation. However, it is possible to qualitatively evalu-
ate the outcomes and compare them to the data collected in the lab. In particular, it is 
possible to compute the average difference and standard deviation between the two esti-
mates and use such parameters to compare the lab and home sessions. Table 3 collects 
the root mean square difference, its standard deviation and the maximum differences 
between IMU and Kinect estimates. For the three subjects who performed the exercises 
both in the lab and at home, there is a direct comparison of the two environments, while 
the average results for all sessions performed at home provide a qualitative insight of 
the performance outside the lab. A sample of the joint angles resulting from at-home 
acquisitions is plotted in Fig. 2, where the frontal lunge exercise is shown to facilitate the 
comparison with Fig. 1 showing the same exercise from the same subject performed in 
the lab.

All the performed exercises were correctly acquired by both systems in all the four 
test environments. A comparison of the outputs shows that they reported expected out-
comes and the two systems show again similar performance. For the subjects monitored 
both in lab and at home, the difference between the two systems is consistent in both 
cases, with the exception of the knee flexion angle, which exhibits higher deviations in 
the un-controlled environments. The same outcomes are observed also for the average 
over all the subjects who performed exercises in the home environments. Considering 
both Figs. 1 and 2, it emerges that the systems show a difference in the estimated range of 
motion, with the Kinect underestimating it when compared to both the MBS reference 

Fig. 1 Sample data for a lunge exercise as performed in the lab without clothes (left), and with clothes 
(right), as monitored by wearable IMUs (IMU KF), Kinect v2 and gait analysis. The plots show in series over 
time 5 repetitions of normal execution, followed by 5 repetitions with larger forward inclination of the trunk
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and the IMU output. Similar results were observed in all acquired sessions, though such 
behavior should be analyzed further to establish systematic evaluations of the outcomes 
from the two systems. Moreover, Kinect-based estimates show also considerable peak 
discontinuities, as depicted in Fig. 2, right column. This result was observed throughout 
the dataset and it can be caused by image glitches disturbing the vision-based tracking 
algorithm. Of course, this influences the reported measurements of estimate differences. 

Fig. 2 Sample data for a lunge exercise as performed at home and monitored by wearable IMUs (IMU 
KF) and the Kinect v2. The plots show in series over time 5 repetitions of normal execution, followed by 5 
repetitions with larger forward inclination of the trunk



Page 16 of 26Milosevic et al. BioMed Eng OnLine           (2020) 19:25 

To mitigate this effect, ad-hoc filtering or smoothing techniques may be applied in the 
future.

Discussion
In the last decade, the consumer market opened the way for a broader acceptance and 
use of wearable sensing devices. Activity trackers are now widely employed in everyday 
life, but with limited reliability and validation of results [11, 106]. More accurate wear-
able inertial sensors have been adopted for a wide range of clinical applications [2, 107], 
with a huge potential to innovate and improve nearly every aspect of healthcare applica-
tions. But for a successful exploitation of these systems in healthcare and in particular 
in rehabilitation, there is definitely the need for their careful quantitative validation. In 
addition to these, unobtrusive sensing systems based on video and depth cameras are 
available at a low price and high performance, such as the Kinect v2 here assessed. It 
was originally developed as an interaction controller for home video games, but it has 
gained attention also for general research and clinical applications for its capability to 
track human subjects’ movements in real time [27, 108]. With respect to inertial sensors, 
video-based tracking is even less invasive, as the body of the tracked subject is free of 
any instrument.

Several studies have analyzed the performance and validated these two systems for 
the tracking of human motion in clinical applications, including postural and balance 
control, rehabilitation exercises, gait, or specific conditions such as Parkinson’s or post 
stroke rehabilitation. Laboratory tests showed the limits of the low-cost tracking tech-
nologies when compared to state-of-the-art MBS systems; however, these also high-
lighted their overall applicability to ubiquitous patient monitoring (see Table 1 and the 
references therein). The development and adoption of innovative monitoring systems for 
effective patient monitoring in unconstrained environments open new research chal-
lenges in these systems’ reliability, sensitivity to environmental and operational factors, 
usability and acceptability by the clinicians and the end users, i.e., the patients.

In the present study, a thorough experimental analysis was performed to assess the 
accuracy of two instruments for human motion tracking in the context of rehabilita-
tion. The experiments are established however as preliminary measurements on a lim-
ited sample size. Nevertheless, the state-of-the-art gait analysis was arranged as gold 
standard, and a large number of exercises were analyzed. These were a limited specific 
set within all possible rehabilitation exercises, particularly used to recover from a large 
number of orthopedic disorders and treatments. The scope in fact was to test the two 
instruments in a number of general yet well representative motor tasks; in the future 
these two instruments shall be tested also in other possible exercises. It is important 
to note, however, that among those analyzed here, the squat position is definitely very 
physically demanding for the extreme joint positions implied, and as such particularly 
suitable to reveal large measurement differences. As additional limitation, the two cloth-
ing conditions were tested in a single subject only, but this was thought just to reveal the 
additional artifact introduced by the clothes used routinely in these exercises, knowing 
that the gold standard for these measurements is represented by the motion at the skel-
etal system.
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Validation against state-of-the-art gait analysis was performed in two different con-
ditions, though in a very small number of subjects. The standard procedure always 
requires the subject to be undressed, with all the markers attached to the skin in cor-
respondence of relevant anatomical landmarks. This is recommended for a repeatable 
application of the marker set (for intra- and inter-subject comparisons) and to avoid the 
disturbances of the clothing, which adds considerable artifactual measurements. How-
ever, this is not the typical condition for the users of these systems; therefore, the valida-
tion was repeated, in one subject, also imitating a more realistic dressing condition, with 
the user wearing comfortable fitness clothing, typical of physical exercises in the gym 
or at home. In the latter case, the measures were less accurate, but they are more rep-
resentative of a real scenario. The preliminary results here reported for the two systems 
highlight the importance of instructing the users to perform the exercises with limited 
and appropriate clothing and to tightly wear the sensors to limit occlusions and motion 
artifacts. Although all the present sensing technologies are likely to be affected by envi-
ronmental factors (e.g., temperature, humidity, etc.) and by their status (duration of use, 
etc.), a detailed analysis of such influences is out of the scopes of this work. The present 
experimental protocol was rather designed to minimize the impact of any such exter-
nal factors and environmental conditions. Moreover, the aim was to limit the differences 
between the acquired sessions and with respect to the corresponding conditions in the 
relevant literature (Table 1).

The two systems showed similar performance in terms of final angle estimations 
when considering simple large-motion exercises. The measurements from this experi-
mental work on both the laboratory and at-home sessions show good repeatability 
and consistency, therefore providing reliable evaluation of the performance of relevant 
rehabilitation exercises. However, the results also showed differences in the body seg-
ment orientations and therefore joint rotations, but these are consistent and small with 
respect to the corresponding overall range of motion. These findings are aligned with the 
reported literature, which generally reports errors below 10 degrees [40, 109].

Today, there is no consensus on the necessary accuracy that these motion tracking 
systems should provide for these to be appropriate in physical rehabilitation. How-
ever, based on the existing literature [23, 110], reports from therapists and physicians, 
as well as practical experience, errors in human segment or joint rotations smaller than 
3 degrees would be tolerable for most rehabilitation programs in orthopedics; errors 
between 3 and 6 degrees can still be acceptable, depending on the joint, the pathol-
ogy and treatment, and the status of the patient. For example, after the replacement of 
shoulder, hip and knee joints, the range of motion usually restored is far larger than 100 
degrees, and this error therefore would be only a very small percentage. In this context, 
the two analyzed technologies perform well, and the errors here revealed can be well 
acceptable in most major human diarthrodial joints, compatible with the status of the 
patient and the rehabilitation exercises under observation. Direct or indirect, i.e., for at-
home sessions, careful supervision and evaluation should be guaranteed in any case by 
trained therapists. This is in any case a step forward with respect to qualitative observa-
tions, which is biased by therapist experience.

Nevertheless, the different basic technology of these two systems introduces addi-
tional considerations on their effective use. The Kinect is a well-supported commercial 
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platform and benefits from its very simple operational requirements. To track move-
ments, it just needs to be placed at 3–4 m in front of the subject and connected to a 
personal computer, without the need for additional instrumentation or further require-
ments. However, its vision-based approach imposes a limit on the tracked area, particu-
larly a frontal view, and no object interposition; also, its low sampling frequency limits 
the range of movements correctly tracked. In particular, fast and complex movements 
as well as those with large components out-of-the-frontal plane of the sensor are not 
tracked by the system [44], thus precluding its use in applications such as real-life mon-
itoring of patients and rehabilitation exercises performed while lying or with support 
devices. In addition, its limited field of view precludes its use for unconstrained gait 
monitoring.

Wearable IMUs are now a mature and widely adopted technology, with several com-
mercial solutions ranging from whole-body motion tracking suites to sensor kits and 
stand-alone units. The use of IMUs attached to a target body segment and the adop-
tion of relevant sensor fusion algorithms is nowadays commonly employed to analyze 
human motion within a large spectrum of motor tasks and exercises, from up-right pos-
ture to complex sports activities [109, 111, 112]. IMU use for clinical motion analysis has 
been extensively evaluated regarding accuracy and reliability, but evaluation studies are 
mostly confined to laboratories [64, 93, 96]. Considering at-home uses, wearable IMUs 
have an additional requirement when compared to the Kinect, since the user has to wear 
the sensors. Such operation usually consists in mounting a simple elastic band, which 
can be considered simple enough for autonomous use at home even for children and 
elderly, but it can be, in theory, a source of uncertainty (i.e., sensor misplacement) or it 
can be problematic for severely impaired users. On the other hand, wearing the sensors 
on the user’s body allows for a less-constrained tracking and for the development of a 
mobile solution capable of acquiring movements in a truly unconstrained and perva-
sive manner. The vast range of available sensors, paired with state-of-the-art processing 
algorithms, allows for the development of diversified solutions covering a wide spectrum 
of human motions, including static and postural analysis, rehabilitation exercises, jump 
analysis, gait analysis, fall detection, etc.

Conclusions
This work addresses two of the most promising technologies for at-home rehabilita-
tion monitoring based on real-time motion analysis, i.e., wearable IMUs and Kinect. 
The Kinect incorporates video and depth sensors and provides easy to use, real-time, 
full-body tracking at a low price. Wearable inertial sensors are now emerging as another 
reliable tool for movement analysis, providing an additional instrument for patient 
monitoring also in clinical and research settings. In the first part of this study, a detailed 
critical analysis of the literature on these technologies was performed (see Table 1), and 
in the second part original comparisons between the two are reported, after thorough 
experiments performed both in a state-of-the-art motion capture laboratory and in 
direct home settings.

From the literature it emerged that the two different technologies have been assessed 
extensively, though mostly separately, with very limited direct experimental compari-
sons. In addition, only a few studies have addressed the final real conditions of use, i.e., 
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at-home. Therefore, an original experimental analysis was performed, in both environ-
ments. The two systems showed similar performance in tracking elementary exercises 
with large range of motion, and provided comparable results both in the laboratory 
setting and in-home tests. In the former, IMUs combined with different sensor fusion 
algorithms showed an average RMSE of 5.5◦(±2.3) over the performed exercises, which 
matches well with those from the Kinect, 5.6◦(±2.0) . These exercises were replicated 
with the same experimental protocol and with the same users in home environments, 
showing results much in support of those obtained in the laboratory.

The Kinect has the advantage of very simple operational requirements, but it lacks the 
capabilities to track complex and highly dynamic movements, especially when the user 
does not move in front of the sensor. On the other hand, IMUs must be worn, but work 
well in a large variety of human movements, also at high speed. Both technologies, how-
ever, can be adopted for home-based rehabilitation monitoring, after taking adequate 
precautions about user instructions and about correct interpretation of the results. With 
further developments and large-scale real-life evaluations, these technologies will allow 
careful and pervasive patient monitoring and relevant clinical studies in the near future.

Methods
This section describes the methodology and the comparison protocols employed for 
the experimental analysis. Our institution’s Review Board (Comitato Etico dell’Istituto 
Ortopedico Rizzoli) approved the study conducted in the present work. All participants 
received detailed information about the study and provided written consent for the 
use of acquired data. All acquired data were anonymous and only age, gender, weight 
and height were stored along with the exercise data here reported. The subjects were 
recruited among graduate students at our institution.

Laboratory evaluation

The direct instrumental comparison of the two systems was performed at the Movement 
Analysis Laboratory of the Rizzoli Orthopaedic Institute (Bologna, Italy) as shown in 
Fig. 3. Subjects’ motion was concurrently monitored by a Kinect v2 (Microsoft, Seattle, 
USA), a set of three EXLs3 wearable IMUs (Exel srl, Bologna, Italy) and a high-precision 
8-camera MBS motion tracking system (Vicon 612, Vicon Motion Systems Ltd, Oxford, 
UK) sampling at 100 Hz.

During the acquisitions, the Kinect was placed in front of the subject, at a distance 
of approximately 3.50 m, and at 1 m from the ground (Fig. 3). It was checked whether 
the subject was at the center of the field of view of the sensor, as recommended from 
the product guidelines. The Kinect4Windows 2.0 SDK was used for data acquisition and 
processing. It provides the reconstruction of the full body segments, formed by the posi-
tion and angles of 21 joints [24]. These data were saved for offline analysis by means of 
a custom application. The SDK does not allow control over data acquisition and it pro-
vides an approximate sampling rate of 30 Hz.

For IMU tracking, a 3-sensor kit of EXLs3 wireless IMUs was used. This study focused 
on the evaluation of lower limbs movements, hence the three sensors were placed on 
the frontal aspects of the subject’s thorax and of left thigh and shank. The devices are 
self-worn using elastic bands with a dedicated pocket for the IMU. Each EXLs3 device 
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is calibrated in factory and provides an on-board estimation of its orientation, in addi-
tion to triaxial sensor data for accelerometer ( ±2 g full scale), gyroscope ( ±500 dps full 
scale) and magnetometer ( ±1200 µT  full scale). These are equipped with a Bluetooth 
transceiver for data streaming to a host device. In the performed tests, sensor data were 
sampled at 100 Hz and streamed to a personal computer for offline analysis. Given the 
placement of the IMUs and combining the orientation of the three sensors, it is possible 
to estimate the thorax sagittal and frontal orientation, the hip joint sagittal and frontal 
angles and the knee joint flexion/extension.

As a gold standard reference, a state-of-the-art MBS motion capture system and an 
established gait analysis protocol were used. Before starting the data collection, 33 
spherical 15-mm reflective markers were located on the lower limbs, pelvis and thorax in 
correspondence of known anatomical landmarks according to a validated protocol [113]. 
From these markers, anatomical-based reference frames were defined for each segment, 
and three-dimensional joint rotation angles were calculated according to international 
recommendations and conventions [114]. Thorax sagittal and frontal plane inclinations, 
hip joint sagittal and frontal angles and knee sagittal angle, i.e. flexion/extension, from 
these measurements and calculations were used as the gold standard for the comparison 
of the corresponding Kinect and IMU-based estimates. These gait analysis results were 
stored for offline comparative analysis.

The study involved three healthy subjects (female 1.75 m 26 years, female 1.65 m 31 
years, male 1.83 m 34 years) who performed physical exercises typical of rehabilita-
tion programs after replacement of lower limb joints. For all three, standard gait anal-
ysis was performed which implies instrumenting the subjects without clothing (Fig. 3 
left). This is considered the optimal experimental setting, with the best possible accu-
racy of the measurements because of the direct attachment of the markers to the skin 

Fig. 3 Data collection sessions in the gait analysis laboratory: the same overall setup with the 
instrumentation mounted on a subject for a standard gait analysis (left, undressed) and for more realistic 
final user condition (right, dressed). Instrumentation includes IMUs on relevant body segments and reflective 
markers on relevant anatomical landmarks according to the gait analysis protocol [113]
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without interposition. For one of the three subjects gait analysis was repeated days 
later while wearing comfortable fitness clothing (Fig. 3 right). It is worth noting how-
ever, that when collecting data while wearing clothes, MBS measurements are likely 
to be affected by noise, since the markers are attached to the clothing and some tissue 
motion artifacts are inevitable. The subjects were wearing adherent fitness clothing, 
which can limit this motion artifacts.

The three subjects were first instructed about the functioning of the acquisition sys-
tems and how to wear the inertial sensors. In addition to squat (SQ), the following six 
exercises were performed by the left leg only: frontal lunge (FL), lateral lunge (LL), 
hip abduction (HA), hip flexion (HF), and hip extension (HE). These motion exercises 
include both basic and more complex movements and are typical of many rehabilita-
tion programs targeting lower limbs functional recovery [115, 116]. For each exer-
cise, the subjects were instructed to perform five repetitions as for standard correct 
execution first, i.e., with the trunk up-right, and then five more repetitions with the 
trunk in a large inclination forward, to mimic a common mistake in performing these 
rehabilitation exercises [115, 116]. The overall quality of the exercises was assessed 
by analyzing thorax orientation and hip and knee joint rotations; among these meas-
urements, target parameters, i.e., those to determine the biofeedback, and control 
parameters, i.e., those to be checked for a correct performance of the exercise, are 
specified in Table 4.

Spatial and temporal alignment of the reference frames from the three systems 
was performed offline. A short static up-right double-leg posture of the subject was 
acquired at the beginning of each data collection session and used to align the body 
segment orientations provided by the three systems. Moreover, a sharp right leg 
movement was performed at the beginning of a session to facilitate offline time align-
ment of the data streams. All data were stored for offline analysis, which were per-
formed in Matlab. For a direct comparison, the joint rotations streams from the three 
systems were all re-sampled at 30 Hz.

Table 4 Collected exercises and corresponding target and control parameters

Exercise Repetitions Target param. Control param.

Squat (SQ) 5 correct Knee joint flexion Trunk orientation

5 forward thorax inclination,

Frontal lunge (FL) 5 correct, Knee joint flexion Trunk orientation

5 forward thorax inclination,

Lateral lunge (LL) 5 correct, Knee joint flexion Trunk orientation

5 forward thorax inclination,

Hip abduction (HA) 5 correct, Hip joint abduction Trunk orientation,

5 lateral thorax inclination, knee joint flexion

5 knee flexion

Hip flexion (HF) 5 correct, Hip joint flexion Trunk orientation,

5 backward thorax inclination, knee joint flexion

5 knee flexion

Hip extension (HE) 5 correct, Hip joint extension Trunk orientation,

5 forward thorax inclination, knee joint flexion

5 knee flexion
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At‑Home evaluation

One of the main advantages of these two innovative approaches for human motion 
tracking is their low cost, which together with their small dimensions offer the pos-
sibility for ubiquitous adoption in rehabilitation centers, gyms and even at home. In 
addition to lab comparison, therefore, a pilot study was conducted to evaluate their 
use in the latter uncontrolled environment. To test the variability associated to dif-
ferent environmental conditions in real-life scenarios, the two systems were used to 
collect data in five additional locations. In particular, two homes and three different 
office spaces were used, where a total of 10 subjects were asked to perform the same 
set of exercises as during the laboratory evaluation. The same three subjects who per-
formed the exercises in the laboratory were also among the home test group, to allow 
for a direct comparison of their performance. The spaces were different in dimensions 
and lighting conditions, going from a small office with artificial light to a large living 
room under direct sunlight. All sessions followed the same protocol as for the lab 
evaluation, except for the MBS-based gait analysis and the reference tracking, which 
was not available outside of the lab. At each location, the Kinect was positioned in the 
best position according to the environment and each user was asked to autonomously 
set up the IMU sensors while wearing comfortable fitness clothing and then asked to 
perform the exercises according to precise instructions by the operator.
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