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Background
Walking and running are commonly used physical activities and rehabilitation therapies; 
they can effectively promote the neuromotor and cardiorespiratory functions [1–4]. 
Because of the convenience and controllability, treadmill exercise has become a com-
mon alternative to over-ground walking or running. It has been widely used in daily 
fitness, clinical rehabilitation, sport biomechanical research, and even astronaut train-
ing in space [5–7]. However, growing researches have reported the differences between 
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treadmill and over-ground exercises. For example, at the same speed, the treadmill run-
ning has smaller step length and knee flexion angle than over-ground running [8, 9], yet 
it requires more metabolic energy [10, 11]. Furthermore, treadmill could provide a stable 
and uniform condition, thus causes less impulse and center of mass excursion. However, 
the vertical ground reaction force (GRF) in treadmill and over-ground running are simi-
lar [12]. The causes of the above phenomena are multifactorial and include the neuro-
modulation strategy and external loading conditions [13–16]. However, the quantitative 
mechanism remains unclear.

The differences in the two walking or running patterns may influence the effect of the 
exercise and could result in negative or positive impact on the physiological system of 
people, especially on patients. Previous study reported that treadmill training can lower 
the energy cost of cerebral palsy gait, thus may enhance functional mobility in cerebral 
palsy patients [17]. Recent study also suggested that the treadmill walking provided a 
more regularized gait than the over-ground one, and could be incorporated into a thera-
peutic protocol for patients with Rett syndrome [18]. However, in patients with stroke 
and lower limb amputations, the energy cost of treadmill exercise is significantly greater 
than that of over-ground exercise [19, 20], which implied that over-ground exercise is 
more beneficial for the rehabilitation of such patients. Understanding the impact of 
walking and running conditions on the spatiotemporal loading distributions in musculo-
skeletal system can provide basis for the assessment of exercise as a therapeutic modality 
and the customization of personalized exercise strategy.

Many scientific researches regarding foot–ground interaction and surface electro-
myography (EMG) have been carried out on treadmill and over-ground exercise. It was 
reported that the vertical GRF of treadmill and over-ground running were similar, while 
the anterior–posterior GRF were different [21, 22]. EMG signals in treadmill and over-
ground running modes were also collected to reflect the modular control of muscle 
activation [23, 24]. These indexes can provide clues for understanding the human body 
kinetics, but they cannot characterize the spatiotemporal loading on musculoskeletal 
system, which directly contributes to the tissue injuries.

This study aimed to compare the differences of lower limb joint angles and muscle 
forces in treadmills and over-ground exercises. The stride frequency was used as the 
control condition. Walking at 100 and 120 steps/min and running at 140 and 160 steps/
min were analyzed. Joint motion was measured with the inertial-based motion capture 
methods and was used to estimate the muscle forces with the inverse dynamic algorithm 
method.

Results
Joint flexion angles in gait cycle

Joint flexion angles of treadmill and over-ground conditions were similar in walking, 
yet different in running (Figs. 1, 2, 3). Compared with the over-ground running, the 
ranges of hip, knee, and ankle motion in treadmill running were smaller, and the peak 
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Fig. 1  Hip flexion angles in treadmill and over-ground exercises. a Hip flexion angles during walking at 100 
and 120 steps/min. b Hip flexion angles during running at 140 and 160 steps/min. c Sagittal motion range of 
hip joint in walking. d Sagittal motion range of hip joint in running

Fig. 2  Knee flexion angles in treadmill and over-ground exercises. a Knee flexion angles during walking at 
100 and 120 steps/min. b Knee flexion angles during running at 140 and 160 steps/min. c Sagittal motion 
range of knee joint in walking. d Sagittal motion range of knee joint in running
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flexion angles occurred later in the gait cycle. In the treadmill running, hip motion 
range increased with the stride frequency, yet knee and ankle motion ranges changed 
slightly. In over-ground running, hip and knee motion ranges increased with the 
stride frequency, yet ankle motion range decreased. In the walk-to-run transition, the 
motion range of hip joint decreased, while the motion range of ankle joint increased, 
particularly in over-ground running. The averages and standard deviations of the joint 
motions in treadmill and over-ground motions at each stride frequency are shown in 
Additional file 1.

Correlation between muscle force and EMG

The timings of the peak muscle forces and the peak EMG signals in the gait cycle are 
shown in Table 1. A significant correlation was found between them (Spearman cor-
relation coefficient was 0.514*, P = 0.03), which provided a validation of the muscle 
force calculation. Furthermore, the ICC (2,k) results of the muscle forces were greater 
than 0.75 (the least ICC(2,k) was 0.94 for Rectus force in the over-ground running at 
140 steps/min), which indicate a desirable repeatability of the methodology.

Muscle forces in gait cycle

In walking, the maximum Gastrocnemius force of treadmill condition was higher than 
that of over-ground, while the maximum forces of Rectus femoris and Vastus were 
lower. In treadmill walking, the maximum forces of Gastrocnemius and Rectus femoris 

Fig. 3  Ankle flexion angles in treadmill and over-ground exercises. a Ankle flexion angles during walking at 
100 and 120 steps/min. b Ankle flexion angles during running at 140 and 160 steps/min. c Sagittal motion 
range of ankle joint in walking. d Sagittal motion range of ankle joint in running
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changed slightly with the stride frequency, while the maximum forces of Soleus and Vas-
tus increased. In over-ground walking, the maximum forces of Gastrocnemius, Rectus 
femoris, Soleus, and Vastus (in the initial contact phase of the gait cycle) increased with 
the stride frequency (Fig. 4).

In running, the maximum Gastrocnemius and Soleus forces in treadmill condition 
were higher than those in over-ground condition. In treadmill running, the maximum 
forces of Gastrocnemius and Soleus increased with the stride frequency, while the maxi-
mum forces of Rectus femoris and Vastus changed slightly. In over-ground running, 
the maximum forces of Gastrocnemius, Soleus, and Vastus increased with the stride 
frequency (Fig. 5).

The averages and standard deviations of the muscle forces in treadmill and over-
ground motions at each stride frequency are shown in Additional file  1. The video of 
inverse dynamic simulation is shown in Additional file 2.

Table 1  The timings of  peak muscle forces and  peak EMG signals in  the  gait cycle [force 
timing % (EMG timing %)]

Stride 
frequency

Gastrocnemius Rectus Soleus Vastus

Treadmill 100 38% (22%) 56% (13%) 49% (23%) 56% (55%)

120 37% (31%) 51% (27%) 47% (32%) 57% (63%)

140 27% (27%) 43% (10%) 22% (28%) 5% (9%)

160 23% (86%) 39% (18%) 21% (36%) 6% (19%)

Over-ground 100 34% (38%) 54% (38%) 44% (38%) 54% (42%)

120 31% (17%) 46% (39%) 38% (17%) 48% (44%)

140 17% (20%) 49% (19%) 17% (19%) 4% (12%)

160 20% (16%) 34% (20%) 20% (16%) 5% (9%)

Fig. 4  Muscle forces in treadmill and over-ground walking at 100 and 120 steps/min
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Discussion
The present study measured the lower limb joint motions in the treadmill and over-
ground exercise with an IMU-based motion capture system. The joint motions of 
treadmill and over-ground conditions were similar in walking, yet different in running. 
Although the conclusions of previous studies are varying, these studies and our research 
have observed that the sagittal motion ranges of lower limb joints during treadmill run-
ning decreased to some extents compared with the over-ground running [22, 25, 26]. 
The effect of the stride frequency on the joint motion was also weaker. It was found that 
the motion range of the hip joint increased with the stride frequency in both treadmill 
walking and running, yet the motion range decreased in the walk-to-run transition; 
whereas the motion range of ankle joint remarkably increased in the walk-to-run tran-
sition, which was in agreement with the previous study [27]. Furthermore, the walk-
to-run transition of ankle motion in treadmill condition was also smaller than that in 
over-ground condition; therefore, in terms of joint kinematics, treadmill exercise can 
provide smoother joint motions.

Previous studies investigated the kinetics of treadmill or over-ground exercises in 
terms of energy consumption, GRF, and surface EMG signals [10, 11, 21, 28]. However, 
these indexes cannot accurately characterize the musculoskeletal loading, which directly 
contributes to tissue injuries. In the present study, muscle forces were calculated with 
the inverse dynamic method, which has been validated in previous studies [29–31]. The 
calculated muscle forces were further validated with the surface EMG signals. Since 
the amplitude of surface EMG does not accurately reflect the muscle force [32, 33], 
the present study compared the timing of peak EMG signal with that of peak muscle 

Fig. 5  Muscle forces in treadmill and over-ground running at 140 and 160 steps/min
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force. A significant Spearman correlation (R = 0.514*, P = 0.03) was found, which pro-
vided the reliability of the muscle force calculation. Furthermore, the ICC (2,k) results 
of the muscle forces were greater than 0.75, which indicate desirable repeatability of the 
methodology.

The muscle forces between treadmill and over-ground exercise were different. Com-
pared with the over-ground walking, Gastrocnemius (knee flexor) force in treadmill 
walking was greater, while the Rectus femoris and Vastus (knee extensor) forces were 
smaller. The result infers a smaller knee extension moment in the treadmill walking 
than in over-ground walking. This phenomenon was consistent with the previous study 
[22]. Since a smaller knee extensor contributes to smaller in situ forces in patellofemoral 
articular surface and anterior cruciate ligament, treadmill walking could be more suit-
able for the rehabilitation of people with knee degeneration and soft tissue injuries.

Compared with the over-ground running, Gastrocnemius and Soleus (plantar flexor) 
forces in treadmill condition were greater. The result infers a greater plantar flexion 
moment in treadmill running than that in over-ground running, which was in agreement 
with the literatures [34, 35]. An explanation is that, to adapt to the constant speed of the 
treadmill, neuromotor system tended to use smaller step length to facilitate the dynamic 
adjustment of muscle force. To maintain the running speed, Gastrocnemius force as the 
main driving force was remarkably increased. The finding implies that treadmill running 
may result in higher loading on plantar flexor, especially on gastrocnemius, which can 
provide basis for rehabilitation therapy customization.

In this study, the stride frequency was used as the control condition to analyze the 
difference between treadmill and over-ground exercises. Previous studies usually used 
given or self-selection speeds as the control condition. However, given the same speed, 
some people feel too fast while some others feel too slow. Subjects’ self-selection speed 
often tends to change, and its individual differences are also great. The stride frequency 
can be seen as the normalization of speed with the step length. Therefore, it can better 
serve as a control condition for gait analysis.

The present study has some limitations. First, an inverse dynamic model of human 
musculoskeletal system was used to investigate the differences between treadmill and 
over-ground exercises. However, the deformation of the bone was not considered, the 
muscles of upper limbs and trunk were not included, and the GRF was estimated with 
the GRF predict program. These factors could lead to an error in the muscle force calcu-
lation. Despite of this, based on the previous studies and the present validation, the trend 
of muscle forces can be evaluated and can provide a basis for the biomechanical study of 
the treadmill and over-ground exercise. Second, this study analyzed the joint motions 
in the sagittal plane; the valgus and rotation of the joints should be investigated in the 
future study, especially in subject of locomotor deficit. Third, the level of training will 
have a significant impact on the muscle response; the type of foot and shoe can influence 
the kinetics of walking and running. These factors should be further investigated and 
could be used as the adjustable parameters to manipulate the effect of exercise.
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Conclusions
This study quantified the differences of lower limb joint angles and muscle forces in 
treadmills and over-ground exercises. The results indicated that the joint motions 
of treadmill and over-ground conditions were similar in walking, yet different in run-
ning. Compared with over-ground running, the joint motion in treadmill running was 
smaller and less affected by stride frequency. In terms of muscle forces, treadmill run-
ning resulted in lower loading on knee extensor, yet higher loading on plantar flexor, 
especially on gastrocnemius. The findings and the methodology can provide the basis for 
rehabilitation therapy customization and sophistic treadmill design.

Methods
Subjects

10 healthy subjects volunteered to participate the study (5 males and 5 females, age 
22.7 ± 1.2, height 1.69 ± 0.18  m, weight 63.7 ± 7.7  kg). Subjects were free from lower 
limb pathology as examined by physical assessment. Every subject had the experience 
in treadmill and over-ground running, yet not a professional runner. The study was 
approved by the Ethics Review Board at Beihang University. Every subject received an 
oral and written explanation of the study and signed an inform consent before perform-
ing the trials.

Motion capture experiment

The kinematical data of the subjects during treadmill and over-ground exercises were 
collected with the inertial-based motion capture system, MyoMotion (Noraxon, Inc., 
Scottsdale, USA). 8 inertial measurement unit (IMU) were attached to the lower tho-
racic, sacrum, thighs, shanks, and feet (Fig. 6). Each IMU consist of a three-dimensional 
accelerometer, gyroscope, and magnetometer, which was used to record the acceleration 
and rotation of the body segments and to calculate the flexion angles of hip, knee, ankle 
joints. Meanwhile, the surface EMG signals of lower limb muscles were measured with 
the wireless EMG recording system, MyoMuscle (Noraxon, Inc., Scottsdale, USA). EMG 
sensors were attached on the belly of four muscles: Gastrocnemius, Rectus femoris, 
Soleus, and Vastus. The IMU and EMG information was transmitted to the computer 
wirelessly. Based on the literature and pre-experiments, the stride frequency usually 
ranged from 103 to 122 steps/min in walking, and 132 to 182 steps/min in running [36–
38]. To investigate the effect of stride frequency on walking, running, as well as walk-
to-run transition, subjects were required to walk on the treadmill and ground with the 
frequencies of 100 and 120 steps/min, and run at 140 and 160 steps/min. A metronome 
App (Wuhan Net Power Technology Co., Ltd) was used to control the stride frequency. 
In the treadmill exercise, the kinematical data were recorded after the subject adapted 
to the stride frequency for 30 s. In the over-ground exercise, the subjects were required 
to walk or run straightly. The data were recorded after subject adapted to the stride fre-
quency for 15 m. For each trial, 10 stable full gait cycles were extracted for further analy-
sis. A gait cycle was defined as the period between two adjacent left foot heel-strikes. 
Each subject was measured for 3 times, with 5-min intervals. To eliminate the side effect 
of shoe type, subjects were required to wear the same type of sneakers with proper sizes.
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Inverse dynamic calculation of muscle force

The lower limb muscle forces were calculated with the inverse dynamic software, Any-
body (AnyBody Technology, Aalborg, Denmark). A musculoskeletal model of human 
body was developed (Fig.  7). Since this study focused on the lower limb kinetics, the 
muscles of upper limbs and trunk were not included. Hip, knee, and ankle joints and 
318 muscles were included in the lower limb model. The weight, height, lengths of thigh, 
shank, and foot, and the width of pelvis of each model were modified according to the 
corresponding subject. The joint flexion angles and body motion collected from motion 
capture experiment were used to drive the inverse dynamic model. A validated GRF pre-
dict program was applied to estimate the GRF during running [31].

Data process and validation

The muscle forces were normalized with the body weight. The average of the normalized 
muscle forces throughout the full gait cycle was calculated. A two-way random aver-
age measure intra-class correlation coefficient (ICC (2,k)) was calculated to estimate 
the repeatability of the methodology. ICC (2,k) greater than 0.75 indicates a desirable 
repeatability. The forces of the muscles calculated with the inverse dynamic model were 
validated with the EMG of the muscles. The Spearman correlation is a non-parametric 
test for the measurement of two variables’ correlation. Compared with the Pearson cor-
relation, Spearman correlation does not carry any assumptions about the distribution of 
the data. The Spearman correlation between the peak EMG signal timing and the peak 

Fig. 6  Motion capture experiment in treadmill walking. The IMU and EMG sensors were attached on the 
subject’s body. The data was transmitted to the computer wirelessly
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muscle force timing in the gait cycle was calculated. A correlation coefficient different 
from 0 and a significant level (P value) < 0.05 indicate a considerable correlation. Statis-
tical software SPSS (IMB, US) was used for the data analysis. Then, the effect of exer-
cise conditions (treadmill and over-ground) and the stride frequency on the joint flexion 
angles and lower limb muscle forces were analyzed.

Additional files

Additional file 1. The averages and standard deviations of the joint flexion and muscle forces in treadmill and over-
ground motions at each stride frequency.

Additional file 2. Video of inverse dynamic simulation.

Fig. 7  Inverse dynamic model of musculoskeletal system. Hip, knee, and ankle joints and 318 muscles were 
included in the lower limb part. The muscles of upper limbs and trunk were not included

https://doi.org/10.1186/s12938-019-0708-4
https://doi.org/10.1186/s12938-019-0708-4
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