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Abstract 

Background:  The challenges of glycaemic control in critically ill patients have been 
debated for 20 years. While glycaemic control shows benefits inter- and intra-patient 
metabolic variability results in increased hypoglycaemia and glycaemic variability, both 
increasing morbidity and mortality. Hence, current recommendations for glycaemic 
control target higher glycaemic ranges, guided by the fear of harm. Lately, studies have 
proven the ability to provide safe, effective control for lower, normoglycaemic, ranges, 
using model-based computerised methods. Such methods usually identify patient-
specific physiological parameters to personalize titration of insulin and/or nutrition. The 
Stochastic-Targeted (STAR) glycaemic control framework uses patient-specific insulin 
sensitivity and a stochastic model of its future variability to directly account for both 
inter- and intra-patient variability in a risk-based insulin-dosing approach.

Results:  In this study, a more personalized and specific 3D version of the stochastic 
model used in STAR is compared to the current 2D stochastic model, both built using 
kernel-density estimation methods. Fivefold cross validation on 681 retrospective 
patient glycaemic control episodes, totalling over 65,000 h of control, is used to deter-
mine whether the 3D model better captures metabolic variability, and the potential 
gain in glycaemic outcome is assessed using validated virtual trials. Results show that 
the 3D stochastic model has similar forward predictive power, but provides signifi-
cantly tighter, more patient-specific, prediction ranges, showing the 2D model over-
conservative > 70% of the time. Virtual trial results show that overall glycaemic safety 
and performance are similar, but the 3D stochastic model reduced median blood 
glucose levels (6.3 [5.7, 7.0] vs. 6.2 [5.6, 6.9]) with a higher 61% vs. 56% of blood glucose 
within the 4.4–6.5 mmol/L range.

Conclusions:  This improved performance is achieved with higher insulin rates and 
higher carbohydrate intake, but no loss in safety from hypoglycaemia. Thus, the 3D sto-
chastic model developed better characterises patient-specific future insulin sensitivity 
dynamics, resulting in improved simulated glycaemic outcomes and a greater level of 
personalization in control. The results justify inclusion into ongoing clinical use of STAR.
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Background
Stress hyperglycaemia, or abnormal elevated blood glucose (BG) concentrations result-
ing from metabolic stress response to injury, is a common complication in critically ill 
patients, associated with increased morbidity and mortality [1–4]. Glycaemic control 
(GC) using insulin therapy to reduce BG to safer concentrations has shown improved 
outcomes, reducing organ failure, clinical burden, and costs [5–10]. However, other 
studies failed to replicate these results [11–16], showing increased glycaemic variabil-
ity and higher risk of hypoglycaemia, independently associated with severe complica-
tions and death [17–21]. GC has been hard to achieve safely and effectively, often lacking 
patient specificity and failing to account for inter- and intra-patient variability [22], 
showing the critical need for model-based patient-specific GC solutions.

To date, the optimal target band for GC is still being debated [23]. Most intensive care 
units (ICUs) use a higher target band than the normoglycaemic range as a ‘first do not 
harm’ approach, hypoglycaemia being more harmful [17] for the patient than the poten-
tial benefits from GC. However, these standards are based on studies failing to provide 
safe, effective control for all patients when targeting a lower glycaemic band [24]. In fact, 
the association between mortality and glycaemic levels, safety, and variability has been 
shown a function of the control provided and not patient condition [25].

Hence, GC design is the key factor in patient GC outcomes. Failing to achieve safe, 
effective control for all, regardless of the target band, could bias study results and con-
clusions [26, 27]. More recently, new studies showed the possibility to achieve safe GC 
to lower target bands for reduced workload, without increasing hypoglycaemia [28–30]. 
These recent analyses show intensive GC to lower target bands is possible in critically ill 
patients, and emphasise, once again, the importance of safe, effective model-based and 
patient-specific GC protocol design.

Stochastic-TARgeted (STAR) is a validated model-based GC framework, which 
has shown effective control in three different countries [28]. STAR uses a physiologi-
cal model to describe the glucose–insulin dynamics, and a population-based stochastic 
model to directly account for patient-specific future metabolic variability [31]. Patient-
specific insulin sensitivity (SI) key parameter [22, 32], describing patient metabolic 
response to insulin, is identified from clinical data and its future potential variability 
assessed to adjust treatment according to potential risks. This unique patient-specific 
risk-based dosing approach minimizes the risk of hypoglycaemia while providing effec-
tive GC [28, 31].

The quality of control resides in the ability to adapt treatment to patient-specific needs, 
which is a function of the level of difficulty to control [25]. The difficulty to control is 
mainly captured by SI variability [33], where variability extremes can lead to hyper- or 
hypoglycaemia for a given insulin intervention. In STAR, SI is considered constant over 
1-h periods, and the variability is assessed by the hour-to-hour change in SI levels. The 
prediction of future SI evolution is thus a key element for the quality of GC, which needs 
to be well addressed, especially since SI variability is equivalent among patients with dif-
ferent clinical outcomes [25].

STAR predicts future SI evolution using stochastic models [34]. The stochastic model 
in STAR forecasts future SI (SIn+1) distributions based on the current identified SI value 
(SIn). However, the current stochastic models [34–36] are potentially over-conservative 
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due to large prediction bands. Wide prediction bands can limit insulin dosing, result-
ing in lower insulin doses to avoid stochastically forecasted hypoglycaemic risk. Better 
control might be obtained from a more detailed, and thus more personalized stochas-
tic models. This study aims to improve SI variability forecasting using additional data 
information.

Using prior temporal information of SI evolution has shown better prediction accu-
racy [37]. Using such model gives generally tighter prediction bands at a given SI level, 
allowing potentially higher insulin rates for the patient. While encouraging, the method 
in [37] lacks model resolution and definition, making comparison hard with the current 
2D stochastic model used in STAR. This study thus more specifically aims to develop a 
new 3D stochastic model accounting for prior knowledge of SI evolution, using 2 inputs 
(SIn and SIn−1) to determine likely future SIn+1. The added input can provide higher 
patient specificity, allowing more accurate insulin dosage for the patient. More specifi-
cally, a wider future prediction range for SI would suggest higher potential variability; 
thus, lower insulin rates will likely be recommended. In contrast, tighter prediction 
bands would suggest lower variability and thus, potentially higher insulin recommenda-
tion. In this study, the new 3D stochastic model is generated using multivariate kernel-
density estimation method similar to the one used for the current 2D. This will improve 
model resolution. In addition, this study assesses the impact of this new presented 3D 
stochastic model on GC performances, using virtual trial simulations.

Results
2D vs. 3D models forward predictive power

A representation of the kernel-density estimation is shown in Fig. 1. The left panel shows 
the kernel-density surface using the normal data, whereas the right panel shows the ker-
nel-density surface when data are transformed into the log-normal space to meet the 
normal distribution assumption under Silverman’s  rule of thumb (ROT) [38]. Clearly, 
log-normal data provide increased data density for higher SI ranges, where the raw data 
are sparser. Hence, this approach, taken for the first time here, potentially improves 

Fig. 1  Graphical representation of kernel-density estimation using normal data (left) or logarithmic-transformed 
data (right)
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safety by better characterising SI potential variability for higher SI ranges, where the risk 
of experiencing hypoglycaemia due to insulin dosing is greater.

Cross-validation results’ summary of the forward predictive power for both mod-
els is presented in Table 1. In addition, the resulting 5th and 95th percentile predic-
tions for each model are shown in Fig. 2. Both the 2D and 3D models have close to 
50% (~ 53% vs. ~ 51%) and 90% (~ 91% vs. ~ 90%) predictions in the 25th–75th and 
5th–95th percentile ranges, respectively. However, the prediction ranges are gener-
ally narrower (~ 70% of hours) in the case of the 3D model. An example of the evo-
lution of SI for a patient and the 2D and 3D predictions ranges for a specific virtual 
patient is shown in Fig. 3. In addition, the median [IQR] percentage predictions in the 
25th–75th and 5th–95th percentile prediction ranges are closer to the expected 50% 
and 90% for the 3D model, suggesting that the 2D model is too conservative for most 
patients. To characterise the difference in prediction ranges from both models, the 
percentage change in the 5th–95th percentile range widths is computed for every pre-
diction and the median [IQR] of percentage change is reported in Table 1. The high 
prediction performances are achieved with significantly 15.5–24.4% tighter 5th–95th 

Table 1  Fivefold cross-validation results’ summary of forward predictive power and prediction 
range comparison between 2D and 3D stochastic models

Data given as median [IQR] where appropriate

Total predictions 1-hourly 2-hourly 3-hourly
58,539 57,840 57,141

2D model % predictions in 25th–75th 55.9 53.4 52.6

% predictions in 5th–95th 91.4 91.0 91.0

3D model % predictions in 25th–75th 52.6 51.3 51.0

% predictions in 5th–95th 90.5 90.2 90.2

3D vs. 2D model % of tighter predictions using 3D model 73.8 72.8 69.9

% reduction in 5th–95th prediction width 24.4 [17.7 29.4] 17.9 [10.9 20.9] 15.5 [10.8 19.2]

% of wider predictions using 3D model 26.2 27.2 30.1

% increase in 5th–95th prediction width 22.0 [7.5 49.1] 16.4 [7.7 32.0] 14.8 [6.8 28.2]

Fig. 2  Comparison between 5th (left) and 95th (right) percentile predictions of likely future SI for the 2D 
model (green) and the 3D model (blue). The 2D model is constant across SIn-1 whereas the 3D model varies
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percentile prediction range 69.9–73.8% of the time and 14.8–22% wider otherwise. 
The median [IQR] 3D/2D prediction width ratios as a function of the hour-to-hour 
percentage change in of SI (%ΔSI) are shown in Fig. 4, where clearly, prediction bands 
are typically tighter when  %ΔSI is within ± 20%. Overall, the new model thus better 
captures patient-specific differences from this more optimal model.
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Fig. 3  Excerpt of SI evolution (black) and corresponding 2D (blue) and 3D (red) forward prediction ranges for 
specific virtual patient. The 3D model prediction ranges are generally narrower

Fig. 4  Median [IQR] ratio between the 3D and 2D model 5th–95th percentile prediction width as a function 
of the hour-to-hour percentage change in SI (%ΔSI). The cumulative distribution function of  %ΔSI is also 
shown in the blue dashed line
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Virtual trials’ results

Virtual trial results of STAR using the two different stochastic models are summarised 
in Table  2. Overall, both versions of STAR provided similar performance in terms of 
median BG [IQR] (6.3 [5.7, 7.0] vs. 6.2 [5.6, 6.9] mmol/L) and percentage time in the 
4.4–8.0  mmol/L target band (88%). However, the overall   %BG measurements shifted 
toward lower BG ranges using STAR-3D, with significantly higher   %BG within 4.4–
6.5 mmol/L and 4.4–7.0 mmol/L (61% vs. 56% and 75% vs. 72%, p < 0.01 using χ2 statisti-
cal test on proportions of measurements). In terms of safety, both models excel similar 
to only 2% BG < 4.4 mmol/L, 1% BG < 4.0 mmol/L, and 0.03% BG < 2.2 mmol/L, despite 
STAR-3D administering higher median insulin (3.0 [1.5, 5.0] vs. 2.5 [1.5, 4.5] U/h). 
Slightly lower, but similar,  %BG in 8–10 mmol/L (mild hyperglycaemia) for STAR-3D is 
also observed (7% vs. 8%). Finally, STAR-3D provided higher goal feed (97 [36, 100] vs. 
95 [40, 100]  %GF]).

Discussion
One of the key factors making GC difficult is patient variability. The risk-based dosing 
approach used in STAR relies on stochastic forecasting of likely future variation of SI, 
which is used to assess the risks of hyper- and, more importantly, hypo-glycaemia, and 
select appropriate treatment based on this risk. If the 5th–95th percentile in SI predic-
tion range is narrowed, control can be improved using more aggressive insulin dosing 
and/or greater dextrose intake to safely reach the same or lower glycaemic range. On 
the other hand, if the 5th–95th percentile prediction range for the 3D stochastic model 
is widened, it suggests greater potential variability in future SI, leading to less aggressive 
insulin dosing to overcome the higher risk of hypoglycaemia.

The comparison between the 2D and 3D models clearly shows the new model accu-
racy to predict future SI, with 15.5–24.4% tighter prediction range for more than 69.9–
73.8% of the hours (Table  1). Typically, the prediction range is tighter when   %ΔSI is 
within ± 20% (Fig. 4). On the contrary, the prediction range is wider when the variation 

Table 2  Virtual trial results summary for STAR-2D and STAR-3D

STAR-2D STAR-3D

Number of patients 681 681

Hours of control (h) 59,073 59,071

Total BG measurements 31,248 31,858

Workload (measurements per day) 12.7 12.9

Median [IQR] BG (mmol/L) 6.3 [5.7 7.0] 6.2 [5.6 6.9]

% BG in 4.4–6.5 mmol/L 56 61

% BG in 4.4–7.0 mmol/L 72 75

% BG in 4.4–8.0 mmol/L 88 88

% BG in 8.0–10.0 mmol/L 8 7

% BG > 10.0 mmol/L 3 3

% BG < 4.4 mmol/L 2 2

% BG < 4.0 mmol/L 1 1

% BG < 2.2 mmol/L 0.03 0.03

# patients < 2.2 mmol/L 11 (1.6%) 11 (1.6%)

Median [IQR] insulin rate (U/h) 2.5 [1.5 4.5] 3.0 [1.5 5.0]

Median [IQR] dextrose rate (%GF) 95 [40 100] 97 [36 100]
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is larger than ± 20%. This key outcome thus suggests that the previous patient-specific 
metabolic variability has a direct impact on future SI forecasting. More specifically, this 
3D model shows stable patients, with low previous variation in SI, and tends to remain 
stable, whereas more variable patients are more likely to have bigger future metabolic 
variations, as clearly shown in Figs.  2 and 3. Hence, the 2D stochastic model is over-
conservative in terms of insulin intervention for most patients. The 3D approach allows 
STAR to select more aggressive insulin dosing more than 69.9% of the time, while ensur-
ing safety, using the proven risk-based dosing approach. Therefore, the resulting greater 
patient specificity implies better GC with lower glycaemic variability, and improved gly-
caemic outcomes.

Virtual trial results comparing STAR using the 2D and the 3D stochastic models con-
firmed these observations showing higher percentage time in normoglycaemic ranges, 
with 5% more time spent in the 4.4–6.5  mmol/L range, for similar incidence of mild 
hypoglycaemia (BG < 4.4 mmol/L). In addition, the 3D model resulted in more aggressive 
insulin dosing and higher feed rates for similar intervention workload. Higher caloric 
intake is associated with improved outcomes [39–42]. These outcomes confirm the 3D 
stochastic model, using prior information in SI variability, and achieve effective con-
trol for all patients using more aggressive insulin dosing without compromising safety. 
Hence, STAR-3D offers a more patient-specific control, better accounting for either sta-
ble or very variable patients, potentially resulting in improved patient outcomes.

More importantly, the slightly lower median BG using STAR-3D (6.3 [5.7, 7.0] vs. 
6.2 [5.6, 6.9]) was achieved with significantly higher time (61% vs. 56%, p < 0.01 using 
χ2 statistical test on proportions of measurements) in the 4.4–6.5 mmol/L band and in 
the 4.4–7.0 mmol/L band (75% vs. 72%, p < 0.01 using χ2 statistical test on proportions 
of measurements). While the low values for these p values could be influenced by the 
large data set size [43, 44], this difference is also clinically significant, since larger val-
ues in these ranges have been associated with improved outcomes and higher odds of 
living [45–47]. In addition, there was a consistent, high, 88% BG in target band (4.4–
8.0 mmol/L). High percentage time in these ranges has all been associated with improved 
clinical outcomes in multiple independent studies [21, 45–47]. These results, together 
with the minimal risk of hypoglycaemia (< 2%) and severe hyperglycaemia (< 3%), prove 
the STAR framework design to be adapted for GC in critical care, to provide safe, effec-
tive control for all patients, and show GC to lower target ranges to be possible without 
compromising safety.

It is also important to note specific safety benefits of this new model are hard to high-
light. First of all, because hypoglycemia, in STAR, is extremely infrequent, unlike many 
other protocols failing to achieve safe control [12, 15, 48–51]. Hence, the few hours 
where the 3D model enables a gain in potentially very harmful hypoglycemia due to 
highly variable SI is hard to see and overwhelmed in the overall high effectiveness of 
STAR. Thus, we examine improved performance, which is beneficial to patients, with 
equivalent safety.

To further show this, the following cumulative distribution functions of the ratio 
between the 5th–95th percentile range widths of each model when the subsequent 
SI value is within the predicted range and when the prediction is outside this range is 
shown below (Fig. 5). When SI is within the predicted range (~ 90% of hours, Table 1), 
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the 3D model prediction band is tighter > 75% of the time. However, when the subse-
quent SI value is outside the predicted range (~ 10% of the time), the 3D model is 
already > 55% of the time wider than the 2D model. This result suggests that when the 
subsequent SI value is outside the range, the 3D model is generally more conservative 
(with a wider interval predicted) despite SI being outside predicted range. However, 
when the subsequent SI is within the predicted range, it is far narrower. Thus, the 3D 
model is overall safer.

While the difference in the two models shown in Table 1 is quite important, and the 
virtual trials showed higher performance (Table 2), a greater difference in glycaemic out-
comes might have been expected. First, this difference shows how the STAR framework 
is consistent and manages to control patients in a safe manner. Second, the difference in 
SI prediction ranges between these models may not be big enough to change the discre-
tized insulin interventions in STAR, as the controller is limited to 0.5 U/h increments. 
More specifically, in [25], an analysis suggests that a change below 12–15% in SI levels 
can be considered clinically equivalent, limiting some impact on GC recommendations.

STAR treatment selection relies in putting the 5th percentile of predicted BG outcome 
on the lower target band limit. Hence, it mainly uses the 95th percentile of predicted SI. 
Looking deeper at the 95th percentile difference between the 2D and 3D model, there is 
median reduction of ~ 6%, which may not be enough to significantly change the adminis-
tration rate of insulin.

As reflected in these results, using more information to better predict how likely 
patient-specific metabolic conditions will change seems a good approach to improve 
control in the STAR framework. More specifically, using prior state of identified SI val-
ues also allows to suffer less from direct measurement errors or identification errors for 
the future prediction [52]. While one could think to extend this method to more dimen-
sions, the danger would be to over fit the data and/or suffer from low data density. There-
fore, it could result in non-desired behaviour for higher computational costs. However, 
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other parameters could be useful to improve both predictions and GC outcomes. In [53], 
BG data are used as an entry with current SI level to forecast metabolic variability. In 
doing so, not only it potentially can improve control safety and efficacy, but it also allows 
to identify specific behaviour in the data, reflected by the resulting estimated distribu-
tions. In particular, [53] observed typical underestimation of SI changes at lower BG val-
ues and vice versa. Hence, more work could be done to identify possible critical factors 
or parameters allowing to further improve prediction of important changes in metabolic 
variability and SI.

The bi-variate kernel-density estimation method requires much fewer total data to 
create an effective model for use in clinical practice compared to the tri-variate model 
presented. However, the 3D stochastic model demonstrated better performance and 
equivalent safety in this study due to the much higher number data triplets (~ 60,000 
vs. ~ 20,000) available from the larger population data set used in this study than in cre-
ating the 2D stochastic model [34]. In addition, the equivalence across the virtual trial 
fivefold cross -validation results suggests that the stochastic models were created on 
enough data to be robust and that the data used were representative of a general ICU 
population.

The interpretation of these results has some limitations. Virtual trials represent real-
istic glycaemic outcomes in perfect conditions, fully compliant to the protocol [54]. 
Glycaemic outcomes will likely differ at least somewhat in a real clinical environment. 
However, these virtual trials have been validated and shown to well capture the overall 
potential glycaemic outcomes [55, 56]. In addition, compliance to STAR is very high in 
regular clinical use [28, 57].

Conclusions
Tri-variate kernel-density estimation methods are used to build a new 3D stochastic 
model forecasting likely future changes in insulin sensitivity based on its prior 2 states. 
This 3D stochastic model shows similar, high, forward predictive power compared to the 
previous 2D version, but achieved with 15–25% tighter prediction ranges more than 70% 
of the time. This suggests that the 3D stochastic model better predicts future SI dynam-
ics and thus offers greater personalisation of care than the prior 2D model.

Virtual trials using this model showed similar glycaemic control safety and better 
performance based on higher time in the normoglycaemic intermediate ranges (4.4–
6.5 mmol/L and 4.4–7.0 mmol/L), resulting in slightly lower median BG levels for simi-
lar workload. These improvements are due to greater personalisation of care, and were 
achieved using higher insulin rates and slightly higher nutrition rates in cases where pos-
sible and as enabled by the tighter prediction ranges offered in over 70% of interven-
tions. These results suggest that the implementation of this new 3D stochastic model 
within the STAR framework could potentially improve patient clinical outcomes result-
ing from improved glycaemic control.
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Methods
Model‑based insulin sensitivity

The validated Intensive Control Insulin–Nutrition–Glucose physiological (ICING) [58] 
model used in STAR describes the glucose–insulin pharmacokinetics and can be graphi-
cally represented as the 3 compartment model in Fig. 6. It is defined:

where G(t) is the blood glucose concentration (mmol/L), I(t) and Q(t) are the plasma and 
interstitial insulin concentrations (mU/L), P(t) is the glucose appearance in plasma from 
enteral and parenteral dextrose intakes (mmol/min), and SI is the insulin sensitivity (L/
mU/min). Other parameters are listed in Table 3. Clearance rates and constants can be 
found elsewhere [25, 52, 58].

The model-based time-varying SI parameter describes the patient-specific glycaemic 
metabolic response to insulin administration. SI is identified hourly from clinical BG, 
insulin, and nutritional data using integral-based fitting methods [59]. The validity of 
this SI metric is demonstrated in [25] for ICU patients, as well as in several clinical stud-
ies [60–62].

Stochastic modelling

To account for patient-specific metabolic variability, and thus assess unexpected poten-
tial changes in metabolic response to insulin, [34] introduced a probabilistic model pre-
dicting likely future 1–3 hourly change in SI level (SIn+1, SIn+2, SIn+3). These predictions 

(1)Ġ = −pG .G(t)− SI.G(t)
Q(t)

1+ αG .Q(t)
+

P(t)+ EGP− CNS

VG

(2)İ = −nK .I(t)− nL
I(t)

1+ αI .I(t)
− nI (I(t)− Q(t))+

uex(t)

VI
+ (1− xL)

uen(G)

VI

(3)Q̇ = nI (I(t)− Q(t))− nC
Q(t)

1+ αGQ(t)
,

Fig. 6  Schematic representation of the ICING model. Enteral and parenteral nutrition pathways are shown, as 
the endogenous and exogenous insulin contributions
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are only based on current identified patient metabolic condition (SIn). This stochastic 
model was built using a two-dimensional kernel-density estimation method on popula-
tion data, and led to the emergence of the first successful risk-based dosing approach for 
GC [31, 63]. The kernel-density estimation method enables high-resolution behaviour 
estimation of a specific parameter based upon its prior evolution or state, even where 
specific data points may be scarce.

Using the identified SIn, the 2D stochastic model forecasts likely future distribution of 
SIn+1, as graphically represented in Fig. 7. This likely future SI distribution allows predic-
tion of the corresponding likely future BG distribution for a given insulin and nutrition 
intervention using Eqs. 1–3 (Fig. 7). Specifically, the 5th–95th percentile range of likely 
future SI is used to compute the corresponding 5th–95th percentile range of predicted 
future BG outcomes. STAR then adjusts treatments by ensuring the 5th and 95th per-
centiles of future BG lie within the clinically specified target range (4.4–8.0 mmol/L in 
STAR), minimizing the risk of BG < 4.4 mmol/L to 5% [31].

This study extends the bi-variate kernel estimation method to tri-variate. The predic-
tions of future SIn+1, SIn+2, and SIn+3 are thus determined using two inputs to potentially 

Table 3  Parameters of  the  Intensive Control Insulin–Nutrition–Glucose physiological 
model (Eqs. 1–3)

pG Non-insulin-mediated glucose clearance

αG Saturation of insulin-mediated glucose uptake

EGP Endogenous Glucose Production (hepatic)

CNS Glucose uptake by Central Nervous System

VG Glucose distribution volume

nK Kidney clearance of insulin

nL Liver clearance of insulin

αI Saturation of hepatic insulin clearance

nI Insulin diffusion between plasma and interstitium

nC Cellular degradation of internalised insulin

xL Fractional first pass hepatic insulin clearance from portal vein

VI Insulin distribution volume

uex(t) Exogenous insulin

uen(G) Endogenous insulin

Fig. 7  Risk-based dosing approach of the STAR framework. Current patient-specific identified SI is used to 
forecast the likely 5th–95th percentile range of future SI. This range is used to calculate the corresponding 
5th–95th percentile range of likely future BG outcome for given insulin and nutrition inputs
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increase patient-specific variability forecasting, which could also result in better overall 
safety and performance for STAR GC decision making. In particular, this choice of data tri-
plets (SIn−1, SIn) → SIn+1,2,3, add patient specificity to the SIn → SIn+1,2,3 2D model by mak-
ing these distributions a function of prior states. This difference thus includes a greater part 
of the patient-specific evolution, and thus will further characterise patients, creating greater 
personalisation in the GC predictions based on thus enhanced stochastic model. It thus 
assumes that there will be measurable differences in the predicted SIn+1,2,3 distributions by 
this added data, compared to those from the 2D model. Importantly, the 3D approach sig-
nificantly increases the data requirements for model generation, resulting in the use of a 
much larger data set size (~ 60,000 h) compared to the previous studies [34].

From data density to conditional probability

SI in this study can be considered a second-order finite Markov chain, where the current 
state depends only on its two prior states. Therefore, the conditional probability distribu-
tion of the future SIn+1 is a function of SIn and SIn-1 states which can be expressed:

where the right-hand expression is derived from the general product rule. Kernel-density 
methods are used to estimate the joint probability P(SIn+1, SIn, SIn−1) and P(SIn, SIn−1) 
using tri and bi-variate Gaussian kernel-density estimator functions [64]. Therefore, the 
conditional probability of SIn+1 taking a specific value can be calculated using the identi-
fied SIn and SIn-1 values, such that

where Kh(u) denotes the Gaussian kernel-density function Kh(u) = 1√
2πh

e−
1
2

(

u
h

)2

 , cen-

tered on u with variance h, constructed using the available N data points [38, 65]. To 
optimize the approximation of data behaviour, the variance h, or scale factor, is deter-
mined using the general Silverman’s ROT [38, 64], weighted according to local data 
density:

where m is the number of data point within a radius N−1/7 after orthonormalisa-
tion of the data [34], and R is the radius from the origin encompassing Z*N data 
points (0 ≤ Z ≤ 1). This rule assumes that data have an underlying normal distribu-
tion [38]. Non-negativity is ensured by normalizing each Gaussian function to the 
positive defined domain, such that for each (SIn = y, SIn−1 = x) pair, there exists an 
estimated conditional probability function P
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This forces x, y, and z to be ≥ 0, ensuring thus physiological validity of SI values ≥ 0. An 
example of the resulting uni-, bi-, and tri-variate Gaussian kernel-density estimation for 
10 data triplets is shown in Fig. 8.

Patients and cohorts

This study uses clinical data from 606 patients across 3 different clinical trials and ICU 
settings (STAR Christchurch New Zealand 2011–2015, SPRINT Christchurch New Zea-
land 2005–2007, and STAR Gyula Hungary 2011–2015) [9, 28]. These data include 819 
GC episodes and a total of 68,629 h of treatment. A patient can have multiple GC epi-
sodes, generally because:

1.	 Patients’ glycaemia is stabilized, but then several hours later GC is started again due 
to dysglycaemia arising from any potential clinical reason, or

2.	 Patients are sent out of the ICU for clinical procedures (most commonly imaging or 
surgery), where GC is stopped and started again as they return (if necessary).

Overall cohort demographics are shown in Table 4.
From the original 819 episodes, only 681 episodes ≥ 10  h and with initial 

BG ≥ 7  mmol/L are considered (Fig.  9), corresponding to 59,439  h of control. These 
criteria ensure the exclusion of patient data with very short GC episodes, and thus low 
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Fig. 8  Uni-, bi-, and tri-variate kernel-density estimation for 10 data triplets. Dotted green lines show 
Gaussian distributions around each data point, where the standard deviation is a function of data density
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BG measurement numbers, or uncommonly low starting BG values likely less reflective 
of general metabolism dynamics. SI is identified hourly for each patient using integral-
based fitting method and a total of 58,539, 57,840, and 57,141 data triplets (SIn-1, SIn, 
SIn+i) for i = 1, 2, and 3 h forward, respectively, are created.

Validation and comparison analysis

The 2D and 3D stochastic models are built and compared using fivefold cross validation, 
where the resulting training (80%) and testing (20%) sets are believed to be statistically 
representative of the general data set, minimizing bias and variance in the validation 
[66]. Patients are thus randomly divided into 5 equally sized groups, models are built 
using 80% of patient episodes (4/5 groups), and the other 20% of patients (1/5 groups) 
are used for validation. As the Silverman’s ROT for multivariate kernel-density estima-
tion assumes data has a Gaussian distribution [38], and SI has a log-normal distribution, 
the logarithmic domain is chosen here to build the model.

The 25th–75th and 5th–95th percentile ranges are computed for both models. 
Tighter prediction ranges for future SIn+i would suggest likely lower future variability. 
In this case, the future potential variation for a given insulin dose being smaller, STAR 
can provide insulin with greater certainty, and thus potentially more aggressively 
(higher insulin rates) with equal safety. On the other hand, wider prediction bands 
would suggest higher future variability and, thus, more conservative dosing of insu-
lin use to avoid hypoglycaemia. Forward predictive power and model accuracy are 
compared using the percentage of accurate predictions within these two ranges. The 
expected accuracies are 50% and 90%, respectively, where conformation of an inde-
pendent cohort to these expected outcomes would indicate the 3D methods accu-
rately capture SI dynamics to predict future SI.

Table 4  Summary of  patient demographic data. Data are given  as  median [IQR] 
where relevant

SPRINT Christchurch STAR Christchurch STAR Gyula

# episodes 442 330 47

# patients 292 267 47

# hours 39,838 22,523 6268

% male 62.7 65.5 61.7

Age (years) 63 [48, 73] 65 [55, 72] 66 [58, 71]

APACHE II 19.0 [15.0, 24.5] 21.0 [16.0, 25.0] 32.0 [28.0, 36.0]

LOS–ICU (days) 6.2 [2.7, 13.0] 5.7 [2.5, 13.4] 14.0 [8.0, 20.5]

Fig. 9  GC episode selection from the original 606 patients (819 different GC episodes)
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Finally, to assess clinical impact, validated virtual trials on virtual patients are simu-
lated to assess the new models ability to control patients. Such virtual trials enable 
comparison of glycaemic outcomes from different GC designs, on the same underly-
ing patients. In summary, virtual patients are characterised by their identified patient-
specific SI traces generated from clinical data, and can be used to test a range of new 
protocols or technologies [67, 68]. They are well-validated in their independence from 
the data used to create them and their accuracy [56, 69], their ability to predict trial 
outcomes [63, 70] and in clinical use to guide care in STAR [28, 31]. The underlying 
model is also well-validated in insulin sensitivity testing and similar clinical studies 
[60, 71, 72]. These virtual trials have been validated in the previous studies [55, 56], 
and are used here to simulate STAR using either the 2D (STAR-2D) or 3D (STAR-3D) 
stochastic model.

Unlike most GC protocols, STAR has the ability to modulate both insulin and nutri-
tion inputs. Enteral nutrition can be lowered if the maximum allowed insulin is not 
sufficient to decrease BG levels, often occurring for very resistant patients with low SI 
and saturation of insulin-dosing effects. In STAR, insulin is administered as boluses 
up to a maximum of 6 U/h, with an additional 3 U/h continuous infusion for highly 
resistant patients. Enteral nutrition administration can be modulated between 30 
and 100% of the total calorific goal feed (GF) if necessary. The original 100% GF for a 
patient is computed according to the standard 25 kcal/kg/day target adapted based on 
age and sex. Further details are in [28, 42].

Safety and performance, administered insulin, and nutrition delivery are com-
pared from these simulations. BG is resampled hourly, to allow fair comparison 
across the different measurement intervals. Safety is assessed by the %BG in mild 
(%BG ≤ 4.4  mmol/L) and severe (%BG ≤ 2.2  mmol/L) hypoglycaemia and in hyper-
glycaemia (%BG > 8.0  mmol/L and %BG > 10.0  mmol/L). Performance is assessed by 
the %BG in target band (4.4–8.0 mmol/L) and the median [IQR] BG levels achieved. 
Nutrition is reported as the percentage goal feed (%GF) achieved. In addition, work-
load is also compared as the number of BG measurement per day, where a higher 
value indicates increased workload.
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