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Abstract 

Background:  Hemodialysis mainly relies on the “artificial kidney,” which plays a very 
important role in temporarily or permanently substituting for the kidney to carry out 
the exchange of waste and discharge of water. Nevertheless, a previous study on the 
artificial kidney has paid little attention to the optimization of factors and levels for 
reducing the solidification of the artificial kidney during the hemodialysis procedure. 
Thus, this study proposes an integrated model that uses the Taguchi method, omega 
formula, and back-propagation network to determine the optimal factors and levels for 
addressing this issue.

Methods:  First, we collected the recommendations of medical doctors and nursing 
staff through a small group discussion, and used the Taguchi method to analyze the 
key factors at different levels. Next, the omega formula was used to convert the analysis 
results from the Taguchi method to assess the defect rate. Finally, we utilized back-
propagation network algorithms to predict the optimal factors and levels for artificial 
kidney solidification, in order to confirm that the key factors and levels identified can 
effectively improve the solidification rate of the artificial kidney and thereby enhance 
the effect of hemodialysis.

Results:  The research finding proposes the following as the optimal factors and levels 
for artificial kidney solidification: the amount of anticoagulation should be set at 500 
units, the velocity of blood flow at 300 ml/min, the dehydration volume at 2.5 kg, and 
the vascular access type as autologous blood vessels. We obtained 270 sets of data 
from the patients of End Stage Renal Disease (ESRD) under the setting of the optimal 
combination of the factors at different levels; the defect rate of artificial kidney solidifi‑
cation is 12.9%, which is better than the defect rate of 32% in the original experiment. 
Meanwhile, the patient characteristics for physiological status in BMI, serum calcium, 
hematocrit, ferritin, and transferrin saturation percentage are improved by this study.

Conclusion:  This conclusion validates the ability of the proposed model in this study 
to improve the solidification rate of the artificial kidney, thereby confirming the model’s 
use as a standard operation procedure in the hemodialysis experiment. The ideas 
behind and the implications of the proposed model are further discussed in this study.

Keywords:  Hemodialysis, Artificial kidney solidification, Taguchi method, Omega 
transformation, Artificial neural network, Back-propagation network analysis
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Background
Kidney disease is a type of chronic disease. According to the Department of Health, 
the Executive Yuan, kidney disease was the fifth leading cause of death in Taiwan in 
2014. Once the renal function has progressed to the uremic stage, the patient needs 
to rely on an artificial kidney to carry out hemodialysis treatment for the rest of his/
her life or undergo a kidney transplantation in order to survive [1]. Currently, there 
are more than 230,000 hemodialysis patients in Taiwan (in 2014 statistics). The hemo-
dialysis treatment is carried out by an artificial kidney, the functions of which include 
the discharge of dissolved uremic toxins and water. Thus, the dialyzer plays a very 
important role in the process of hemodialysis [2].

In the past few years, the medical industry has become increasingly competitive. 
With the rise in consumer consciousness, it has become even more imperative for 
all hospitals to enhance the quality of medical services and patient satisfaction. In 
terms of the current medical sector, quality management and other methods are most 
commonly used to solve the issues related to medical service quality and process. For 
example, Shen et  al. [3] and Lin et  al. [4] discussed the use of a quality control cir-
cle to approach issues related to the effective enhancement of the workflow efficiency 
and cost reduction of clinical hemodialysis. Matías-Guiu et al. [5] used the Kano two-
dimensional model to determine the important factors of seeking medical treatment, 
such as the quality perception of and patient satisfaction from the hemodialysis medi-
cal service. In addition, Rezapour et al. [6] and Kusiak et al. [7] applied the data min-
ing method to the treatment records of hemodialysis patients to forecast the patients’ 
survival rates, with the aim of providing the optimal medication plan and lowering 
the patients’ expenses.

Although these studies and their proposed methods all help to enhance the qual-
ity of medical services, there remains a lack of research on the factors that affect the 
solidification rate of an artificial kidney. As a result, professional doctors and nurs-
ing staff might not know how to apply scientific methods to choose key factors when 
they implement hemodialysis in an experiment. In practice, in most cases, the experi-
mentation of the parameters for artificial kidney solidification relies on the subjective 
experiences of individual doctors and nurses, which results in substantial differences 
in the solidification rate of an artificial kidney, and hence the reduction of patient 
survival rates [8]. They needed an establishment of optimal factors and levels by a sci-
entific method for reducing the artificial kidney solidification rate.

Thus, in order to solve the questions relating to the solidification rate of an artificial 
kidney, this study proposes the use of a model that integrates the Taguchi method, 
omega transformation, and back-propagation network to determine the key factors 
and levels for conducting hemodialysis with an artificial kidney.

Purposes of the study

This study conducted a case study on the setting parameters currently used by a hos-
pital’s dialysis unit when implementing hemodialysis with an artificial kidney. Data 
on artificial kidney solidification collected by a certain hospital’s dialysis unit were 
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analyzed, and through a small group discussion method, the experiences of the pro-
fessional nursing staff and doctors in the dialysis unit were systematically collected, 
in order to facilitate the formulation of the important factors of artificial kidney 
solidification.

The study process mainly consists of the application of the Taguchi method and omega 
transformation to analyze the optimal parameter design for artificial kidney solidifica-
tion; a confirmation experiment to confirm whether the artificial kidney solidification 
rate is decreased; and finally, the back-propagation network verification to verify the 
convergence of the results. The analysis results can be used as a reference for the estab-
lishment and development of competition strategies by players in the medical industry. 
The purposes of this study are as follows:

•	 Find out the optimal factors and levels affecting the artificial kidney solidification 
rate during the hemodialysis experiment by proposing an integrated model.

•	 Provide combinations of key factors and levels of the operational procedure by 
reviewing and analyzing previous literature and doctors’ professional experiences as 
well as applying the Taguchi experimental method and back-propagation network to 
decrease artificial kidney solidification, which has implications for medical institu-
tions when conducting hemodialysis.

•	 Develop an optimal experiment process based on the Taguchi method and obtain 
the optimal model for further analysis through the omega transformation to prevent 
the artificial kidney from solidifying and to reduce the consumption of the artificial 
kidney.

Literature review
Based on the aforementioned research background and purposes, this study mainly 
seeks to propose an integrated model using the Taguchi method and to discuss further 
the issues related to the decrease of the artificial kidney solidification rate. Thus, in this 
section, we will introduce the issues related to hemodialysis and its implementation pro-
cedures, and artificial kidney solidification.

Hemodialysis

Hemodialysis is the American approach of treating end-stage renal disease. In the past 
decade, patients who voluntarily chose the hemodialysis treatment were mostly older 
patients, diabetic patients, patients with more concurrent symptoms, and patients with 
artery stiffening cardiovascular disease [9].

Long-term dialysis can be divided into hemodialysis and peritoneal dialysis. Concern-
ing the distribution of these two types of dialysis methods, hemodialysis is currently 
the main treatment method: over 90% of end-stage renal disease patients use hemodi-
alysis, while the remaining 10% of patients use peritoneal dialysis [9, 10]. According to 
the Annual Report by Taiwan Society of Nephrology, up until the end of 2005, 90% of 
patients received hemodialysis treatment in Taiwan [11]. Hemodialysis is the treatment 
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process that uses patients’ blood for extracorporeal circulation, thereby improving elec-
trolyte and abnormal pH imbalance and helping patients with uremic symptoms. Hemo-
dialysis is mainly used to treat chronic and acute renal function failure management, 
which is generally difficult to treat with traditional medicine [12].

Hemodialysis procedures

When performing hemodialysis, the nursing staff inserts two needles into the patient 
(see Fig. 1). The first needle is used to drain blood out of the patient. The hemodialy-
sis machine is then used to bring the blood to the artificial kidney via the artery ves-
sel passage, and the blood is then cleansed through the artificial kidney. There are tens 
of thousands of hollow fiber tubes, the material of which consists of a semi-permeable 
membrane with tiny holes. These substitute for the patient’s kidney through the prin-
ciple of diffusion. The blood will first fill up each fiber tube within the artificial kidney 
and then move from one end to the other end. Next, the clean dialysis solution will be 
injected into the other end of the artificial kidney and then fill up the peripheral of all 
fiber tubes. The blood and the dialysis solution thus exchange materials through the 
semi-permeable membrane, taking advantage of the principle of osmosis. The metabolic 
wastes in the blood will diffuse to the clean dialysis solution, thereby achieving the pur-
pose of blood purification [13]. The other needle is used to allow the purified blood to 
flow back to the patient’s body through the artery vessel passage. Repeating the above 
cycle and the overall hemodialysis treatment takes about 4–5 h to complete [14].

Fig. 1  Hemodialysis procedures
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Factors affecting the quality of hemodialysis

There are many important factors that affect the medical effect of hemodialysis. After a 
review and analysis of the previous literature, this study has discovered that the factors 
can be divided into four dimensions, such as patient demographic factors, patient health 
and physiological factors, and medical care factors [15, 16]. The details are as follows:

•	 Patient demographic factors: patient’s gender, patient’s age, and residence.
•	 Patient health factors: primary disease, status of blood pressure, blurred vision/blind-

ness, physical disorder, unconsciousness, discomfort or lack of discomfort during the 
dialysis process, and previous medical history.

•	 Patient physiological factors: Body Mass Index (BMI), serum calcium, hematocrit, fer-
ritin, and transferrin saturation percentage.

•	 Medical care factors: the amount of anticoagulation, the vascular access type, the size 
of the membrane in the artificial kidney, the material characteristics of the fiber in the 
artificial kidney, the dehydration ratio of the artificial kidney, the size of the blood flow 
provided by the “dialysis duct” or “arteriovenous fistula,” the velocity of flow of the dialy-
sis solution, the time needed for hemodialysis, the hourly dehydration rate set by the 
dialysis machine, the length of time of using the patient’s artery vessel, and the tempera-
ture set by the dialysis machine.

Solidification of the artificial kidney

Factors affecting artificial kidney solidification

After the blood is in contact with air, the protein will adhere to the pipeline, after which the 
platelets will accumulate continually. This is one of the main causes of the solidification of 
the artificial kidney during the hemodialysis procedure. Clinically, common causes of the 
solidification of the artificial kidney include insufficient blood flow in the arteriovenous fis-
tula, an excessively high hematocrit value, and the presence of air in the artificial kidney or 
blood transfusion through the duct loop [13, 14].

Impacts of the solidification of the artificial kidney

Clinically, the artificial kidney solidification rate is about 1%. When the anticoagula-
tion is insufficient or the technical operation is improper, the artificial kidney solidifi-
cation ratio can be as high as 14% or above. During the hemodialysis treatment, both 
the artificial kidney and the pipelines should be observed at all times to see if there is 
any blood coagulation, especially in patients undergoing hemodialysis procedures with-
out any anticoagulation [17, 18]. In addition to the waste of material costs (NTD 1885/
unit) and the disposal costs of the derived medical waste, artificial kidney solidification 
interrupts the hemodialysis and affects the dialysis purification rate. When the blood 
remains in the pipeline or the artificial kidney, it can cause a loss of blood of up to 
200 CC–240 CC in patients as well as clinical symptoms such as dizziness, drowsiness, 
palpitation during activities, and severe anemia. These effects can lead to concern and 
complaints from the patients and their family members, which in turn creates distrust 
toward medical care and questions about the quality and safety of dialysis procedures. 
Therefore, an effective reduction of the artificial kidney solidification rate leads to not 
only the reduction of related material costs and the disposal costs of the derived dialysis 
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waste but also the enhancement of the survival rate of patients undergoing hemodialy-
sis procedures [8, 14].

The proposed model and research method
This section focuses on the research model proposed by this study and its relevant the-
oretical methods: the Taguchi method, omega transformation, and back-propagation 
network. First, this study will analyze the optimal factors and levels for artificial kidney 
solidification and propose an integrated model, as shown in Fig. 2.

We used a small group discussion method to systematically gather professional rec-
ommendations from doctors and nursing staff. We then extracted the important fac-
tors affecting artificial kidney solidification and used the Taguchi method to design 
the artificial kidney solidification experiment in order to identify the optimal com-
bination of factors and levels. Next, the omega formulation was used to conduct the 
omega transformation of the Taguchi analysis results, leading to a confirmation of the 
defect rate. Finally, this study used the back-propagation network method to assess 
the analysis results from the Taguchi experiment. The operational steps of the pro-
posed model are as follows:

1.	 Small group discussion: extract the important key factors and levels of artificial kid-
ney solidification from professional doctors and nursing staff via a group discussion.

2.	 Taguchi method: identify the quality characteristics of the artificial kidneys, establish 
the Taguchi orthogonal array experiment, and analyze the factor and level effects to 
obtain the optimal combination of factors and levels.

3.	 Omega transformation: transform the binary data (good quality or defective quality) 
generated by the proposed optimal combination of factors and levels into dB (the 
unit of the Signal-to-Noise ratio) to estimate the defect rate.

4.	 Artificial neural network: utilize the back-propagation network to predict whether the 
proposed combination of optimal factors and levels is stable with low margins of error.

Fig. 2  The proposed integrated model
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5.	 Confirm the analysis: conduct an actual hemodialysis procedure to confirm whether 
the proposed optimal factors and levels have good-quality reproducibility in the 
hemodialysis experiment.

The Taguchi method

The Taguchi Method is a quality-control engineering design proposed by Dr. Genichi 
Taguchi in the 1950s and early 1960s. It is also known as the Taguchi quality engineer-
ing or Taguchi experimental design method. As it is quite similar to the construction 
method, it is also called a robust design. Its main purpose is to provide innovative and 
efficient construction technology in terms of quality design to improve productivity. The 
Taguchi method determines design parameters by means of “experiments,” the definition 
of which is broad here, as it can be experiments in a laboratory, experiments within a 
factory production line, or a computer simulation experiment [19]. The Taguchi method 
offers a set of the scientific experimental procedures which help the researcher to sys-
tematically establish optimizing experimental factors and levels and to achieve a reliable 
estimated value of factors in fewer experiments. It can improve the solidification of the 
artificial kidney during the hemodialysis procedure.

Parameter design

The parameter design takes advantage of experiments to determine the combination of 
the controlling factor and level; it is one of the many quality control methods proposed 
by Taguchi, and it has achieved the greatest contribution in terms of enhancing qual-
ity [20, 21]. The design takes advantage of the principle of the orthogonal array, using 
fewer experiments and a simple configuration of the experiment by reducing the sensi-
tivity of the system to the noise factor. This enhances the robustness of the system and 
demonstrates the reproducibility of the experiment result. Hence, once the quality of the 
product or the production process is improved, a similar result will continue to appear 
in future productions. This method was later widely used in various other industries. 
With the parameter design, we can identify a set of the optimal parameter combination, 
so that the average value of the quality characteristics is consistent with the target value, 
and the variation is kept to a minimum. The parameter design is a kind of technology 
improvement rather than a type of scientific research, and is currently one of the best 
methods to improve product quality in the industry.

In the parameter design, the nonlinear and linear relationships between the controlling 
factors and the noise factors are used. First, the variation is reduced by taking advantage 
of the nonlinear relationship. Next, the average value of the characteristics is adjusted to 
the target value by taking advantage of the linear relationship. By changing the standard 
of the factors, the variation of the quality characteristics is significantly reduced, thereby 
reducing the improvement costs and enhancing the quality of the product.

Orthogonal array

In the full factorial design, when the number of factors increases, the number of experi-
ments increases rapidly. Through the experiments arranged by the orthogonal array, 
we can acquire a reliable estimated value of factors with fewer experiments. Thus, the 
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orthogonal array is an important technique to use to conduct experiments of a robust 
design. In consideration of the stability and cost factor of products, the orthogonal array 
is an important tool for engineers when they conduct the assessment of product and 
production process designs. The orthogonal array symbols and the meanings they repre-
sent are shown in Fig. 3 [20, 21].

Neural network

The neural network is a science that uses computers to simulate the neural structure of 
animals and the neural cell network of humans by creating parallel computing patterns. 
Accumulative experience is acquired from past environmental messages and converted 
into knowledge to be stored. An intelligent computing procedure is then established to 
take advantage of the stored knowledge. It is an important branch of artificial intelli-
gence and can be used for follow-up prediction or identification purposes. People are 
gradually beginning to understand the thinking patterns and learning patterns of the 
brain, so questions are solved by taking advantage of the computer’s computing power 
[22].

Back‑propagation network

The input layers of the neurons are used to import external messages, the output layers 
of the neurons are used to export internal messages, and the hidden layers are used to 
process the interactions among neurons [23].

More specifically, input layers are used to represent the input variables of the network, 
and the number of processing units depends on the characteristics of a given question. 
The input variables of this study were established as the important factors derived from 
the Taguchi method analysis, including the amount of anticoagulation, the velocity of 
blood flow, the dehydration volume, and the vascular access type. These four parameters 
were used as the input variables of the back-propagation network.

Hidden layers represent the interactions among the input processing units, and there 
are no standard rules to determine the number of processing units. The optimal number 
is usually determined by the experimental method, and the nonlinear functions are used. 
The network could lack hidden layers or include more than one hidden layer.

Output layers present the output variables of the network, and the number of pro-
cessing units also depends on the question. The nonlinear conversion functions are still 
used. The output variable in this experiment was established as the data of artificial kid-
ney solidification.

Fig. 3  Basic introduction of the orthogonal array
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Hidden‑layer parameter setting

When the back-propagation network method is used, the optimal number is mostly 
determined through the experimental method, and the back-propagation network 
allows the hidden layer to be set as zero or multiple. This study mainly calculated the 
setting of the number of hidden layers through the conversion functions. When good 
convergence is desired, there must be one to two hidden layers. Based on the discus-
sion of a previous study, general questions only need one hidden layer for the research 
to be conducted. The number of neurons can determine the level of questions, such as 
simple questions, general questions, or difficult questions.

•	 Simple questions = average method: (the number of input-layer processing 
units + the number of output-layer processing units)/2 = 3.

•	 General questions = summation method: (the number of input-layer processing 
units + the number of output-layer processing units) = 5.

•	 Difficult questions: doubling method: (the number of input-layer processing 
units + the number of output-layer processing units) × 2 = 10.

In this experiment, as there were four input units and one output-layer process-
ing unit; the sum was 5, rendering it a general question. Based on the discussion of a 
previous study, the hidden layer was set as one layer. In addition, this study used the 
back-propagation network to predict the combination of optimal factors and levels 
for achieving stable results due to the network’s following advantages: (i) compared 
with the traditional statistical modeling method, which is limited by many assump-
tions, its range of application is wide; (ii) it can handle complicated sample identifica-
tion problems; (iii) it can handle highly nonlinear functions; (iv) its response speed 
is fast; and (v) it allows different kinds of variables to be used as input variables [22].

Case study
Selecting the quality characteristics

In this study with repeatedly used artificial kidneys as the research object, the pro-
posed integrated model was used to improve the coagulation ratio of the artificial kid-
neys. We adopted the count value as the quality characteristics. The artificial kidney 
capacity detection equipment was utilized to identify whether the usable volume in 
the artificial kidney was too low (see Fig. 4), and distinguish a good or defective qual-
ity of the artificial kidneys coagulation.

The undesirable condition of the solidification of artificial kidneys was defined as 
follows: when 20% of the artificial kidney contains blood clots, the artificial kidney is 
regarded as having a defective quality, which means that the repeated-use fill volume 
is insufficient. In contrast, when blood clots take up less than 20% of the artificial 
kidney, the artificial kidney is regarded as having a good quality. Depending on the 
degree of impact on their quality, the artificial kidneys are divided into having a good 
or defective quality [1, 15], as shown in Fig. 5.

In this study, we used the international standards of the repeated-use fill volumes of 
artificial kidneys, as shown in Table 1. The standards list six types and repeated-use 
fill volumes, the most commonly used of which include F-100, F-80, FX-100, FX-80, 
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FX-80M, and FX-60M. These are regarded as references for confirming good and 
defective qualities in repeatedly used artificial kidneys.

For example, we used the “artificial kidney capacity” detection equipment to confirm 
whether the usable volume in the F-100 artificial kidney was too low. According to the artifi-
cial kidney solidification rate detection, if 80% of the remaining content volume is usable (or 
the volume is greater than 106 cc), if the volume achieves or exceeds the standards shown in 
Table 1, then it is qualified. To enhance the rigorousness of the research results, this study 

Fig. 4  Artificial kidney capacity detection

Good Quality
(clean artificial kidney)

Defective Quality
(artificial kidney containing blood clots)

fig. 5  Good and defective artificial kidneys

Table 1  International standards of the repeated-use fill volumes of artificial kidneys

Volume units are in CC

Type of artificial kidney F-100 F-80 FX-100 FX-80 FX-80M FX-60M

100% volume (original) 132 110 106 88 95 74

80% volume (repeated use) 106 88 85 70 76 59
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conducted the artificial kidney solidification volume experiment entirely in accordance with 
the international standards of the repeated-use fill volumes of artificial kidneys.

The selection of factors and levels

The small group discussion method and cause-and-effect charts were conventionally 
used to conduct the selection of key factors, and then the Taguchi method was applied 
to identify key factors in order to avoid the negligence and blind points within the inves-
tigators’ personal consciousness. Nevertheless, there are too many factors and parame-
ter levels involved in the coagulation of a hemodialyzer; processing them via the Taguchi 
methods would consume substantial time and costs. Some of the previous literature 
have not controlled for the factors of coagulation. Further, some are not fit for alteration, 
which might produce biased experimental outcomes. Thus, this study used Konduk and 
Ucisik [24] and Singh et al. [25] suggestions to integrate the opinions of the profession-
als to exclude the aforementioned factors and applied the Taguchi experimental designs 
to the remaining factors. In the end, the authors discussed with the professional doctors 
and nursing staff to obtain four factors and three levels as shown in Table 2.

Orthogonal array experiment configuration and analysis

In this study, we also utilized three experiment levels for each of the four factors selected. 
As the total degree of freedom (df) of this experiment is 8, we chose the L9 (34) orthogo-
nal array to conduct the experiment by arranging factors A, B, C, and D with rows 1, 2, 3, 
and 4, as shown in Table 3.

Table 2  Factors at different levels

Dehydration is usually used in intervals in clinical practice

Name of factors Parameter levels

1 2 3

Amount of anticoagulation (units) 500 1000 1500

Velocity of blood flow (ml/min) 200 250 300

Dehydration volume (kg) 1.5 2.5 3.5

Vascular access type Artificial blood vessel Autologous blood 
vessel

Temporary duct

Table 3  The L9 (34) orthogonal array

A B C D

1 1 1 1

1 2 2 2

1 3 3 3

2 1 2 3

2 2 3 1

2 3 1 2

3 1 3 2

3 2 1 3

3 3 2 1



Page 12 of 23Shie et al. BioMed Eng OnLine           (2019) 18:78 

Data collection

In this study, we adopted the international standards of the repeated-use fill volumes of 
artificial kidneys (see Table 1). The quality of hemodialysis was divided into two catego-
ries: when 20% of the artificial kidney is solidified (or when the fill volume is less than 
80%), the kidney is considered to be of a defective quality; when the solidification is less 
than 20% (or when the fill volume is 80% or more), the kidney is considered to be of a 
good quality. We applied L9 (34) to the experiment. We conducted 30 trials consisting 
of each combination of the four factors at three levels in the hemodialysis procedure. 
Meanwhile, the experimental study was conducted in accordance with guidelines pro-
posed by the Basic & Clinical Pharmacology & Toxicology (BCPT) policy for experimen-
tal and clinical studies [26]. The data collection process suggested by Fayed et al. [9] was 
applied in this study, the data collection aimed at the patient of the End Stage Renal Dis-
ease (ESRD) receiving the regular hemodialysis treatment (note: hemodialysis of two to 
three times within a week) for at least 3 months. The patients selected were diagnosed by 
the doctors as patients of end-stage renal disease, and they need intensive care service. 
Thus, we obtained 270 sets of data from the patients who have experienced the experi-
ment. The defect rate is 32%, and the experimental data records are shown in Table 4.

The patient characteristics for health status are summarized in Table  5, regarding 
residence types, gender, age, primary disease, unstable blood pressure, blurred vision/
blindness, physical disorder, and unconsciousness. Of the 270 sets, patient characteris-
tics were obtained in the research sample: 35.1% lived downtown (n = 95), 55.6% lived 
rural area (n = 150), and 9.3% lived fishing village (n = 25). Approximately 46.9% of the 
patients (n = 127) were male, and 53.1% (n = 143) were female. In terms of the age of 
the patients, 17.9% (n = 48) were less than 50-year old, 33.2% (n = 90) were within the 
range of 51- to 64-year old, 20.6% (n = 56) were within the range of 65- to 74-year old, 
and 28.3% (n = 76) were 75-year old and above. In terms of the primary disease of the 
patient, 62.1% (n = 168) were chronic glomerulonephritis, and 36.9% (n = 100) were dia-
betes. In terms of unstable blood pressure of the patient, 41.10% (n = 111) had unsta-
ble blood pressure, and 58.90% (n = 159) had stable blood pressure. In terms of blurred 
vision/blindness of the patient, 28.30% (n = 76) had blurred vision/blindness, and 71.70% 
(n = 194) did not have blurred vision/blindness. In terms of physical disorder of the 
patient, 13.7% (n = 37) were physical disorder, and 86.3% (n = 233) were no physical 

Table 4  Experimental data

Experiment no. A B C D Defective 
quality

Good quality Detection 
sample

1 1 1 1 1 7 23 30

2 1 2 2 2 6 24 30

3 1 3 3 3 10 20 30

4 2 1 2 3 10 20 30

5 2 2 3 1 16 14 30

6 2 3 1 2 9 21 30

7 3 1 3 2 11 19 30

8 3 2 1 3 12 18 30

9 3 3 2 1 5 25 30

Total 86 184 270
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disorder. Of the patient, 1.90% (n = 5) were unconsciousness, and 98.10% (n = 265) were 
clear consciousness.

The patient characteristics for physiological status are summarized in Table 6, regard-
ing Body Mass Index (BMI), serum calcium, hematocrit, ferritin, and transferrin satura-
tion percentage. Of the 270 patients, 24.4% (n = 39) were low BMI less than 18 kg/m2, 
34.5% (n = 174) were normal BMI within the range of 18–24 kg/m2, and 41.1% (n = 57) 

Table 5  The patient characteristics’ (n = 270) analysis for health status

Characteristics Variables Sample size Percentage

Residence types Downtown 95 35.1

Rural area 150 55.6

Fishing village 25 9.3

Gender Male 127 46.9

Female 143 53.1

Age Less than 50 years old 48 17.9

51–64 years old 90 33.2

65–74 years old 56 20.6

75 years old and above 76 28.3

Primary disease Chronic glomerulonephritis 168 62.1

Diabetes 100 36.9

Others 2 1.0

Unstable blood pressure Yes 111 41.10

No 159 58.90

Blurred vision/blindness Yes 76 28.30

No 194 71.70

Physical disorder Yes 37 13.70

No 233 86.30

Unconsciousness Yes 5 1.90

No 265 98.10

Table 6  The patient characteristics’ (N = 270) analysis for physiological status

Characteristics Variables Sample size Percentage

Body Mass Index (BMI) < 18 kg/m2 (low) 39 24.4

18–24 kg/m2 (normal) 174 34.5

> 24 kg/m2 (high) 57 41.1

Serum calcium < 8.5 mg/dl (low) 12 14.6

8.5–10.5 mg/dl (normal) 187 49.2

> 10.5 mg/dl (high) 71 36.2

Hematocrit < 25% (low) 18 6.5

25–30% (normal) 54 20.1

> 30% (high) 198 73.4

Ferritin < 300 mg/dl (low) 65 23.9

300–800 mg/dl (normal) 178 65.9

> 800 mg/dl (high) 27 10.2

Transferrin saturation percentage < 20% (low) 48 27.8

> 20% (normal) 222 72.2
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were high BMI greater than 24 kg/m2. In terms of serum calcium of the patient, 14.6% 
(n = 12) were low level less than 8.5  mg/dl, 49.2% (n = 187) were normal level within 
the range of 8.5–10.5 mg/dl, and 36.2% (n = 71) were high level greater than 10.5 mg/
dl. In terms of the hematocrit of the patient, 6.5% (n = 18) were low hematocrit level less 
than 25%, 20.1% (n = 54) were normal hematocrit level within the range of 25–30%, and 
73.4% (n = 198) were high hematocrit level greater than 30%. In terms of the ferritin of 
the patient, 23.9% (n = 65) were low ferritin level less than 300 mg/dl, 65.9% (n = 178) 
were normal ferritin level within the range of 300 to 800 mg/dl, and 10.2% (n = 27) were 
high ferritin level greater than 800 mg/dl. Of the patients, 27.8% (n = 48) were the low 
percentage of transferrin saturation less than 20%, and 72.2% (n = 222) were the normal 
percentage of transferrin saturation greater than 20%.

The effect of each factor and its corresponding accumulated probability

Based on the orthogonal array table, for factor A at level 1, the sum of the detection 
value collected in the first, second, and third experiments in the accumulated category 
(defective quality) equals 7 + 6+10 = 23. By the same token, for standard A1, the same 
collected in the accumulated category (detection total) is 30 + 30 + 30 = 90. The same 
calculation can be applied to the remaining factors in this way. After this step is com-
pleted, we can continue to calculate the corresponding accumulated probability via the 
following computing method: for factor A at level 1 in the accumulated category (defec-
tive quality), the probability is 23/90 = 0.26; for factor A at level 1 in the accumulated 
category (detection total), the probability is 90/90 = 1.00. The remaining factors at differ-
ent levels can be calculated in the same way, as shown in Table 7.

Using the effect diagram of the four factors (see Fig. 6), this study adopted “the smaller, 
the better” quality characteristics in the experimental design. For factor A, we know that 
the defect rate of A1 is lower than the defect rates of A2 and A3, so A1 is regarded as the 
main factor and level. For factor B, the defect rate of B3 is lower than the defect rates of B1 
and B2, so B3 is the main factor and level. The same logic was applied to factors C and D 
to deduce the main factor and level. Finally, using the line chart of factor effects with the 

Table 7  Factor and level effects

Detection total is 90

Factor Level Detection value in accumulated 
category

Accumulated 
probability

(Defective quality) (Defect rate)

A A1 23 0.26

A2 35 0.39

A3 28 0.31

B B1 28 0.31

B2 34 0.38

B3 24 0.27

C C1 28 0.31

C2 21 0.23

C3 37 0.41

D D1 28 0.31

D2 26 0.29

D3 32 0.36
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aim of reducing the artificial kidney solidification rate (the lower the defect rate, the better), 
we found that the optimal controlling factor and level combination is A1B3C2D2, which can 
be used as a benchmark condition for the artificial kidney solidification rate in the future. 
Thus, the Taguchi method includes parameter levels’ design, orthogonal array, and factor 
and level effects. It offered a set of the scientific experimental procedures, which facilitates 
doctors and the medical staff to control important experimental factors and levels, and to 
achieve a reliable estimated value of factors in fewer experiments, the comparison of the full 
factorial design needs a huge of resources and time consumption (the full factorial design 
needs 81 sets of experimental combinations). The optimal factors and levels are established 
by a summary of the professional knowledge of doctors and the medical staff, which also 
provides an optimizing solution for intern doctor’ reference.

Omega transformation

To validate the reproducibility of the optimal factor and level combination of A1B3C2D2 
in order to facilitate the confirmation of the correctness of the experiment, we applied the 
omega transformation proposed by Dr. Taguchi and converted the ratio to a corresponding 
dB value, which was utilized to ensure quality in the product or manufacture. As the quality 
characteristics in this study were divided into good and defective (binary data), the omega 
transformation helped us to transform the binary data into dB to estimate the defect rate. 
The formula is as follows:

The P in Eq. (1) is the defect rate of the selected optimal controlling factor and level. 
The conversion data values are as follows:

(1)Ω = 10 · log10

(

1− P

P

)

Factor A Factor B

Factor C Factor D

Defect Rate Total

Defect Rate Total

Defect Rate Total

Defect Rate Total

Fig. 6  The effect diagram of the four factors
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After these individual estimated values were calculated, we continued to calculate the 
estimated value of the optimal factor and level combination (A1B3C2D2), and the con-
verted Ω values are as follows:

Therefore, the estimated value of the best condition is 8.19. Next, the estimated value 
was converted back to the original defect rate. When Ω = 8.19, the corresponding esti-
mated defect rate is 13.17%. Later on, we conducted an experiment to further discuss 
whether the estimated value derived from the omega transformation matches the esti-
mated defect rate after improvement.

Prediction of the proposed combination of optimal factors and levels

Back‑propagation network setting

This section discusses how the back-propagation network was utilized to predict 
whether the proposed combination of optimal factors and levels, A1B3C2D2, is stable 
with low margins of error. We used the Matlab 2012a software and inputted “nntool” 
in the command, after which the neural network parameter in this experiment was 
set, as shown in Tables 8 and 9.

Ā1 = 23/90 = 0.26 → Ω = 4.54 dB

B̄3 = 24/90 = 0.27 → Ω = 4.32 dB

C̄2 = 21/90 = 0.23 → Ω = 5.25 dB

D̄2 = 26/90 = 0.29 → Ω = 3.89 dB

T̄ = 86/270 = 0.32 → Ω = 3.27 dB

Ω(A1B3C2D2) − 3Ωµ = 4.54 + 4.32+ 5.25+ 3.89− 3 ∗ 3.27 = 8.19

(2)P =
1

1 + 10
Ω
10

= 13.17%

Table 8  Neural network parameter setting

Setting items Setting content

Network pattern Back-propagation network

Input variables 4 units

Number of hidden layers 1 layer

Output variables 1 unit

Learning rate 0.1

Inertia item 0.1

Learning cycle 500

Learning rule Delta rule

Table 9  Input and output variables setting

Input variables Output variables

X1: Amount of anticoagulation at 500 units Y1: Artificial kidney solidification data

X2: Velocity of blood flow at 300 ml/min

X3: Dehydration volume at 2.5 kg

X4: Autologous blood vessel as the vascular access type
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The convergence test

For reducing a human trial risk in the follow-up confirmation experiment (see “Con-
firmation experiment” section), we have to conduct a more rigorous test procedure. In 
this study, the back-propagation network, with high prediction accuracy and the fastest 
learning rate, was utilized thereby as the research tool. The back-propagation network 
needs a convergence test procedure for validating the experiment performance sug-
gested by Hsu et al. [27], Du et al. [28], Mehra et al. [29], and Wang et al. [30].

First of all, the Taguchi method uses four factors at three levels to conduct 270 
experiments. Anticipating that the experimental data would be universal, correct, 
and average, and judging from the effect diagram of the average analysis, the purpose 
of the experiment was to reduce the error of the estimated value of artificial kidney 
solidification and to achieve convergence. This study used the Mean Squared Error 
(MSE) to analyze the training results. The definition of MSE is shown in formula (3):

where Tq − Aq (T as estimated value and A as actual value) represents the estimated 
value minus the actual value of the qth item to calculate the error value, and Q repre-
sents the number of estimated values. When the MSE approaches 0, the error value 
between the estimated value and the actual value becomes smaller, which means that 
the result of the prediction pattern is better. In this experiment, the data were obtained 
through the Taguchi method. Following the steps of the experiment, and through the 
optimal prediction procedures of the back-propagation network, the training procedure 
was developed, as shown in Fig. 7.

Secondly, the 270 sets of data that were analyzed in the experiment, which are in 
either input values or output values, were imported into the back-propagation net-
work. The 270 data sets were divided for training 80% (216 samples), validation 10% 
(27 samples), and testing 10% (27 samples) by a setting of the back-propagation net-
work. The setting of percentage of training, validation, and testing is suggested by 
Mehra et al. [29]. Through the operation procedure process of the back-propagation 
network, we obtained the following cycle convergence diagram in Fig. 8.

Thirdly, this study used MSE to judge whether the data had achieved convergence. 
The MSE cycle convergence diagram in Fig. 7 shows the error between the estimated 
value and the actual value, and when the target value of the validation performance 
(green line) is close to 0, it indicates that, as a result, the degree of convergence is 

(3)MSE =
1

Q

Q
∑

q=1

(Tq − Aq)
2

Fig. 7  Training procedure computing simulation diagram
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better. Finally, in this study, the cycle convergence diagram (see Fig. 8), obtained using 
the back-propagation network, indicates that the error (MSE) of the training results 
of the back-propagation network is 0.00030457, and the number of network training 
iteration is 500. Both the testing sample and the training achieved the convergence 
effect at approximately the 37th iteration, and the testing performance, training per-
formance, and validation performance all presented stable convergence. This conclu-
sion indicates that, in this study, the back-propagation network, after carrying out 
repeated training, achieved consistent and stable results.

On the contrary, it has a deviation between the estimated value and the actual value 
in MSE cycle convergence diagram, which means that MSE cycle convergence is 
worse. It is suggested that the experiment should go back to the stage of small group 
discussion (please see the proposed model in Fig. 2).

Confirmation experiment

This section discusses how this study conducted an actual hemodialysis procedure in 
the confirmation experiment, and illustrated the experimental results. The proposed 
combination of optimal factors and levels, A1B3C2D2, was utilized in the confirmation 
experiment following this condition. The doctors in the hospital were asked to carry 
out 270 hemodialysis procedures, and the number of artificial kidneys with a defec-
tive quality is 7. Therefore, the percentage of artificial kidneys with a defective quality 
is 12.9%, which is similar to the estimated defect rate of 13.17% (see the result of for-
mula 2). This means that the optimal factor and level combination, derived from the 
Taguchi method, has good reproducibility in the hemodialysis experiment. It will be 
applied to the hemodialysis procedure of the patients after the confirmation experi-
ment. The data are shown in Table 10.

Fig. 8  MSE cycle convergence diagram. The red line represents the testing performance; the green line 
represents the validation performance; the blue line represents the training sample performance
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Optimization of the patient characteristics for physiological status

The combination of optimal factors and levels A1B3C2D2 is validated that can optimize 
the patients of kidney function. The subject 270 patients then experienced the experi-
ment of the proposed optimal factor and level combination by this study at least half 
a year. We collected the data of the 270 patients’ characteristics for physiological sta-
tus (see Fig.  9) optimized which are as follows: (1) BMI of the patient in normal rate 
(18–24  kg/m2) is improved from 34.5% (original) to 40.3% (improved); (2) serum cal-
cium of the patient in normal rate (8.5–10.5 mg/dl) is improved from 49.2% (original) 
to 59.0% (improved); (3) hematocrit of the patient in normal rate (25–30%) is improved 
from 20.1% (original) to 32.2% (improved); (4) ferritin of the patient in normal rate (300–
800  mg/dl) is improved from 65.9% (original) to 76.4% (improved); and (5) transfer-
rin saturation percentage of the patient in normal rate (> 20%) is improved from 72.2% 
(original) to 79.0% (improved). The optimization of the five characteristics in physiologi-
cal status might be partially from the positive influence of supplementation (e.g. vitamin 
B1 and vitamin D) and diet control to protect residual kidney function [31, 32].

Conclusion
From our research, we learned that during the hemodialysis procedure carried out by 
medical staff, the solidification rate of the artificial kidney could result in detriment 
to the patients, such as loss of blood or dizziness. To enhance the survival rate of the 

Table 10  Reproducibility experimental data

Anticoagulation Velocity 
of blood flow

Dehydration 
volume

Vascular access 
type

Detection value

A1 B3 C2 D2 Defective 
quality

Good quality Total

500 units 300 ml/min. 2.5 kg Autologous 
blood vessel

35 235 270

24.4%

34.5%

41.1%
14.6%

49.2%

36.2%

6.5%

20.1%

73.4%

23.9%

65.9%

10.2%

27.80%

72.20%

22.0%

40.3% 37.7%

11.6%

59.0%

29.4%

2.5%

32.2%

65.3%

18.9%

76.4%

4.7%

21.0%

79.0%
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patients undergoing hemodialysis, this study proposed an integrated model, which 
applied the Taguchi method, omega transformation, and back-propagation network 
to systematically identify the optimal parameters in terms of artificial kidney solidifi-
cation and to improve the problem of artificial kidney solidification.

In practice, when the clinical practice in hospitals conducts quality improvement 
of hemodialysis, they often adopt quality control circle techniques; however, when 
the clinical practice encounters issues, such as having too many factors from which 
to choose and struggling with how to select the most important factors, they usu-
ally rely on the trial and error method to conduct experiments. In comparison with 
the current clinical practice, the combination of optimal factors and levels A1B3C2D2 
has been confirmed by this study. We analyzed the results of previous studies and 
adopted the small group discussion method to systematically acquire the professional 
knowledge of doctors and the medical staff. Their opinions were collected and used to 
determine the important factors and levels affecting artificial kidney solidification and 
to validate the experiment variables. The study offered the doctors and nursing staffs 
with the optimizing experimental factors and levels, which allows them to minorly 
adjust the value of the levels (adjustable level: velocity of blood flow range as 200 ml/
min to 300 ml/min, and dehydration volume range as 1.5 to 3.5 kg), the such method 
can quickly achieve ‘robust design’ for reducing the solidification rate of the artificial 
kidney, in accordance with patients’ physiological status. Meanwhile, the study also 
offers a prediction procedure by the back-propagation network, which helps doctors 
and nursing staffs to test the proposed combinations of optimal factors and levels are 
whether achieved consistent and stable results.

Next, this study took advantage of the Taguchi method to identify the significant fac-
tors and levels, leading to the identification of the optimal procedure parameter com-
bination and predicted defect rate after improvement. The optimal factors and levels 
identified in this study are 500 units for the amount of anticoagulation, 300  ml/min 
for the velocity of blood flow, 2.5 kg for the dehydration volume, and autologous blood 
vessel for the artery vessel passage type. The validation experiment was carried out in 
hospital cases with 12.9% as the artificial kidney solidification rate. Artificial kidney 
solidification was indeed reduced by the proposed model. Meanwhile, the optimal fac-
tors and levels in this model improved the patient characteristics for physiological status 
in BMI, serum calcium, hematocrit, ferritin, and transferrin saturation percentage.

Secondly, this study discovered that many scholars had trained the experimental data, 
obtained through the Taguchi method, with the optimal prediction procedure of the 
BPN and received the optimal result that enhances the convergence speed and adapt-
ability; however, after searching in the SDOS and IEEE for records of international jour-
nals within the last 5 years, we found no research articles that combined the count value 
as quality characteristics, as per the Taguchi method, with the BPN. Therefore, this study 
trained the experimental data, obtained based on the Taguchi method, on the optimal 
prediction procedure of the BPN, with 0.00030457 as the MSE. This can improve the 
convergence of the original solidification error and validate the influential key factors, 
verifying that the proposed model provides an effective analysis procedure.

By proposing an integrated model that successfully uses the Taguchi method, omega 
transformation, and back-propagation network, this study has made three important 
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contributions: (i) it has greatly reduced the defect rate from 32% (original) to 12.9% 
(improved); (ii) during the experimental process, the parameters set by the Taguchi 
method were trained on the back-propagation network’s convergence pattern, and the 
number of training iterations was kept under 37 times with the convergence result as 
stable and linear, which means that the average errors of the Taguchi method and the 
BPN were verified to be quite small; (iii) the use of the Taguchi method and back-prop-
agation network to identify the convergence effect and acquire a stable value of artificial 
kidney solidification to reduce errors in the estimated value in the prediction pattern 
was an optimal way, without wasting too much time and costs, to provide a reference for 
related business owners to make simple and convenient decisions.

The aims of this study were to reduce the solidification rate of artificial kidneys and 
conduct experiments on the cases. Before the improvement, the solidification rate of the 
artificial kidney was 32%; after the improvement, the solidification rate of the artificial 
kidney deceased to 12.9%. This matches the predicted defect rate of 13.17%, after omega 
conversion, and shows the correct rate of this study’s results. By summing up all of the 
aforementioned conclusions, we can confirm that our proposed model, integrating the 
Taguchi method, omega transformation, and back-propagation network to determine 
the optimal factor parameters for the hemodialysis procedure, indeed makes a great 
contribution to the field of medical care. Meanwhile, the proposed model can also be 
regarded as a standard operation procedure for quality improvement when the hospitals 
carry out clinical experiments. In other words, if hospitals apply the model proposed 
by this study, using the Taguchi method to control important experimental factors and 
levels and the back-propagation network to predict the correctness of the models, before 
they conduct any medical procedures, they may minimize the time and cost required for 
figuring out important factors and levels and thus optimize medical quality and stabilize 
treatments for optimizing patient health.
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