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Abstract 

Background:  Quantizing the Breast Imaging Reporting and Data System (BI-RADS) 
criteria into different categories with the single ultrasound modality has always been a 
challenge. To achieve this, we proposed a two-stage grading system to automatically 
evaluate breast tumors from ultrasound images into five categories based on convolu-
tional neural networks (CNNs).

Methods:  This new developed automatic grading system was consisted of two stages, 
including the tumor identification and the tumor grading. The constructed network 
for tumor identification, denoted as ROI-CNN, can identify the region contained the 
tumor from the original breast ultrasound images. The following tumor categoriza-
tion network, denoted as G-CNN, can generate effective features for differentiating 
the identified regions of interest (ROIs) into five categories: Category “3”, Category “4A”, 
Category “4B”, Category “4C”, and Category “5”. Particularly, to promote the predictions 
identified by the ROI-CNN better tailor to the tumor, refinement procedure based on 
Level-set was leveraged as a joint between the stage and grading stage.

Results:  We tested the proposed two-stage grading system against 2238 cases with 
breast tumors in ultrasound images. With the accuracy as an indicator, our automatic 
computerized evaluation for grading breast tumors exhibited a performance compa-
rable to that of subjective categories determined by physicians. Experimental results 
show that our two-stage framework can achieve the accuracy of 0.998 on Category 
“3”, 0.940 on Category “4A”, 0.734 on Category “4B”, 0.922 on Category “4C”, and 0.876 on 
Category “5”.

Conclusion:  The proposed scheme can extract effective features from the breast 
ultrasound images for the final classification of breast tumors by decoupling the iden-
tification features and classification features with different CNNs. Besides, the proposed 
scheme can extend the diagnosing of breast tumors in ultrasound images to five sub-
categories according to BI-RADS rather than merely distinguishing the breast tumor 
malignant from benign.

Keywords:  Breast tumor in ultrasound image, Breast Imaging Reporting and Data 
System (BI-RADS), Automatic categorization, Deep convolutional neural network
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Background
Breast cancer is the leading cause of morbidity and mortality in women worldwide 
[1–3]. To prevent needlessly biopsies and reduce unnecessary expenses and anxiety for 
thousands of women each year [4, 5], screening ultrasound is usually leveraged in most 
of the routine examination and clinical diagnosis [6–9]. Clinically, the Breast Imaging 
Reporting and Data System (BI-RADS) [10] provides a guidance and criteria for physi-
cians to determine the categories of breast tumor based on medical images. According 
to BI-RADS assessments for ultrasound images (listed in Table 1) and the extensive clin-
ical practice of our advisor committee members at the West China Hospital of Sichuan 
University in Chengdu, China, three categories, including Category 3, Category 4, and 
Category 5, are the major distribution during ultrasound assessments [10]. Category 
1 and Category 2 assessments do not exhibit any evidence of malignancy on sonogra-
phy, which are recommended for another routine age-appropriate screening. Category 
6 refers to biopsy-driven results. Particularly, lesions of Category 4 have an extensive 
range of likelihood of malignancy, i.e., from 2 to 95%. In clinic, Category 4 is further 
divided into three subcategories, including 4A, 4B, and 4C. The patients and referring 
physicians can make an informed decision about management after a biopsy correla-
tion. Considering the concerns of physicians, an automatic breast tumor grading scheme 
should at least cover an objective diagnosis from Category 3 to Category 5, including 
the subcategories of Category 4 (refer to Table 1). However, physicians’ final assessment 
on the lesion may be different according to the deliberation in BI-RADS. Therefore, an 
automatic categorization system can relieve the burden of the manual diagnosis and 
reduce the individual bias.

There were a lot of semi-automated breast tumor classification methodologies, 
which employed hand-engineered features to better correspond to the probability 
of malignancy [11, 12]. However, semi-automated methods cannot totally relieve the 
diagnosis burden of physicians in nature [13]. Besides, majority of previous studies 
focused primarily on classifying breast tumors into benign and malignant [14–17]. 
When extending the relationship between the features extracted from breast ultra-
sound (BUS) images and the corresponding probability of malignancy into more com-
plex categories, physicians need to spend extra time and effort to provide specific 

Table 1  BI-RADS assessment categories for breast ultrasound images

Categories Diagnosis assessment

Category 0 Incomplete and needs additional imaging evolution

Category 1 Negative

Category 2 Benign

Category 3 Probably benign (< 2% probability of malignancy)

Category 4 Suspicious

 Category 4A: Low suspicion for malignancy (2% to 8% probability of malignancy)

 Category 4B: Moderate suspicion for malignancy (9% to 49% probability of malignancy)

 Category 4C: High suspicion for malignancy (50% to 95% probability of malignancy)

Category 5 Highly suggestive of malignancy (> 95% probability)

Category 6 Known biopsy-proven malignancy
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and appropriate handcrafted features. Recently, through exploiting hierarchical fea-
ture representations automatically learned from large-scale dataset, deep learning 
techniques have successfully addressed numerous medical image analysis problems 
[18–24]. Due to the superiority of deep learning in automatic feature extraction, sev-
eral related works on detecting breast tumors from US images utilized deep learning 
methods instead of traditional feature engineering [20, 21, 23–26]. For example, Yap 
et  al. [25] attempted to detect breast ultrasound lesion with different convolutional 
neural network (CNN) models, including a Patch-based LeNet model, a U-Net model 
and a transfer learning approach with a pre-trained FCN-AlexNet. Bian et  al. [26] 
developed the detection work on automated whole breast ultrasound (AWBU) with 
a deep convolutional encoder-decoder network. Generally, the detection of breast 
tumor can preliminarily provide region of interests (ROIs) for the successive tumor 
classification task. More effective tumor/lesion region can guide CNNs to learn bet-
ter discriminative features for the classification task. A few studies have validated the 
feasibility of classifying breast tumor into different categories with CNNs [23, 27–29]. 
Huynh et  al. [27] highlighted that deep learning can be a promising new direction 
for obtaining “good” features for automatic breast tumor classification by comparing 
the results with those of typical methodologies (quantized features + typical classi-
fier). However, the detailed information about the breast tumor classification network 
was not provided. Zhang et al. [28] has demonstrated the feasibility of using a CNN 
in classifying breast tumors with shear wave elastography (SWE). Although features 
from SWE images are helpful in localizing breast tumors, equipping each ultrasound 
device with SWE is not practical. And the image features may involve an abundance 
of interference because the contour determined by SWE is rather coarse. Moreover, 
the attempt only focused on classifying the BUS images into benign or malignant. At 
present, few studies developed the research on the automatic multi-category classi-
fication based on the BI-RADS. He et al. [29] implemented the multi-category clas-
sification based on electronic medical records from the aspect of natural language 
description. Clinically, a direct analysis on the tumor’s category based on the collected 
BUS images can better assistant physicians in relieving the diagnose burden. Due to 
abundant noise and interference from other tissues in BUS images, it is a rather chal-
lenging task to implement accurate multi-category classification corresponding to the 
BI-RADS only with the BUS images.

In this paper, the systematic research on breast tumor grading is performed based on 
the CNN architecture. To effectively learn the discriminative features of more detailed 
categories from BUS images, two considerations are taken into our fully automated cate-
gorization system: (1) identifying the tumor region from BUS images to reduce the influ-
ence of other tissues, and (2) making full use of the features in BUS images to increase 
the discriminative ability. The contributions of this paper are elaborated as follows;

1.	 This is the first comprehensive quantized grading system depending on BUS images, 
which can achieve a 5-score categorization based on BI-RADS, covering Category 3, 
Category 4a, Category 4b, Category 4c, and Category 5, thus potentially relieving the 
burden of a tedious image review process and alleviating subjective influence due to 
physicians’ experiences in clinical practice.
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2.	 With our two-stage CNNs, features can be decoupled in the detection phase and 
classification phase, since the weights of the identification task and classification task 
cannot be well compatible in a one-stage CNN architecture for BUS images. Our 
two-stage system can perform better accuracy than the state-of-art one-stage meth-
ods.

Materials and methods
Subjects

In this study, all the collected 2-D breast ultrasound (BUS) images were from female 
patients and contained a breast tumor. For each volunteer participant, only one case cor-
responding to the maximum cut surface of breast tumor was used to generate the data-
sets. This study included 531 cases of Category 3, 443 cases of Category 4A, 376 cases of 
Category 4B, 565 cases of Category 4C, and 323 cases of Category 5. Human subject eth-
ical approval was obtained from a relevant committee at West China Hospital of Sichuan 
University before collecting ultrasound images. Each subject provided written consent 
prior to the research. Philips IU22 ultrasound scanner (Philips Medical System, Bothell, 
WA) with a 5- to 12-MHz linear probe was utilized while collecting the data.

Method overview

The CNN architecture is an extensively utilized deep learning technique for analyzing 
medical images [18, 30]. Typically, a CNN is constructed with several convolution lay-
ers [31, 32], maxpooling layers [33], and fully connected layers [34]. And the extensively 
utilized activation methods in the CNN include the rectified linear unit (ReLU), sigmoid, 
and tanh [35].

Based on CNN architecture, the schematic illustration of our breast tumor categoriza-
tion system is exhibited in Fig. 1. First, all input images were scaled into a uniform size 
of 288 × 288. Second, the ROI-CNN was designed to automatically identify the rough 
localization of the breast tumor Since the predicted ROIs of the ROI-CNN may mix 
other non-tumor regions and loss several important texture or boundary information, 
the following refinement procedure, including area filtering and the perfect Chan–Vese 
(C–V) level-sets methodology [36], was introduced to enable the identified ROI to be 
better tailored to the real boundary of the breast tumor. Finally, the G-CNN model was 
applied to analyze the refined ROIs by rating them with a score of five, as five categories 
of breast tumors were involved in the classification.

CNN‑based localization and grading models

Inherent speckle noise and low image contrast of the US images may bring unneces-
sary distraction while extracting features, thus making the automatic classification of the 
breast US images difficult. To extract effective features for the classification, the tumor 
identification network (ROI-CNN) and refinement procedure were first exposed on 
the whole BUS image to determine the effective ROI. Then, the following tumor grad-
ing network (G-CNN) can focus on extracting the discriminative features for classifying 
tumors.
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The identification model—ROI‑CNN

To effectively reduce the influence of other tissues, like Cooper’s ligaments, identifying 
the tumor from the corresponding whole BUS image is the first and most important pro-
cedure for implementing the automatic grading system. Our ROI identification network 
(ROI-CNN) was developed based on the fully convolutional networks (FCN) [37].

Considering that the tumor size varies among different patients, the designed iden-
tification network requires to be robust and effective on the tumor with different size. 
To increase the feasibility of ROI-CNN on variable target size, our designed ROI-CNN 
introduced a multi-scale architecture based on the typical FCN-16s network. Firstly, a 
typical VGG network (refer to the blue dashed box in Fig. 2) was utilized to extract fea-
tures. After four times down sampling, the output size of feature map from the VGG is 
18 × 18, to further extract high level features, we need to compress the size of the feature 
maps.

However, too small size of the feature maps cannot well reflect the detailed bound-
ary information of the breast tumor. In this study, a atrous convolution layer (refer to 
the yellow block in Fig. 2) was then incorporated into our ROI-CNN, which can effec-
tively enlarge the receptive field of filters and capture a larger context without increasing 
the amount of parameters or the cost of computation [38–40]. In the atrous convolution 
layer, the kernel size was set to be 3 × 3 and the dilation rate was set to be 2. Besides, 

Fig. 1  Schematic Illustration of our methodology. The input data was first unified into the same size 288*288. 
Then, the ROI-CNN identified the tumor region from the breast ultrasound image. The outputs of the 
ROI-CNN can be further improved by the refinement procedure. Finally, the G-CNN learned the differentiation 
of the input and rigorously classified the tumor into one of three categories (Category 3, Category 4, and 
Category 5), where Category 4 could be divided into three subcategories (Category 4A, Category 4B, and 
Category 4C)

Fig. 2  Illustration of breast tumor identification procedures. The input orange box denotes that the 
uniform-size images would first undergo the preprocessing and augmentation procedures. The green 
rectangle refers to the ROI-CNN architecture
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concatenating feature maps from different depths was performed (refer to Fig.  2) to 
ensure that features with two different receptive fields can be merged together. Following 
the atrous convolution layer, a convolution layer was additionally used as a transitional 
layer between the atrous convolution layer and the top convolution layer to provide bal-
anced number of features from the deep layer and shallow layer for the concatenation 
operation. In the transitional convolution layer, the kernel size was set to 1 × 1 and the 
number of filters was set to 512. For the output of the ROI-CNN, the predicted iden-
tification possibility in the breast tumor region should be higher than the non-tumor 
region.

The grading model—G‑CNN

Effective classifier can enhance the distinguishing ability of tumor features from different 
categories, thus promoting the accurate classification. Clinically, apart from the inner 
texture of breast tumors, the texture and the boundary information are also significant 
for classifying the breast tumors into different grades [10, 14]. Therefore, the grading 
model needs to take the texture and the boundary features into consideration to enhance 
the expression of the grading features.

Usually, the texture and the boundary information are well represented in the low-level 
convolution layers, and the essential features can be well extracted with more convolution 
layers. In our proposed G-CNN, feature maps from different depths were concatenated 
together to make full use of the low-level and high-level information. Referring to Fig. 3, 
the G-CNN model was consisted of 9 blocks. The first four blocks (from Block 1 to Block 
4) formed the encode path. Each block in the encode path shared the same structure, which 
contained two convolution layers and one max pooling layer. In the encode path, the num-
ber of feature channels of the convolution layer was doubled when followed by the max 
pooling layer. Following the encode path is the Block 5 contained of three convolution lay-
ers. The concatenate path was then followed with the four same blocks (from Block 6 to 
Block 9). Each block in the concatenate path was consisted of a concatenation layer and a 
convolution layer. In our G-CNN model, the feature maps from the lower layer was addi-
tionally concatenated with the feature maps from the deeper layer. Each block in the encode 

Fig. 3  Illustration of the G-CNN network. The blue dashed rectangle box represents the encode path and 
the orange dashed rectangle box refers to the concatenate path. Different colors correspond to different 
operations. Each blue box corresponds to a convolution layer with a kernel size of 3 × 3, each purple box 
denotes a max pooling layer with a stride of 2, each orange box denotes as a concatenation layer, and each 
green box represents a fully connected layer
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path was exploited to provide low-level features for the corresponding block in the con-
catenate path. For example, Block 3 and Block 7 were concatenated together. Note that, to 
ensure the size of the two inputs imported into the concatenation layer was consistent, the 
first three blocks in the encode path were followed by a convolution layer and a max pool-
ing layer.

Totally, the G-CNN network contained 18 convolution layers. The batch normaliza-
tion strategy [41] was encapsulated at the top convolution layer in each block, and the first 
two FC layers, to regularize the model. A L2 regularization operation was performed to 
reduce overfitting, which can enable better test performance via better generalization. The 
kernel size of all convolution layers was 3 × 3, and each layer was followed by ReLU [34]. 
All the max pooling layers was set to be 2 × 2 with a stride 2. At the end of the G-CNN 
were three fully connected (FC) layers that consisted of 4096 neurons, 1024 neurons and 5 
neurons. A softmax layer followed the topmost FC layer with five neurons to conduct the 
grading output.

The refinement

Affected by the ambulant speckle noise and other tissues in the BUS image, the prediction 
of the ROI-CNN may involve non-tumor region besides the tumor region. Moreover, the 
contour of the predicted region may have a bias from that of the real tumor contour. There-
fore, additional refinement is imperative to ensure the effectiveness of the predicted ROI.

To ensure that only the lesion was export to subsequent grading system and improve the 
accuracy of the final categorization, the rough ROI from the ROI-CNN, which enclosed the 
breast tumor region, was then further refined by the following steps: (1) remove the con-
nected domain with a smaller area (smaller than 40% of the max area) and choose the con-
nected region closest to the image center; and (2) refine the boundary with a typical C–V 
level-sets methodology [36].

where I is the image, C refers to the boundary of the segmented region, c1 and c2 are the 
respective averages of I inside and outside C , and κ is the curvature of C.

Implementation details

a.	 Loss function

In the ROI-CNN, the Dice loss function can be expressed as follows,

where PRED denotes the predicted ROI, and GT corresponds to the ground truth. APRED 
and AGT refer to the predicted tumor area and the ground truth tumor area, respectively.

In the G-CNN, multi-class cross entropy [42] was employed as the loss function,

(1)E(C) = µ1

∫

inside(C)

∣

∣I(x, y)− c1
∣

∣

2
dxdy+ µ2

∫

outside(C)

∣

∣I(x, y)− c2
∣

∣

2
dxdy+ ακ

(2)LROI = 1−
2|APRED| · |AGT |

|APRED| + |AGT |
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where m denotes the number of classes and y is the class label of each input. Both vari-
ables range from one to five. ϑ represents the parameters of the G-CNN, and fϑ corre-
sponds to the mapping relationship from the input image I to the predicted output fϑ(I).

In the G-CNN, each input can generate an output vector with size 1 × m, where the cat-
egory with the highest possibility was taken as the predicted result.

b.	 Train process

Our proposed framework was implemented on Tensorflow and all experiments were 
conducted on a workstation equipped with a 2.40 GHz Intel Xeon E5-2630 CPU and an 
NVIDIA GF100GL Quadro 4000 GPU.

During the training phase of the ROI-CNN, the layers in the blue dotted box (refer to 
Fig. 2) were initialized with a VGG model [43] based on a pre-trained image classification 
dataset provided by ImageNet Large-Scale Visual Recognition Challenge in 2012 (ILS-
VRC-2012 CLS). The other layers in the ROI-CNN were initialized with a Gaussian rand-
omizer. The minibatch size involved 16 images, and the optimizer SGD [44, 45] was set with 
a learning rate of 0.0001 and a momentum of 0.9 until convergence was attained.

In the training phase of the G-CNN, Random initialization was employed to yield better 
performance and faster convergence. 16 images were set as the minibatch size, and the SGD 
optimizer was set with learning rates of 0.001 which would be gradually decreased by a fac-
tor of 0.9 until convergence was attained.

Performance evaluation

To validate the effectiveness of the grading scheme for breast tumors from US images, the 
localization and grading results were evaluated by comparing the corresponding manual 
annotations and labeling from the three physicians. The experiments implemented two 
aspects to assess our grading system. One was the effect of different options in tumor iden-
tification stage on the final grading results, and the other was the discriminative capability 
for different breast tumor categories.

The accuracy of the identified tumor

Three metrics were utilized to quantitatively evaluate the similarity between the predicted 
contour and the ground truth contour, including the Dice similarity coefficient (DSC) 
[46, 47], Hausdorff distance between two boundaries (HDist) [47, 48], and average dis-
tance between two boundaries (AvgDist) [47]. DSC was employed to examine the overlap-
ping areas between the two comparisons. HDist and AvgDist were exploited to measure 
the Euclidean distance between a computer-identified tumor boundary and the boundary 
determined by physicians. Higher DSC, lower HDist, and lower AvgDist corresponded to 
more similarity between the two boundaries. Furthermore, AUC values and ROC curves 
were exploited to evaluate the performance of different experiments with a variable scope 
of ROIs.

(3)J (θ) = −
1

m

[

m
∑

i=1

y(i)logfϑ(I
(i))+ (1− y

(i)
)log(1− fϑ(I

(i)))

]
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Experiment configurations

Image data involved in each stage of the categorization system

The input size of our two-stage grading system was set to 288 × 288. And fivefold cross-
validation was employed to construct the training and testing datasets.

•	 Image annotation

	 Each involved image was scored by three physicians with more than 3 years of expe-
rience performing BUS examinations based on the BI-RADS criteria. If the physi-
cians differed in their annotations of the category, they discussed and then made 
consensus on the final category of the breast tumor.

•	 Data preprocessing and augmentation
	 Due to the sample size of volunteer patients is limited, effective data preprocessing 

and augmentation is imperative for medical image datasets. The premise of augmen-
tation is that the ROI must be incorporated into all augmented data regardless of the 
type of transformation exposure on the dataset.

1.	 Data augmentation in the ROI-CNN model

	 In the ROI-CNN training stage, the augmentation times of each input were set to the 
same with the number of training epochs. This type of augmentation can enhance the 
randomization of input data and reduce the possibility of overfitting of the trained 
model, thus improving the robustness of the ROI-CNN model. Each input image was 
followed by the subsequent procedures in each calculated epoch, including random 
brightness, random contrast, random movement, random flip, and standardization. 
Each input can export N times outputs while experiencing N epochs. Conversely, in 
the testing phase, only standardization was exposed using input samples.

2.	 Data augmentation in the G-CNN model
	 In the G-CNN training stage, to maintain the shape textures of breast tumors for the 

final classification, only geometric translation and flipping were involved. The origi-
nal datasets were augmented four times with random movement, in which two aug-
mentations were followed by horizontal flipping.

Effect of identification accuracy on the final grading

The coverage of localization, which denotes the area of the ROI, theoretically affects 
the feature mapping and may influence the final grading. To investigate the effects of 
the accuracy of the identified breast tumor on the final categorization from the BUS 
images, three types of import into the G-CNN with the corresponding experiments 
were involved and denoted as “No ROI-CNN”, “No Refined ROI-CNN”, and “Refined 
ROI-CNN”. “No ROI-CNN” corresponded to the experiment in which the input to the 
G-CNN directly applied the C–V level-sets method to input US images and lacked the 
prediction on the rough localization by the ROI-CNN. In the “No Refined ROI-CNN” 
experiment, the output of the ROI-CNN was not refined and was directly exported to 
the G-CNN. In the “Refined ROI-CNN” experiment, the original US images underwent 
complete processing procedures in our designed scheme.
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The parameters of our designed method, experiment “Refined ROI-CNN”, were set as 
follows; (1) μ1, μ2, and α in equation (4) were all set to 1; (2) the maximum number of 
contour evolution iterations was set to 50. The parameters μ1, μ2, and α in the C–V level-
sets experiment was the same as those in our refined ROI experiment. But the maximum 
number of contour evolution iterations in the “No ROI-CNN” experiment was set to 
1000.

One‑stage vs. two‑stage categorization of BUS images

Making full use of the effective features is likely to achieve better categorization of breast 
tumor. To investigate the superiority of our two-stage system on grading BUS images, 
the accuracy of the predicted categorization of tumor was employed as an indicator, 
we compared the categorization of two-stage grading system with that of the one-stage 
grading architecture, which directly classified input breast US images into six classes, 
including the background and five breast tumor categories.

There are two types of the two-stage methods, one is with the refinement procedure, 
and the other is without the refinement procedure. In each type of the two-stage meth-
ods, we compared our G-CNN model with the other two typical classification network, 
one is the VGG network [43], and the other is the ResNet50 network [49]. Totally, there 
are six experiments in the two-stage methods. For the one-stage classification methods, 
three experiments are included: (1) experiment “One-stage G-CNN”, which directly clas-
sified the input into 5 categories with the our proposed G-CNN architecture (refer to 
Fig. 3); (2) experiment “One-stage VGG”, which directly classified the input BUS image 
into 5 categories with the VGG architecture; (3) experiment “One-stage ResNet”, which 
directly classified the input BUS image into 5 categories with the ResNet50 architecture.

Results
Effect of the identification on final grading accuracy

With DSC, AvgDist, and HDist, Table  2 exhibits the comparison on the similarity of 
the generated tumor areas from experimental cases “No ROI-CNN”, “No Refined ROI-
CNN”, and “Refined ROI-CNN”. From Table  2, we can observe that the ROI from the 
experimental case “Refined ROI-CNN” can perform the highest DSC average value and 
lowest AvgDist average and HDist average, thus enabling the most similarity to the real 
tumor region of the three listed experiments. Compared with “Refined ROI-CNN”, the 
experiment “No Refined ROI-CNN” lacks the refinement procedure to further deter-
mine the ROI from BUS images. With lower DSC average, higher AvgDist average, and 
higher HDist average, the similarity of the predicted ROI from the experiment “No 

Table 2  Comparisons of different identification implementations

Experiments “Refined ROI-CNN”, “No-Refined ROI”, and “No ROI-CNN” were compared with three similarity measurements, 
including DSC, AvgDist, and HDist

The significance for the italic values is to illustrate the method with the best performance according to each evaluated 
metric

DSC AvgDist (pixel) HDist (pixel)

No ROI-CNN 0.6007 ± 0.0302 51.2115 ± 2688.8 82.7174 ± 3423.1

No-Refined ROI-CNN 0.8665 ± 0.0133 7.6764 ± 157.8465 23.5292 ± 531.9632

Refined ROI-CNN 0.9125 ± 0.0015 3.9668 ± 7.0654 11.0110 ± 40.6948
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Refined ROI-CNN” is less than that of the experiment “Refined ROI-CNN”. Compared 
with the CNN-based experimental test cases, experiment “No ROI-CNN” directly iden-
tifies the tumor with level-sets, which illustrates the worst performance on the average 
values of DSC, AvgDist, and HDist. This is because image contrast, speckle noise in BUS 
images, and initial contour, are likely to affect the evolution procedure of C–V level-
set, thus locating an erroneous target and resulting in undesirable performance on the 
predicted contour. Therefore, referring to Table 2, the similarity between the predicted 
ROI and the ground truth manually outlined by the three physicians can gradually be 
increased with every improvement of implementation from the experimental test cases.

Furthermore, Fig. 4 exhibits the ROC curves in the grading categories based on dif-
ferent predicted ROIs resulted from the experiments “No ROI-CNN”, “No Refined ROI-
CNN”, and “Refined ROI-CNN”. Referring to the ROC curves of each category, the best 
grading results can be achieved with the experiment “Refined ROI-CNN” with the high-
est AUC. In contrast, experiments “No Refined ROI-CNN” and “No ROI-CNN” provide 
the G-CNN with ROIs of less quality, thus the AUCs are lower. Particularly, the lower 
quality of the ROI, the lower AUC is referring to Fig. 4, “No ROI-CNN” performs the 
worst the AUC in all the experiments by providing the lowest similarity of the ROI (see 
in Table 2). Therefore, based on comparisons of DSC, AvgDist, HDist, and ROC curves, 
the best performance for localizing ROI can be achieved with the “Refined ROI-CNN”.

One‑stage vs. two‑stage framework

The grading accuracy for each tumor category of the one-stage and the two-stage experi-
ments is listed in Table 3. The one-stage methods refer to directly predicting the uni-
fied image (288*288) into five categories without the identifying procedure. Experiment 
cases of the one-stage methods are consisted of “One-stage G-CNN”, “One-stage VGG”, 
“One-stage ResNet”. The two-stage methods mean that an extra identification procedure 
is involved to facilitate the implementation of the classification task. There are two types 
of two-stage methods, one is the with the refinement procedure and the other is without 

Fig. 4  ROC curve and AUC values of different implementations in grading breast tumors. The 
implementations encompassed “Refined ROI-CNN”, “No refined ROI-CNN”, and “No ROI-CNN”. a–e Correspond 
to the results of Category “3”, “4A”, “4B”, “4C”, and “5”
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the refinement procedure. The two-stage methods with refinement procedure are con-
sisted of experiment case “Refined ROI-CNN + G-CNN”, experiment case “Refined 
ROI-CNN + VGG”, and experiment case “Refined ROI-CNN + ResNet”. The two-stage 
methods without refinement procedure involve the following experiment cases: “ROI-
CNN + G-CNN”, “ROI-CNN + VGG”, and “ROI-CNN + ResNet”.

Referring to Table  3, the one-stage with image-level classification methods (“One-
stage G-CNN”, “One-stage VGG”, and “One-stage ResNet”) performs the worst on the 
average grading accuracy. Specially, the predicted accuracy of these methods can only 
achieve about 0.5 on the “Category 4A”, “Category 4B”, and “Category 5”. By introduc-
ing an extra identification network, the two-stage methods without refinement (“ROI-
CNN + G-CNN”, “ROI-CNN + VGG”, and “ROI-CNN + ResNet”) can have an accuracy 
improvement on each category compared with the one-stage methods. Particularly, 
expect the “Category 4B”, the average accuracy of the other four categories are over 0.8 
for the two-stage methods without refinement. Among of the listed three experiments 
(“ROI-CNN + G-CNN”, “ROI-CNN + VGG”, and “ROI-CNN + ResNet”), the experi-
ment “ROI-CNN + G-CNN” achieves the highest accuracy on all the categories. And 
the experiment “ROI-CNN + VGG” performs the lowest accuracy among of the three 
methods. By successively adding an extra refinement procedure, we can observe that, 
the grading accuracy in each category of the two-stage methods with refinement pro-
cedure (“Refined ROI-CNN + G-CNN”, “Refined ROI-CNN + VGG”, “Refined ROI-
CNN + ResNet”) becomes higher than that of the rest of the methods listed in Table 3. 
Particularly, in contrast to the typical classification models (VGG [43] and ResNet50 
[49]), the methods with our G-NN network still performs better on the grading accuracy.

For the experiment “Refined ROI-CNN + G-CNN”, the predicted accuracy in Category 
“3” can reach an average of 0.998, which is rather close to one. Both Category “4A” and 
Category “4C” can achieve an average accuracy greater than 0.9, and the prediction accu-
racy for Category “5” can obtain an average of 0.876, which close to 0.9. Thus, we suggest 
that our predictions for the four categories are effective and highly accurate. Note that, 
the average accuracy of the Category “5” is less than 0.9, and the biased predictions for 

Table 3  Comparisons of  one-stage models and  two-stage models with  the  grading 
accuracy of each category

One-stage models were consisted of experimental test cases “One-stage G-CNN”, “One-stage VGG” and “One-stage ResNet”. 
Two-stage models involved six experiment test cases, including “Refined ROI-CNN + G-CNN”, “Refined ROI-CNN + VGG”, 
“Refined ROI-CNN + ResNet”, “ROI-CNN + G-CNN”, “ROI-CNN + VGG”, and “ROI-CNN + ResNet”

The significance for the italic values is to illustrate the method with the best performance according to each evaluated 
metric

Category 3 Category 4A Category 4B Category 4C Category 5

Refined ROI-CNN + G-CNN 0.998 ± 0.0040 0.940 ± 0.0110 0.734 ± 0.0662 0.922 ± 0.0376 0.876 ± 0.1234

Refined ROI-CNN + VGG 0.990 ± 0.0047 0.920 ± 0.0194 0.673 ± 0.0692. 0.908 ± 0.0493 0.841 ± 0.1319

Refined ROI-CNN + ResNet 0.991 ± 0.0052 0.927 ± 0.0155 0.688 ± 0.0665 0.920 ± 0.0388 0.858 ± 0.1423

ROI-CNN + G-CNN 0.955 ± 0.0076 0.897 ± 0.0112 0.679 ± 0.0678 0.906 ± 0.0434 0.837 ± 0.1232

ROI-CNN + VGG 0.947 ± 0.0145 0.864 ± 0.0132 0.667 ± 0.0726 0.865 ± 0.0463 0.818 ± 0.1281

ROI-CNN + ResNet 0.954 ± 0.0136 0.878 ± 0.0124 0.669 ± 0.0664 0.899 ± 0.0425 0.835 ± 0.1338

One-stage G-CNN 0.797 ± 0.0190 0.552 ± 0.0312 0.496 ± 0.0876 0.715 ± 0.0674 0.559 ± 0.1257

One-stage VGG 0.723 ± 0.0244 0.533 ± 0.0471 0.460 ± 0.0888 0.644 ± 0.0535 0.436 ± 0.1328

One-stage ResNet 0.755 ± 0.0268 0.550 ± 0.0302 0.472 ± 0.0799 0.692 ± 0.0585 0.508 ± 0.1402
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the Category “5” are primarily located in Category “4C”, due to the following two factors: 
1) the number of samples in Category “5” is smaller than the numbers in the other cat-
egories, and 2) the ratio of the benign samples in Category “5” is higher than the ratio of 
the malignant samples in Category “5”. Although the prediction for Category “4B” can-
not approach 0.8, it is higher than the statistical probablity. According to the criteria in 
Table  1, for each test tumor belonging to the Category “4B”, the probability of benign 
and malignant is rather close, even the experienced physicians can hardly determine the 
tumor’s category merely from the US image. Clinically, extra diagnostic tests such as 
biopsy, is required to determine the final accurate results. With only one type of source 
associated with US images, our two-stage grading system in Fig. 1 can achieve the best 
performance on grading accuracy than the other methods listed in Table 3.

The grading accuracy predicted by our two‑stage categorization system

Figure 5 sequentially illustrates the crucial intermediate results and the final predictions 
of the proposed methodology in Fig. 1 for several typical cases. The first row contains 
BUS images with a uniform size. The localization results of the ROI-CNN are presented 
in the second row in Fig. 5. We discovered that the ROI-CNN can effectively recognize 
tumors in BUS images. The ROI mapping results are depicted in jet colormaps, where 
warm color tones indicate a high possibility of tumor prediction and vice versa. The 
region with the highest possibility appears in the real tumor region (red part in figures). 
The centric possibilities of the other regions predicted by the ROI-CNN, are much lower 
than the centric possibility of the actual tumor. Another observation is that the map-
ping results can adequately reflect the approximate areas of tumors in the US images; 
however, the contours may not be smooth and located that close to the corresponding 

Fig. 5  Intermediate and the end results of our grading scheme. The first row refers to the ultrasound images 
with uniform size. According to the test images in the first row, ROI-CNN predicts the possible rough ROI, 
which is shown in the second row. The third row illustrates the refined ROI based on the output of the 
ROI-CNN, where the green curves correspond to the contours determined by the three physicians, the blue 
curves denote the contours from the ROI-CNN output, and the red curves represent the refined contours 
based on the blue curves. The last row shows the predictions of the G-CNN with the refined ROI
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tumors. The third row in Fig. 5 represents the results from sequential refinement proce-
dures on ROIs. The green curves represent the ground truth with agreement among the 
three physicians. The blue curves and red curves represent contours from the ROI-CNN 
and refinement procedure, respectively. We can observe that the refinement procedure 
can slightly improve the contour fitness of the ROI to the real tumor. With a suitable 
and effective ROI exported to the G-CNN, desirable grading result can be achieved. The 
results in the first column of the third row illustrate that refinement is a robust tool for 
eliminating the disturbance from other tissues.

Discussion
Automatic quantitation of the category of breast tumor from US scanning can assist 
physicians in the tedious diagnosing task. This is the first comprehensive quantized 
grading evaluation on breast ultrasound images based on the criteria of BI-RADS. With 
the CNN architecture, which can automatically learn and extract goal-oriented features 
from images, our two-stage grading system can accurately identify the tumor region and 
discriminate the category of the breast tumor in ultrasound images. Our grading sys-
tem can achieve a 5-score categorization of BI-RADS, covering Category 3, Category 
4a, Category 4b, Category 4c, and Category 5, thus potentially relieving the burden of a 
time-consuming image review process and alleviating influence due to physicians’ expe-
riences in clinical practice. Additionally, the proposed categorization system can ensure 
the robustness and effectiveness of the fully automated categorization system by decou-
pling the identification features and classification features.

The proposed two-stage architecture can make full use of the effective features from 
breast US images by effectively decoupling the information of identification and catego-
rization, thus improving the final grading accuracy. The identification task focuses on 
distinguishing the tumor from the background, while the grading task concentrates on 
classifying the breast tumors into different classes, so the features used to identify tumor 
from the background are different from those applied to classify the tumor into five cat-
egories. Referring to Table 3, the accuracy of the final diagnosis illustrates that our two-
stage CNNs can achieve better performance than the one-stage methods. The results 
in Table  3 indicates that the two-stage architecture is more suitable for grading BUS 
images, because the features of the identification task and categorization task cannot 
be well compatible. Therefore, a two-stage grading system can ensure higher accuracy, 
which is a rather vital indicator of medical image analysis, in classifying breast tumor 
categories.

In the two-stage grading system, the designed identification model and refinement 
procedure contribute to achieving an effective ROI for the following classification 
model, thus reaching a desirable grading result. Generally, additional irrelevant informa-
tion imported to the G-CNN models may be translated into interference and produce an 
unsatisfactory grading result. The results in Table 2 and Fig. 4 also suggest that with more 
accurate and precise ROI input to the G-CNN, the better implementations for grading 
breast tumors are possible. Affected by the abundant speckle noise in ultrasound images, 
the contours resulted from the level-set methods [36] may occur large bias during the 
evolution process. Therefore, the single refinement procedure cannot generate effec-
tive ROIs for the following G-CNN model (refer to Table 2). Meanwhile, the predictions 



Page 15 of 18Huang et al. BioMed Eng OnLine            (2019) 18:8 

from the ROI-CNN are usually smooth in the boundary, some detail information will be 
lost particularly for the malignant cases, so the single ROI-CNN model is inadequate in 
providing a desirable ROI for the following classification network. Therefore, by combin-
ing the ROI-CNN model and the refinement procedure together, the predicted ROI can 
be closer to the real breast tumor so as to provide more elaborate ROIs for the following 
symmetric architecture G-CNN.

Table  3 illustrates that our G-CNN model performs better accuracy than the typi-
cal VGG [43] and RestNet 50 [49]. Generally, the enhancement of effective features 
can facilitate the final grading accuracy for the classification model. In our proposed 
G-CNN, the layers embedded in the concatenate path and the skip connections (refer 
to Fig. 3) can combine the lower dimensional feature maps and the higher dimensional 
features together, thus promoting discriminability for classifying different breast tumor 
categories. In contrast, the typical classification models, such as VGG [43] and RestNet 
50 [49], only involve the encode path in Fig. 3 and export the high-level information to 
implement classification. However, the high-level features may suffer a loss of the texture 
or boundary information contained in the lower convolution layers. The texture and the 
boundary information usually provide important hints for the classification task accord-
ing to BI-RADS. Due to the lack of a compensation strategy, ResNet50 and VGG cannot 
perform desirable accuracy on classifying the breast ultrasound images. Therefore, we 
conclude that better grading results can be achieved with the enhanced feature maps 
from G-CNN.

Our grading system has a desirable performance on the “Category 3”, “Category 4A” 
and “Category 4C”, which can obtain the accuracy greater than 0.9. But for the “Category 
4B” and the “Category 5”, the grading accuracy of are lower than that of the other three 
categories (refer to Table 3). This may be caused by that the data amount of the “Cat-
egory 4B” and “Category 5” are less than that of the other three categories. Although the 
prediction for Category “4B” cannot approach 0.8, it is significantly higher than manual 
decision. According to the criteria in Table 1, each tumor falling into the Category “4B” 
may have a close probability of being benign or malignant. Even the experienced physi-
cians may have biases in determining the category only from the US image. Clinically, 
further diagnostic tests such as biopsy, is needed to achieve the final accurate results. 
With only one type of source associated with US images, our grading scheme can ade-
quately predict the category of breast tumors. In the future, we will continue to collect 
more data, particularly on the “Category 4B” and “Category 5”, to further increase the 
prediction accuracy of our grading system. Moreover, we plan to integrate the images 
in Category 0, 1, 2, and 6 into current grading system, thus developing a comprehensive 
and complete computerized BI-RADs grading system.

Conclusion
In this study, we proposed a two-stage automatic categorization system to quantize 
the criteria of BI-RADS and offer an objective assessment. Based on deep learning 
techniques, a series of comprehensive explorations were conducted using a combina-
tion of the procedures of CNN-based methods, typical image processing schemes, and 
the CNN architecture applicable to breast US images. The proposed scheme can also 
serve as an assistant computerized toolkit for the education of radiology residents and 
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medical students to improve their discriminative skills in breast tumor examination with 
US scanning. Meanwhile, the proposed grading scheme based on CNN can be easily 
extended to analyses of other breast ultrasound images generated from other equipment 
without extra feature engineering.
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