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is available at the end of the during other phases of ACL injury rehabilitation before attempting an advanced exer-
article cise such as walking. This paper aims to propose a myoelectric control (MEC) algorithm

for a robot-assisted rehabilitation system, “Nukawa’, to assist knee movement during
these types of exercises, i.e., such as in active-assisted extension exercises.

Methods: Surface electromyography (sEMG) signal processing algorithm was devel-
oped to detect the motion intention of the knee joint. The sEMG signal processing
algorithm and the movement control algorithm, reported by the authors in a previous
publication, were joined together as a hardware-in-the-loop simulation to create and
test the MEC algorithm, instead of using the actual robot.

Experiments and results: An experimental protocol was conducted with 17 healthy
subjects to acquire SEMG signals and their lower limb kinematics during 12 ACL reha-
bilitation exercises. The proposed motion intention algorithm detected the orienta-
tion of the intention 100% of the times for the extension and flexion exercises. Also,

it detected in 94% and 59% of the cases the intensity of the movement intention in a
comparable way to the maximum voluntary contraction (MVC) during extension exer-
cises and flexion exercises, respectively. The maximum position mean absolute error
was 0.1°,6.3°, and 0.3° for the hip, knee, and ankle joints, respectively.

Conclusions: The MEC algorithm detected the intensity of the movement inten-
tion, approximately, in a comparable way to the MVC and the orientation. Moreover,
it requires no prior training or additional torque sensors. Also, it controls the speed of
the knee joint of Nukawa to assist the knee movement, i.e,, such as in active-assisted
extension exercises.

Keywords: Assistive robotics, Electromyography (EMG) control, Powered exoskeletons,
Biomedical signal analysis, Myoelectric control
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Background

The knee is the largest and most complex joint in the human body, and it depends on
four primary ligaments, tendons, muscles and secondary ligaments to maintain its cor-
rect function. One of the main ligaments is the anterior cruciate ligament (ACL). The
ACL is one of the most commonly injured ligaments in the knee. A direct blow to the
knee is one way to harm the ACL, e.g., during a football or traffic accident. Nevertheless,
most ACL injuries occur even without any contact with an object [1].

There are many traditional methods and devices to assist treatment. The study of
new, applied technologies in areas such as Bioengineering and Automation has brought
research and technology in robotic platforms that replace, enhance or rehabilitate lower
limb disabilities. Within these applications, robotic systems have become a benefit for
the rehabilitation of lower limb pathologies [2]. These studies have focused on the devel-
opment of active orthosis, also defined as exoskeletons [3-6].

For example, in the case of ACL injuries, Hu et al. [7] reported in 2016 a robot-assisted
therapy (RAT) rehabilitation investigation, simulating regular walking to examine the
effects of long-term interventions using RAT rehabilitation on functional activity levels
after ACL reconstruction. The study reported that the RAT treatment improved exten-
sor strength and walking and balance abilities.

However, ACL injuries require various rehabilitation phases with the purpose of
controlling pain and swelling, restoring pain-free range of motion (ROM), improv-
ing flexibility, normalizing gait mechanics, and establishing good quadriceps activation
[8]. There are several international protocols for ACL injury rehabilitation such as the
Accelerated ACL Reconstruction Rehabilitation Program of the Chester Knee Clinic
& Cartilage Repair Center [9, 10], the Classic 1981 Protocol by Lonnie et al. [11], the
ACL Reconstruction Rehabilitation Protocol of the Steadman Clinic [12], among others.
These protocols report several rehabilitation phases for ACL injuries.

For the protocols mentioned above, there is the need to perform RAT rehabilitation
of ACL injuries during other phases of the rehabilitation process before attempting an
advanced exercise such as walking, e.g., when the patient is unable to execute a knee
movement, due to the pain caused by the injury. In this rehabilitation phase, an active-
assisted rehabilitation exercise may be conducted. During these types of activities, an
external force provides assistance, mechanical or manual, since the muscle requires sup-
port to complete the movement [13, 14]. Moreover, during the traditional rehabilitation
process of ACL injuries, the protocol uses knee active-assisted extension exercises. The
subject uses the opposite leg to restore ROM during these exercises, e.g., and the healthy
leg straightens the non-healthy knee from a 90° flexion to 0° [15].

Therefore, the specific problem addressed in this paper is to detect the motion inten-
tion and control a robotic rehabilitation system to assist the knee movement, i.e., such as
in active-assisted extension exercises, but using an exoskeleton.

In order to detect the motion intention of a limb or joint, electromyography (EMG)
signals have been used, and with this information, it has been possible to control rehabil-
itation systems [16]. There are many studies reporting surface electromyography (sEMG)
signal processing algorithms to detect the motion intention of a limb or joint. Several
studies reported algorithms that were implemented and tested offline [17, 18], and other

algorithms were implemented online [19-22]. Also, some of them are currently under
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investigation [17, 18, 20-23] and others in the commercial stage, e.g., the algorithm
reported by Hayashi et al. [19]. Also, several algorithms were tested in the knee joint
[19] and other algorithms detect the motion intention in other joints [17, 18, 20-23].
Other studies were conducted with 1 [22], 2 [24], 3 [23], 4 [18], 10 [21], 12 [17], and 18
[20] healthy subjects. In the literature, there are sSEMG signal processing algorithms that
detect the motion intention. For example, myoelectric activity and a linear combination
(LC) [19], feature extraction and a linear state-space model, autoregressive output struc-
ture with exogenous input (ARX) model, with multi-input single output [24]. Moreover,
there exist EMG features and low-pass filter [20], Kalman filters [17], root mean square
(RMS) envelope and a three-layer back propagation neural network (BPNN) control-
ler [18], mean absolute value (MAV) and a support vector machine (SVM) [23], EMG-
driven state space model which combines Hill-based muscle model with the forward
dynamics of joint movement [22].

Hayashi et al. [19] reported a control method of robot suit HAL using biological infor-
mation. The tests were conducted with a healthy subject, with two sensors near the
flexor and extensor muscles during swinging motion of lower leg exercises. Signals were
filtered and amplified, and the myoelectric activity was computed for both channels.
Subsequently, the estimated muscle torque & was calculated taking into account that

I = (acE.(t) + be) — (arEr(t) + bf): (1)
where E.(t) € R and Ef(¢) € R are the myoelectric activity of the extensor and flexor
muscles, respectively. Moreover, a, € R, ar € R, b, € Rand bf € R are conversion coef-
ficients from myoelectric activity to contraction torque. Finally, a gain parameter was
used to compute the torque for the actuator. Their approach uses a simple algorithm,
and it was tested online in a commercial robotic exoskeleton. However, their algorithm
requires a long calibration process, including additional sensors such as torque sensors.

The aim of the present study is to develop a myoelectric control (MEC) algorithm,
based on the algorithm proposed by Hayashi et al. [19], but that does not require addi-
tional sensors and uses the maximum voluntary contraction (MVC) as a simple cali-
bration process. The sSEMG signal processing algorithm can detect the orientation and
approximate the intensity of movement intention proportionally to the maximum MVC
tests. The proposed MEC algorithm was implemented in a computational model of the
lower limb rehabilitation system, Nukawa. Such a mechatronic system is a product of
requirements presented by an interdisciplinary group, formed by physiotherapist and
engineers, and has its antecedents in [25]. The mechanical design, presented in Fig. 1,
consists of two limbs, each one composed by a three-link mechanism and a Computed
Torque Control (CTC). The implementation of the CTC algorithm was conducted in a
first stage as a hardware-in-the-loop (HIL), using the Nukawa simulation model without
having to use the actual robot since Nukawa is not yet fully operational [26].

The three degrees of freedom allows each leg to perform flexion/extension (FE) move-
ments of the hip, FE movements of the knee, and dorsi/plantar (DP) flexion movements
of the ankle [25]. The design also has three brushless motors in each limb, power drivers,
and encoders.

The joints are, approximately, collinear to human joints, and the system allows to
adjust the length of each segment. The knee of the human body is a polycentric joint.
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Fig. 1 Nukawa, the robotic system for lower limb rehabilitation

However, a simplification was conducted, as presented by Zoss et al. [27], where a pure
rotational joint in the sagittal plane was proposed for the exoskeleton. The system was
designed for people from 1.44 to 1.85 m and up to 85 kg weight. The ROM of each joint
was restricted with mechanicals stops considering the ROM for hip, knee, and ankle.

The MEC was conducted using a simulated model of Nukawa instead of the actual
robot. Moreover, the SEMG signal processing algorithm and the movement control algo-
rithm were implemented and tested with the simulated model, using an HIL simulation.
The tests were conducted extracting signals from a sEMG signals collection, leading
them into the real-time algorithms, and finally controlling the computational model of
Nukawa.

The proposed MEC algorithm employs an estimated movement intention value of the
knee joint. This estimation is mapped to the desired speed of the knee joint employing scal-
ing factors. Such a speed is the input to the CTC algorithm of the simulated robotic system.

Methods

This section presents the methodology used in the development of a SEMG signal pro-
cessing algorithm to assess the detection of intended movement, based on the algorithm
proposed by Hayashi et al. [19]. The algorithm was developed in both the offline pro-
gramming environment MATLAB and as an HIL simulation in Python within a Beagle
Bone Black (BBB) Rev C, which is a development platform.

sEMG signal processing

This section proposes a SEMG signal processing algorithm, based on the algorithm
stated by Hayashi et al. [19], to assess the detection of movement intention. The pro-
posed sEMG signal processing algorithm can detect, approximately, the intensity of
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the motion intention proportionally facing the MVC. In this section, the signal pro-
cessing algorithm was not conducted in real-time. However, tests were carried out
with pre-recorded signals as proposed in the simulation-based methodology, stated
by some of the authors in [28, 29].

Figures 2, 3 and 4 present the block diagrams that make up the sEMG signal process-
ing algorithm. In these figures the notation [n x m] is the size of the signal bus, where #
is the number of signals and m is the number of samples in the observation window.

Figure 2 presents a block diagram containing the principal functions of the sSEMG
signal pre-processing subroutine. In this figure it is possible to notice that the algo-
rithm has three main blocks which are (1) band-pass filtering, (2) removing DC offset,
and (3) full-wave rectification. This subroutine starts filtering the raw sSEMG signals. A
band-pass Butterworth filter with cut-off frequencies of 10 Hz and 500 Hz was used.
A Notch filter was not used, since scientific recommendations from the SENIAM and
the ISEK reports that EMG recordings should not use any notch filter [30, 31].

Besides, the mean of the SEMG signals is subtracted, to remove the DC offset. Sub-
sequently, the subroutine performs full-wave rectification of the signals, computing
the absolute value. The full-wave rectification process is conducted so that amplitude
parameters such as the MAV or RMS can be applied to sSEMG signals [32].

Figure 3 presents a block diagram containing the principal functions of the subroutine
to compute four normalization values. In this figure it is possible to notice that the algo-
rithm has three main blocks which are (1) raw sSEMG signal pre-processing subroutine
presented in Fig. 2, (2) MAYV, and (3) finding and storing maximum values. The subrou-
tine presented in Fig. 3 uses RF and VM signals, from Trial 4, and BF and ST signals,
from Trial 1, to compute four normalization values, i.e., the MVC tests. These signals are
later used to normalize the signals of these muscles, respectively. In the four cases, the
algorithm extracts the MAV using adjacent windows of 500 ms, later the algorithm finds
the maximum MAYV, and it stores the maximum value obtained for each signal.

SEMG signals
Raw L Filtered without Rectified
SEMG signals Band-Pass Filtering, SEMG signals Removing DC offset Full-wave SEMG signals
Fmin=10Hz; — Vi - y N
2 77— DC Offset 7 - rectification 7 >
Fmax = 500 Hz
Fig. 2 sEMG signal pre-processing subroutine
. RF Raw sEMG signal |
‘ from Tn/al 4[1x500] =‘ MVC
| VM Raw SEMG signal rectified MVC Normalization
from Trial 4 [1x500] SEMG signals MAV values
' 4x1
! BF Raw SEMG signal . Raw sSEMG . [47500]‘ MAV [4x500] Find and store 1]
from Trial 1 [1x500] signal pre-processing 7 o 7 maximum values 7
ST Raw SEMG signal
from Trial 1[1x500]
+

SEMG signals ‘
from
MVC trial

Fig. 3 Subroutine to compute the four normalization values
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Fig. 4 Main routine of the sEMG signal processing algorithm

Motion intention algorithm

Figure 4 presents a block diagram containing the principal functions of the main rou-
tine of the motion intention algorithm. In this figure it is possible to notice that the
algorithm has five main blocks which are (1) sSEMG signal pre-processing subroutine
presented in Fig. 2, (2) RMS envelope, (3) normalization, (4) linear combination, and
(5) low-pass filtering.

The main routine uses the four raw sEMG signals from the RF, VM, BF, and ST of
current exercise and conducts them to the sEMG signal pre-processing subroutine.
Subsequently, the algorithm extracts an RMS envelope of the four channels with sliding
adjacent 20 ms windows since the algorithm should be fast and light, i.e., the total num-
ber of samples in a window from the vector of the signal was 20 samples. Afterward, the
signals are normalized using the values previously stored for each of the channels during
the MVC exercises, as previously mentioned in subroutine presented in Fig. 3. These sig-
nals are denoted as RFpars, VMpus, BErps, and STryrs, which are the normalized RMS
envelopes.

Finally, to detect the movement intention, a linear combination LC € R of the four
RMS envelopes is proposed, i.e., the features of four channels were combined. This LC
is based on the algorithm proposed by Hayashi et al. [19], in which two channels were
used. However, the conversion coefficients a. € R, ar € R, b, € R, and b € R are not
estimated with an additional torque sensor, as proposed by Hayashi et al. [19], but deter-
mined heuristically. Moreover, the LC proposed in this paper uses four sSEMG channels
instead of two. To do so, the equation

LC = RFrps + VMpats — BFrps — STrus (2)
was proposed, where RFpys € R, VMpuys € R, BFryrs € R, and STrys € R are the nor-
malized RMS envelopes of the RF, VM, BF, and ST, respectively, taking into account that
the RF and the VM muscles activate more during an extension intention. Moreover, the
RMS envelope of these channels would be greater than the RMS envelope of the BF and
the ST muscles during an extension intention. Therefore, the conversion coefficients
of the RFpps and the VMpyss have a positive sign, ie., agr = 1, brr = 0, ayy = 1, and
byy = 0. The BF and the ST muscles activate more during a flexion intention. Therefore,
the conversion coefficients of the BFrps and the STrprs are negative, since that these
muscles are opposed to the RF and the VM muscles, i.e., apr = —1, bgr = 0, ast = —1,
and bgr = 0. Therefore, when the subject intends to perform a knee flexion, the LC is
negative in a comparable way to the MVC exercise for the flexion, and when the sub-
ject intends to carry out a knee extension, the LC is positive proportionally to the MVC
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exercise for the extension. Therefore, the motion intention of the proposed LC algorithm
is a continuous value between — 2 and 2, i.e., LC € [—2,2], where — 2 and 2 are achieved
during the MVC exercises in flexion and extension, respectively. Finally, the LC was fil-
tered using a low-pass digital Butterworth Filter with a cut-off frequency of 2 Hz, order
one, to remove the peaks and smooth the signal.

Myoelectric control

This section shows how the motion intention algorithm presented before and the
movement control algorithm, based on a Computed Torque Control (CTC) algorithm
reported by the authors in a previous publication [26], were joined as an HIL simulation
to create the MEC algorithm.

The protocol of the tests was carried out in real-time conducting the pre-recorded
sEMG signals to the MEC algorithm. These signals correspond to those of the exer-
cises mentioned in Table 1, specifically exercises 7—9, which correspond to concen-
tric dynamic contraction of flexion and exercises 10—12 that correspond to concentric
dynamic contraction of extension exercises. The tests assessed if the movement devel-
oped by the robotic system corresponds to the movement intention executed by the
subject during the experimental protocol. Therefore, the tests did not involve individ-
uals or animals but pre-recorded signals using a custom-made sEMG signal simulator.

A four component architecture was used to conduct the protocol of tests. The cus-
tom-made sEMG signal simulator is the first element. The simulator was developed in
Python, a high-level programming language. The custom-made sEMG signal simula-
tor extracts the signals from the computer and sends them from a computer to the
BBB. The computer used for the tests was an Intel® Core™ i5 with a 4 GB DD3 mem-
ory RAM. The computer communicates with the BBB through TCP/IP within a pre-
defined communication port. The sampling period was set to TS = 0.02s. Therefore,
the signals were extracted using a 20 ms window each time. The portion of the sSEMG

signals was conducted to the second component. A real-time implementation of the

Table 1 Exercises conducted during the experimental protocol

Exercise Description

MVC (flexion) with the knee flexed at 90° and the hip at 0°

75% isometric contraction (flexion) with the knee flexed at 90° an the hip at 0°

50% isometric contraction (flexion) with the knee flexed at 90° and the hip at 0°

MVC (extension) with the knee flexed at 90° and the hip flexed at 90°

75% isometric contraction (extension) with the knee flexed 90° and the hip flexed 90°
50% isometric contraction (extension) with the knee flexed at 90° and the hip flexed at 90°
1RM (flexion) test with the knee flexed at 90° and the hip at 0°

Concentric dynamic contraction (flexion) at 75% of the TRM estimated in exercise 7, with the knee
flexed at 90° and the hip at 0°

9 Concentric dynamic contraction (flexion) at 50% of the 1RM estimated in exercise 7, with the knee
flexed at 90° and the hip at 0°

10 1RM (extension) test with the knee flexed at 90° and the hip flexed 90°

1 Concentric dynamic contraction (extension) at 75% of the 1RM estimated in exercise 10, with the knee
flexed at 90° and the hip flexed at 90°

12 Concentric dynamic contraction (extension) at 50% of the 1RM estimated in exercise 10, with the knee
flexed at 90° and the hip flexed at 90°

o N Oy~
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Fig.5 Set-point conversion for the MEC

sEMG signal processing algorithm presented in Section Motion intention algorithm
is the second component. The SEMG signal processing algorithm was implemented
in real-time in a BBB which has an AM335x 1 GHz ARM® Cortex-A8 processor and a
512 MB DDR3 Memory RAM. This implementation was also conducted using Python.
The sEMG signal processing algorithm was developed in real-time as an HIL simula-
tion, i.e., tests were performed using pre-recorded signals. Moreover, tests were car-
ried out as proposed in the simulation-based methodology stated by the authors in
[28, 29].

The motion intention was sent through TCP/IP to the third component, which
was the movement control algorithm presented by the authors in [26], and was also
located in the BBB. To do so, a set-point conversion is conducted as shown in Fig. 5,
i.e., the output of the motion intention algorithm LC is scaled taking into account that

giKnee = oLC + B, (3)
where g;Knee € R is the desired speed for the knee joint, & € R is the amplitude scal-
ing factor, and B € R is the offset, two parameters left to the physiotherapist’s choice,
according to the exercise. Subsequently, g;Hip € R and g Ankle € R are derived, which
are the desired angles given by the goniometers for hip and ankle joints, respectively.

Page 8 of 28
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Therefore, g;Hip € R and g;Ankle € R, the desired speed for the hip and ankle joints
are obtained, respectively. In Fig. 5, the notation [# x m] is the size of the signal bus
where 7 is the number of signals, and m is the number of samples in the observation
window. The movement control algorithm is responsible for computing the torque
17, € R®*L, The calculated torque 7, is sent back to the computer through TCP/IP, to
the fourth component, which is the mathematical model of Nukawa presented by the
authors in [26].

The simulation of the dynamics of Nukawa is performed in the computer, in MAT-
LAB, computing g,, € R®*1, g;, € R3*1, and g, € R3*! which represent the joint meas-
ured positions, velocities, and accelerations, respectively, i.e., after the simulation of the
dynamics. Therefore, the graphic model moves as the desired path indicate it. Finally, an
acknowledgment was sent back, and the loop was repeated each sampling period.

In order to validate that the MEC algorithm works correctly during actual exercises
for rehabilitation of ACL injuries, six tests were conducted using the six dynamic
exercises presented before, i.e., exercises 7—12. The graphic and numerical results of
the six tests are shown below. These tests were carried out randomly, i.e., the combi-
nation of subject and exercise was randomized.

Experiments and results

The tests of the algorithm were conducted in the offline programming environment
MATLAB and as an HIL simulation in Python within a BBB Rev C. sSEMG and kinematic
signals of healthy subjects were obtained to test the algorithm. Finally, a test protocol
was conducted to assess the behavior of the MEC algorithm for robot-assisted rehabili-
tation and its possibilities to aid rehabilitation therapies for ACL injuries.

Subjects

An experimental protocol with 17 healthy subjects was conducted to record SEMG sig-
nals and its corresponding kinematics associated with rehabilitation body movements
for ACL injuries. The ethics committee approved these tests.

Before each test all participants were deemed healthy under a clinical evaluation car-
ried out by a health professional. Body weight, body height, blood pressure, heart rate,
respiration rate, and body temperature were measured. Therefore, all of them were
accepted in the study. The tests also recorded the age, suprapatellar perimeter, calf
perimeter, inter-joint hip/knee distance, and inter-joint knee/ankle distance. The age of
participants ranged from 19 to 47 years, with a median (interquartile range) of 25.5 years
(23-30.5 years). Moreover, the body weight ranged from 50.1 to 81.9 kg and the body
height ranged from 1.46 to 1.85 m. In addition, the inter-joint hip/knee distance ranged
from 0.35 to 0.44 m and the inter-joint knee/ankle distance ranged from 0.35 to 0.47 m.

Signal acquisition

In order to capture the movements performed by the subjects, the acquisition device
was the wearable body sensing platform Biosignalsplux Professional (Plux, Lisbon, Por-
tugal). The Biosignalsplux is a wireless device used to record and send real-time infor-
mation captured by various sensors that can be connected. The sampling rate was
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configured to fs = 1kHz. The sensed data was stored using the OpenSignals software
(Plux, Lisbon, Portugal). In order to capture the movements performed by the subjects
during the selected experimental protocol, three twin axis goniometers (SG150) were
used (Biometrics Ltd, Newport, UK). However, the tests only used the FE channels of
each goniometer to measure hip FE movements, knee FE movements, and ankle DP flex-
ion movements. The goniometers were located in the subject’s dominant lower limb. The
location of the goniometers was conducted following some of the recommendations of
the goniometer and torsiometer operating manual from Biometrics Ltd [33].

The sSEMG sensor placement was determined based on some of the recommendations
of the SENIAM Project [31]. According to the ISEK Standards for Reporting EMG Data
[30] the characteristics of the procedure are shown:

The raw signal was detected using four pairs of commercial, disposable and adhesive gel
surface electrodes placed in different parts of the upper leg of a group of healthy subjects,
along with a reference electrode. The electrodes had a disc shape and were made of Ag/
AgCl. They were placed with an interelectrode distance of approximately 3.5 cm, center
point to center point. The skin of fourteen subjects was shaved, and three subjects were not
shaved. The area of interest was cleaned with alcohol before placing the electrodes to reduce
the impedance between the electrodes and the skin. The electrodes were placed in order
to detect flexion and extension of the knee, i.e., Rectus Femoris (RF), and Vastus Medialis
(VM) muscles, detecting activation when the knee joint was extended, and Biceps Femoris
(BF) and Semitendinosus (ST) muscles, detecting activation when the knee joint was flexed.

The electrodes were fixed parallel to the muscle fiber direction using the dominant
middle portion of the muscle belly for best selectivity and avoiding the region of motor
points. The signals were acquired using the Biosignalsplux. The device has a differential
configuration, an input impedance of 100 G2, CMRR of 100 dB, and it was configured
with a gain of 1000. The biosignals were sampled at 1 kHz. The reference electrode was
located on the Processus Spinosus of C7, in an electrically unaffected area.

To acquire the sSEMG signals regarding ACL rehabilitation exercises, 12 exercises were
conducted with each subject. Table 1 presents a description of the 12 exercises that were
selected with the assistance of a physiotherapist with a graduate certificate in Biomedical
Engineering. The test took approximately 2 h with each participant.

The physiotherapist selected six isometric exercises (1-6) and six concentric dynamic
contraction exercises (7—12). Figure 6 presents two gym machines that were used during
the experimental protocol for these two types of exercises. Figure 6a and b present the
leg extension machine and the crossover machine, respectively.

The concentric dynamic contraction exercises were conducted taking into account the
one-repetition-maximum (1RM) test. This test evaluates the maximum weight that an
individual can lift only once for an exercise. Conducting the 1RM test may be contrain-
dicated for some populations with preexisting medical conditions. Therefore, several
1RM strength prediction equations have been proposed, i.e., the 1IRM can be predicted
lifting the greatest weight possible for a certain number of repetitions, until fatigue [34,
35]. Some of the formulas were proposed by Lander [36], Brzycki [37], O’Connor et al.
[38], and Epley [39]. Epley proposed that

IRM = w(1+ 55 ) = (0.0333w)r +w @)
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A WA
Fig. 6 Gym machines used during the experimental protocol: a leg extension machine and b crossover
machine

where w represents the weight lifted by the subject and r is the number of repetitions

executed, until fatigue. Equation (4) is widely employed due to its ease of use.

Results of the offline implementation

The tests of the sSEMG signal processing algorithm were conducted with the signals
acquired from the 17 healthy subjects. However, to exemplify the algorithm, the imple-
mentation with the signals obtained during the tests with the fifth subject (S5) is pre-
sented below (randomly selected). Figure 7 presents the results of the LC in light gray,

T T T T T T T
Linear Combination
Filtered Linear Combination |_|

251
o 2f 1
o
2
S
€
s J
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@
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©
£
s J
P4

0 L L L L I I
0 1 2 3 4 5 6 7

Time (s)

Fig. 7 LCand LC filtered from exercise 4 of the S5
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Subject1 b Subject9

Amplitude
Amplitude

0 2 4 6 8 0 2 4 6 8
Time (s) Time (s)
Fig. 8 Linear combination from: a subject 1 during the three isometric extension exercises and b subject
9 during the three isometric flexion exercises. Red line represents the MVC extension exercise, green line
represents the extension exercise with 50% of subjects body weight, and blue line with 75%

and the LC filtered in black. In this figure, it can be observed the detection of the sub-
ject’s intention to perform an extension movement, since the LC filtered has a positive
sign.

Figure 8a presents the results of conducting the signals of all three isometric exten-
sion exercises (4—6) from subject 1 to the motion intention algorithm. Figure 8b presents
the results of conducting the signals of all three isometric flexion exercises (1-3) from
subject 6 to the motion intention algorithm. Each subfigure has three lines, one for exer-
cise. The red, green, and blue lines represent the detection of the motion intention LC
for the MVC test, 75% isometric contraction, and 50% isometric contraction exercises,

respectively.

Graphic results of the protocol of tests
With the purpose of exemplifying the behavior of the MEC, the implementation with the
signals obtained during exercise 9 with the seventh subject (S7) is presented below.

Figure 9a—d presents the result of an HIL simulation for exercise 9 with S7. During
exercise 9, the subject was prone on a flat bench with the knee flexed 90°, hip at 0°. Their
ankle was fastened with a belt to a crossover machine. However, the simulations were
conducted with the subject in a supine position, since Nukawa is not designed to per-
form therapies in a prone position. The above is acceptable for rehabilitation purposes
since the exercises were selected taking into account international protocols for rehabili-
tation of ACL injuries, as presented in “Signal acquisition” section.

The online simulation presented in Fig. 9a was conducted using a 3D CAD model of
Nukawa. This simulation included the kinematics of the robot. The simplified model
of the robot was used as well, to reduce the computational time of the real-time tests.
Figure 9b presents the result of the HIL simulation with the simplified model. In both
figures, the red and dotted line represents the actual endpoint of the robot, i.e., the
distal point of the third limb. In Fig. 9c presents the desired speed in a continuous line
and the actual speed in a dotted line. In this figure, it is possible to observe that the
system can follow the desired speed, i.e., the motion intention since both have similar
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a Sagittal plane (X2). Schematic of Nukawa Exosqueleton b Sagittal plane (XZ). ic of
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Fig. 9 Results of the HIL simulation using a trajectory extracted during exercise 9 with S7 a 3D simulation, b
simplified simulation, ¢ desired speed vs. actual speed, and d speed error

Table 2 Trajectory tracking error of the control algorithm which was commanded
with a set-point of gsKnee

Subject Exercise B, (°) MAE position (°, °, ©)
7 9 180 (0.11,5.953,0.332)

" 10 90 (0.002, 1.209, 0.005)
14 8 180 (0.008, 2.270, 0.046)
18 12 90 (0.004,2.031,0.007)
20 il 90 (0.012,6.355,0.401)
12 7 180 (0.048,4.997,0.233)

behavior. Also, it can be denoted that the system follows the imposed set-point visu-

alizing the error presented in Fig. 9d.

Numerical results of the protocol of tests

The numerical results of the behavior of the MEC algorithm are shown in Table 2, which
presents the trajectory tracking mean absolute error (MAE) of the control algorithm
which was commanded with a set-point of §;Knee. As indicated in the table, the maxi-
mum position MAE is 0.1°, 6.3° and 0.3° for the hip, knee, and ankle joints, respectively.

Thus, the error is lowest in the knee.



Yepes et al. BioMed Eng OnLine (2019) 18:3 Page 14 of 28

For the above, the contribution of the MEC algorithm was validated for the implemen-
tation of robot-assisted rehabilitation of ACL injuries. During these therapies, the MEC
algorithm would detect when the subject tries to move the knee, but due to the pain
caused by the ACL injury, the patient is not able to execute the motion. Therefore, the
MEC algorithm would assist its movement using the robotic system.

Discussion

The novelty of the MEC algorithm proposed in this paper has two relevant character-
istics. The first one is a simplified SEMG signal processing algorithm, to detect move-
ment intention, that only requires an MVC test for calibration, i.e., it does not require
additional sensors. The second one is that the motion intention was mapped to a speed
set-point instead of a position or torque set-point, as is usually reported in the literature.
A wider explanation of both characteristics is presented below.

To expand the information of the first characteristic, it is important to mention that
some of the algorithms reported in the literature use a machine learning algorithm for
the motion intention detection [17, 23, 40, 41]. Moreover, other algorithms use a model-
based approach [22, 24, 42, 43]. However, those algorithms are more complex than the
one reported in this paper. Therefore, they need more computing power. In the case of
the proposed MEC algorithm, a simplified sSEMG motion intention detection approach
was achieved, similar to the ones proposed by [19-21]. The simplicity of the proposed
algorithm makes it different from several approaches reported in the literature, where
Artificial Neural Networks (ANN), Support Vector Machines (SVM), Hill-type mus-
cular models, among others are used. This simplicity makes it easy to implement the
algorithm in real-time. In comparison with other approaches that use machine learn-
ing algorithms, it is not necessary to perform high computational processes. A simple
MVC calibration process is enough. The MVC test is used in most sSEMG investigations
to normalize the signals. Additionally, the proposed MEC algorithm requires no data
sets, as the machine learning algorithms reported by other authors [40, 41, 44]. Since
the sSEMG signal is changing each session, it would be necessary to capture the MVC
signal every time the algorithm is used, i.e., it requires an MVC exercise to obtain the
calibration values for each session to process and detect the motion intention with EMG
signals. Therefore, the MVC test may be conducted each time that the subject wears the
robotic system to perform the simple calibration process. The information coming from
sEMG signals was enough to detect the subject’s intention. No extra sensors, in addi-
tion to the sSEMG electrodes, are required for the proposed MEC algorithm to work.
Other approaches require additional sensors such as accelerometers, encoders, torque
meter, goniometers, among others [17, 42, 45-47]. Additional sensors have the disad-
vantage that they deliver information about the intention after SEMG sensors and add
extra costs. SEMG signals allow having an a priori estimation of the subject’s intention
since sSEMG signals appear before the muscle contraction is generated, i.e., the so-called
electromechanical delay (EMD) [45].

The second characteristic is that the proposed MEC algorithm uses a velocity
set-point. In this MEC algorithm, the motion intention was mapped to a speed set-
point, using (3). Other algorithms [17, 18, 41, 43, 44] estimate the joint angle or even
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interaction torque, however, the proposed MEC algorithm detects the intention and ori-
entation of the intention. This information is enough in the application for the robotic
system Nukawa and can be useful for other areas such as biofeedback or interaction
with robotic systems. Table 3 presents a comprehensive comparison with other sSEMG
motion intention algorithms. According to the results, an approximation of the intensity
through a simplified algorithm was obtained despite not being the objective pursued.
In this case, the intensity is unitless and is proportional to the MVC. The assumption
is that, as reported in the state of the art if the coefficients of the LC were identified by
the calibration process with additional torque sensors, the algorithm would estimate the
torque.

Some limitations of this study are: The proposed algorithm was tested on both offline
and online. However, the results cannot be generalized to the entire population, only
to the sample, i.e., the study population is not statistically significant to generalize the
results. Also, as the tests were performed on healthy subjects, it is still not possible to
conclude about the behavior of the MEC algorithm with SEMG signals from subjects
with ACL injuries. Therefore, the results obtained cannot be extrapolated directly to
people with this type of injury. This restriction also applies to all approaches reported in
the literature that conducted the tests with healthy subjects where the extension to other
conditions must be proven. Also, the experimental protocol did not consider to measure
or control the factors that affect the SEMG signals, e.g., the environmental temperature,
the body temperature, the skin impedance and location of the electrodes. Therefore, it is
not feasible to conclude if the proposed MEC algorithm is affected by these factors.

Finally, CTC is a model-based control which enables compliant robot control with
small tracking errors for accurate robot models. Nevertheless, the proposed MEC algo-
rithm was tested only with this controller. Therefore, future work includes several tests
to the MEC algorithm with other control algorithms to assess the robustness.

Conclusions

Surface electromyography (sSEMG) signal processing algorithm, based on the algorithm
reported by Hayashi et al. in [19], was proposed. The proposed algorithm detects the
motion intention in the knee joint and requires no prior training with sSEMG signals
from other subjects. Moreover, no additional torque sensor is required to estimate the
conversion coefficients from the Linear Combination (LC) algorithm.

The results showed that when a subject intended to perform a knee flexion or exten-
sion, without executing the movement, the algorithm detected the orientation of
the movement intention. Moreover, when a subject intended to carry out an exten-
sion movement, the algorithm detected an LC with a positive sign, and when a subject
intended to perform a flexion movement, the algorithm detected an LC with a negative
sign.

The behavior of the myoelectric control (MEC) algorithm for robot-assisted rehabilita-
tion and its possibilities to support rehabilitation therapies for ACL injuries was tested
through a protocol of tests. Both algorithms were joined together, i.e., the sSEMG sig-
nal processing algorithm, and the movement control algorithm. The protocol of tests
was conducted as an HIL simulation conducting the pre-recorded sEMG signals to the
MEC algorithm. The results of the HIL simulations shown that the MEC algorithm is a
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potentially useful tool for the implementation of a robot-assisted rehabilitation protocol
for ACL injuries. However, this proposal cannot be generalized for the entire population,
but can only be considered for the sample, i.e., the 17 healthy subjects of the people who
participated in the study.

The main contribution of this paper is the combination of two algorithms to propose
a MEC algorithm. The arrangement reveals something useful to perform robot-assisted
therapy for ACL injuries. The algorithm detects the motion intention and controls a
robotic rehabilitation system to assist the knee movement, i.e., such as in active-assisted
extension exercises but with an exoskeleton.

In conclusion, the proposed MEC algorithm improves upon previous alternatives since
it is a simple algorithm which requires a small amount of processor and no additional
sensors. Future work includes several tests with pre-recorded signals and the actual
robot, i.e., to test the MEC algorithm with the real robot and pre-recorded signals. Also,
it is possible to extend the endorsement from the ethics committee to conduct several
tests with healthy subjects with the Biosignalsplux (Plux, Lisbon, Portugal) or any com-
mercial acquisition device, or even to perform a clinical Trial to assess the behavior of
the MEC algorithm but with patients, not just with healthy subjects. Finally, future work
includes to test and evaluate the MEC during a rehabilitation process with Nukawa.
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