
NeoAnalysis: a Python‑based toolbox
for quick electrophysiological data processing
and analysis
Bo Zhang1,2, Ji Dai1,2,3* and Tao Zhang1,2

Abstract

Background: In a typical electrophysiological experiment, especially one that includes
studying animal behavior, the data collected normally contain spikes, local field
potentials, behavioral responses and other associated data. In order to obtain informa-
tive results, the data must be analyzed simultaneously with the experimental settings.
However, most open-source toolboxes currently available for data analysis were devel-
oped to handle only a portion of the data and did not take into account the sorting of
experimental conditions. Additionally, these toolboxes require that the input data be in
a specific format, which can be inconvenient to users. Therefore, the development of
a highly integrated toolbox that can process multiple types of data regardless of input
data format and perform basic analysis for general electrophysiological experiments is
incredibly useful.

Results: Here, we report the development of a Python based open-source toolbox,
referred to as NeoAnalysis, to be used for quick electrophysiological data process-
ing and analysis. The toolbox can import data from different data acquisition systems
regardless of their formats and automatically combine different types of data into a
single file with a standardized format. In cases where additional spike sorting is needed,
NeoAnalysis provides a module to perform efficient offline sorting with a user-friendly
interface. Then, NeoAnalysis can perform regular analog signal processing, spike train,
and local field potentials analysis, behavioral response (e.g. saccade) detection and
extraction, with several options available for data plotting and statistics. Particularly,
it can automatically generate sorted results without requiring users to manually sort
data beforehand. In addition, NeoAnalysis can organize all of the relevant data into an
informative table on a trial-by-trial basis for data visualization. Finally, NeoAnalysis sup-
ports analysis at the population level.

Conclusions: With the multitude of general-purpose functions provided by NeoAnal-
ysis, users can easily obtain publication-quality figures without writing complex codes.
NeoAnalysis is a powerful and valuable toolbox for users doing electrophysiological
experiments.

Keywords: NeoAnalysis, Python, Electrophysiology, Analysis, Toolbox, Spike, Offline
sorting, Saccade detection

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

SOFTWARE

Zhang et al. BioMed Eng OnLine (2017) 16:129
DOI 10.1186/s12938‑017‑0419‑7 BioMedical Engineering

OnLine

*Correspondence:
dai_jijj@hotmail.com
3 Shenzhen Key Lab
of Neuropsychiatric
Modulation
and Collaborative Innovation
Center for Brain Science, CAS
Center for Excellence in Brain
Science and Intelligence
Technology, the Brain
Cognition and Brain Disease
Institute (BCBDI), Shenzhen
Institutes of Advanced
Technology, Chinese
Academy of Science,
Shenzhen 518055, China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-2917-2941
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-017-0419-7&domain=pdf

Page 2 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

Background
Rapid advancements in electrophysiological techniques in the past few decades have
enabled researchers to gather vast amounts of data from numerous neurons [1]. Mean-
while, various software tools have also been developed for data storage, exploration, and
analysis [2, 3]. Electrophysiological experiments studying animal behaviors (e.g. rodents
and primates) typically include a variety of data, such as the neuronal and behavioral
data collected by the data acquisition system as well as any associated data indicating
the animal status, the stimulus parameters, and other constraints [4]. Informative results
require the processing and simultaneous analysis of all of this information; this requires
analysis tools that are capable of handling neural data and performing the analysis of
the data according to the experimental settings. Typically different data acquisition sys-
tems use their proprietary formats for data storage, which impedes data sharing and also
makes the development of analysis tools challenging.

Currently, several commercial programs for electrophysiological data processing and
analysis (e.g. Offline Sorter [5], Neuroexplorer [6]) are available. However, they are costly
and often cannot satisfy the demands of the rapid developments being made in the
field of electrophysiology. Subsequently, open-source software packages are constantly
emerging. Some of these toolboxes, such as the Spike Train Analysis Toolkit [7], the
FIND [8] and the Chronux [9], are very popular. However, these toolboxes are developed
based on MATLAB, which is not a free program, and may not be affordable for labora-
tories with a limited budget. Therefore, it would be better to develop a toolbox to pro-
cess electrophysiological data based on open-source software. In this study, we propose
using a programming language that has been widely used in scientific computing and is
compatible with all major operating systems including Windows, Linux, and Mac OS:
Python, a freely available program with plenty of existing open-source packages. Addi-
tionally, using certain packages like pandas [10], Python is capable of integrating differ-
ent types of data, including numbers, strings, and lists into one data table regardless of
the length of each element. This flexibility and compatibility make Python very suitable
for handling the complex electrophysiological data, which contain multiple types of data.

In fact, several Python-based toolboxes have already been developed to process and
analyze specific portions of the electrophysiological data. For example, Neo is a useful
package aiming to standardize electrophysiological data and solve the data format prob-
lem [11]; Klusters can be used to perform offline spike sorting [12]; Spyke Viewer can be
used to analyze spike trains [13]; and Elephant can be used to analyze spike trains and
time series data, including local field potentials (LFP) [14]. However, in practice, using a
variety of different toolboxes during data analysis is inconvenient and inefficient. Among
them, the Klusters still requires the input data be formatted in specific ways, making it
difficult to use. More important, although these toolboxes provide basic plotting func-
tions, they do not take into account the sorting of experimental conditions. To plot the
result of a specific condition, users have to manually sort the data before using these
toolboxes. One toolbox that integrates all of these functions, including spike sorting,
spike train and LFP analysis with condition sorting, and supports all data formats for the
major data acquisition systems, will facilitate the efficient analysis of electrophysiological
data. Recently, Garcia et al. [4] proposed a similar framework for data storage and analy-
sis called OpenElectrophy. However, they did not provide specific analysis and statistic

Page 3 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

functions. Even in the proposed data frame, it is difficult to visualize data and the user
interaction requires further improvement. In particular, this toolbox does not take into
account the detection of saccades, which are important behavioral indicators for some
experiments [15, 16]. In this study, we developed a toolbox called NeoAnalysis, which
overcomes the shortages of other packages and facilitates efficient analysis.

Implementation
Design principles

NeoAnalysis aims to provide an out-of-the-box tool for users to process and analyze dif-
ferent types of data obtained during a typical electrophysiological experiment. To this
end and overcome the aforementioned shortages of existing toolboxes, we develop Neo-
Analysis following the principles described below:

The first concern is the data format problem. Currently, different data acquisition sys-
tems save the recorded data in their proprietary file formats. We want NeoAnalysis to
support most formats for the major commercial systems including Blackrock (Black-
rock Microsystems LLC, Utah, USA), Plexon (Plexon Inc., Dallas, TX, USA), and TDT
(Tucker-David Technologies; Alachua, FL, USA). Therefore, it is necessary to convert the
input data to a standardized format, which will ease the subsequent work in scripting
analysis programs. As we know, a typical electrophysiological experiment normally col-
lects spikes, analog signals (e.g. LFP), experimental settings, and behavioral responses
(Fig. 1). The solution is to divide these data into four basic entities regardless of their
original formats: Spike, Analog, Event, and Comment.

 • A Spike entity contains the time points at which the action potentials occur, as well as
their waveforms and unit classification.

 • An Analog entity contains the continuous data that was recorded at a given sampling
frequency, such as LFP.

 • An Event entity contains the time points and the labels defining the occurrence of
specific events, such as the onset of a stimulus or the occurrence of a button press.

 • A Comment entity contains the time points and the labels that define the experimen-
tal settings, such as the orientation of the stimulus in each trial.

With the help of Neo [11], which is an open source package aiming to standardize
electrophysiological data, the input data can be easily imported to generate the Spike,
Analog and Event entities. However, the obtained Event entity (Neo_Event) actually
includes both events and comments according to our definition. Given comments are
required for condition sorting during data analysis, mixing these two entities will make
this procedure difficult. So we extend the Neo package in our program to further divide
the Neo_Events to the real Event entity and Comment entity according to our definition.
Then, we save these entities in a standardized format. Examples of how these entities are
organized in the output file are shown on the right side of Fig. 1. This procedure substan-
tially eliminates the limitation due to data format and enhances the compatibility of this
toolbox.

Secondly, to ensure the toolbox can handle the entire workflow for electrophysiologi-
cal data analysis, we design six modules for users to import and convert data, detect

Page 4 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

spikes, perform offline spike sorting, filter analog signal, analyze single session data and
population data (Fig. 2).

TransFile

The TansFile module assists users to convert the raw data of any supported format to an
HDF5 file using the preceding principle. The HDF5 format is used because it is a highly
efficient format for data I/O, especially for data of a large volume and a complex struc-
ture. In addition, it is a unified format that can be used by different operating systems
and programming languages [17].

SpikeDetection

The SpikeDetection module is used to detect spikes from the raw signals. Given most
data acquisition systems support online spike detection, this module will not be used
for most users. In the case when non-standard recording systems are used and addi-
tional spike detection procedure is required, we designed this module for users to detect
spikes with a graphic user interface (GUI). In addition to manually setting the threshold
and selecting waveform [18], this module supports automated spike detection based on
a widely used unsupervised algorithm proposed by Quiroga et al. in 2004 [19].

Recording starts Time Recording ends

An
al

og
 s

ig
na

ls channel
120
121
122

Analog entity

Sp
ik

es

23

24

25

channel

Sp
ik

es

Spike entity

trial 1 trial 2 trial 3 trial n… … …Ex
pe

rim
en

ta
l s

et
tin

gs

Be
ha

vi
or

al
 re

sp
on

se
s

tri
al

 o
n

fix
at

io
n

ac
q

or
ie

nt
at

io
n:

10
°

fre
q:

 2
0

H
z

tri
al

 o
ff

st
im

ul
us

 o
n

bu
tto

n
pr

es
s Event entity

Comment entity
trial 2

&

Fig. 1 The principle for data standardization in a typical electrophysiological experiment. The experiment
normally runs in a trial-by-trial manner, so the data collected must include the experimental settings defining
the conditions in each trial and the behavioral and neuronal responses. These data can be divided into Event,
Comment, Spike and Analog entities. The Event entity represents the occurrence of specific events, such as
a stimulus is turned on or a button is pressed (green bar in the top panel). The Comment entity contains
information that defines the experimental settings, such as the orientation of the stimulus in each trial (blue
bar in the top panel). The Spike entity records the action potentials (middle panel), and the Analog entity
records analog signals including local field potential (bottom panel). For a given data set, we convert the data
into these four entities regardless of their original format and save in a standardized format for future use. The
right side shows how these entities are organized in the output file

Page 5 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

SpikeSorting

The SpikeSorting module is for resorting spikes with a GUI. In the current design, it sup-
ports both automated and manual sorting. The algorithm for automated sorting is an
unsupervised method based on wavelet analysis and superparamagnetic clustering [19,
20]. In cases when users are not satisfied with the result of automated sorting, we pro-
vide additional manual options: the window discriminator and the principal component
analysis (PCA) discriminator. Users can either use the line widget to select waveforms
or the polygon widget to select data points for re-sorting. We also provide a 3D view
of the first three principal components. This 3D space can be rotated, zoomed in, and
zoomed out to reveal the distribution density of the data set in this space with appropri-
ate transparency.

Parameters/responses/recorded data

Tr
ia

l n
um

be
r

Raw data

Analog entity Spike entity Event entity Comment entity

Split data into individual trials

Align data to a specific event

Sort data according to given conditions

Spike
LFP
Behavior

(Plots & Statistics)

SpikeSortingAnalogFilter

SpikeDetection

W
in

do
w

 d
is

cr
im

in
at

or
P

C
A

Th
re

sh
ol

d
W

av
ef

or
m

B
an

d
pa

ss
 /

B
an

d
st

op

Analyze
 &
Display

Population Analysis

Save temporary results

Import & Convert

Saccade detection

TransFile

Graphics

PopuAnalysis

Fig. 2 The six major modules of NeoAnalysis and their functions. Each panel represents one module, and
arrows indicate the general workflow. The TransFile module is used to import data from any of the supported
formats and extract the data to Analog, Spike, Event and Comment entities, and then convert to a standard-
ized format (HDF5). The AnalogFilter module is used to filter analog signals. The SpikeDetection module can
detect spikes from the analog signal and then feed to the SpikeSorting module, which resorts spikes offline.
The graphics module first organizes all of the relevant data into a data table on a trial-by-trial basis for data
visualization, and then provides functions to analyze the data and display the results. This module supports
data computation and saccade detection in addition to common analyses of spikes, local field potentials,
and other behaviors. The last module, PopuAnalysis, can retrieve the saved result of each single session and
perform population analysis

Page 6 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

AnalogFilter

The AnalogFilter is used to filter the Analog data using common filters including band-
pass, band-stop, low-pass, and high-pass filters. For each of these filters, users can select
the filter method from the available list including Chebyshev I, Chebyshev II, Cauer/
Elliptic, and Bessel/Thomson. In addition, users can define their own filters. The current
design provides a GUI window for users to perform filtering. Alternatively, users can
also use command scripts.

Graphics

The graphics is a module used for data visualization and analysis. In our design, this
module first groups data into a table on a trial-by-trial basis according to experimental
conditions, and then allows users to perform analyses such as plotting PSTH. In the data
table, a row represents a trial, and a column represents a specific type of data, such as
stimulus onset time, offset time, reaction time, spike, and LFP. There is also an available
option to customize the table to include only selected trials using specific settings (speci-
fied by the parameter ‘limit’). This is very useful when you only want to analyze a portion
of the data. For the data in the table, the graphics module can do more than just plot the
whole group of data; it can also sort the data according to the given conditions (specified
by the parameter ‘sort_by’). The sorting function here supports up to two levels of condi-
tioning. For example, one experiment studies the difference in orientation tuning using
grating stimuli of different spatial frequencies. Suppose there are two spatial frequencies
and eight orientations, then the sorting function can classify the results into two major
categories, each category containing eight conditions. For spike train analysis, the graph-
ics module provides functions to draw raster, PSTH, and the accumulated spike counts;
for analog data (e.g. LFP), the graphics module can draw the average signals and perform
spectrum analysis or a time–frequency analysis; for behavioral responses (e.g. choices,
reaction times), the graphics module provides several general-purpose functions to ana-
lyze scalar values. Additionally, the graphics module provides functions to calibrate eye
position, to detect saccades, and to extract saccade information. For all of these analy-
ses, the results can be stored in a workspace for further analysis (e.g. population analy-
sis). The graphics module does not provide any GUI for the aforementioned functions.
Instead, users need to type their commands through the Python command window in
order to run a specific function. All of the functions provided here have several open-
ing settings, and users can easily change these parameters to obtain the required results.
Therefore, the commands are more flexible in terms of analyzing complex electrophysi-
ological data.

PopuAnalysis

In order to analyze the electrophysiological data at the population level, we designed the
PopuAnalysis module. This module uses the results stored in the workspace obtained
from analyzing single session data. For the spike train analysis, this module can plot the
mean PSTHs for different conditions across a population of neurons. For analog data,
this module can plot the mean signal, the power spectrum, and the time–frequency
spectrum for different conditions across the population. For behavioral data (e.g. reac-
tion time), this module can plot the mean values with error bars across the population.

Page 7 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

In addition, this module provides several commonly used statistical functions including
descriptive statistics, t test, and ANOVA.

Features and capabilities

Following the design principles, NeoAnalysis has the following features:

 • NeoAnalysis supports most data formats from the major commercial data acquisi-
tion systems through combining the Neo package [a powerful open-source module
for data input/output (I/O)] [11].

 • NeoAnalysis provides user-friendly GUIs and data viewing through integrating the
open-source module PyQtGraph [21]. The PyQtGraph is a Python based graphics
and GUI library, which uses less memory and performs much more efficiently than
simply using the embedded graphic library ‘matplotlib’ [22]. Furthermore, NeoAnal-
ysis puts a lot of emphasis on user interaction design. In particular, it provides several
easy-to-use widgets for offline spike sorting.

 • NeoAnalysis groups all of the experimental information, including the recorded sig-
nals, behavioral responses, and the results of preprocessing into a table on a trial-by-
trial basis. This informative table can be easily displayed and can be further sorted
according to given conditions (e.g. experimental conditions). Furthermore, Neo-
Analysis provides many other functions to manipulate the table and run the further
analysis.

 • NeoAnalysis provides a complete workflow for electrophysiological data analysis,
which covers data standardizing, data preprocessing, single unit analysis, data stor-
age, and population data analysis. Throughout the entire data analysis process, users
do not have to switch between different programs and toolboxes. More important,
NeoAnalysis takes into account the experimental conditions and supports analyzing
with automatic condition sorting. Therefore, users can obtain sorted results by sim-
ply specifying parameters in the commands without writing additional scripts.

 • NeoAnalysis is capable of processing eye movement information, including calibrat-
ing eye position and detecting saccades. During experiments, when recording eye
movement trajectories, it is essential to detect the occurrence of saccades and to
extract the relevant information. Previous open-source toolboxes generally do not
provide such functions.

 • Due to the incompatibilities between Python 2.7 and Python 3.5, NeoAnalysis pro-
vides two slightly different versions for these two releases.

Results
Procedures of analysis using NeoAnalysis

After successfully installing NeoAnalysis1, users can use the toolbox following the proce-
dures depicted in Fig. 2. A step-by-step tutorial can be found in the user manual.2 In brief,

1 The NeoAnalysis v.1.0.0 can be freely downloaded from https://github.com/neoanalysis/NeoAnalysis.
2 For the purpose of stability and compatibility, NeoAnalysis integrates the Neo and PyQtGraph packages. Installation of
these two packages is not necessary, however, users do need to install the other required packages, including numpy, scipy,
matplotlib, scikit-learn, quantities, pyopengl, pandas, h5py, statsmodels, PyWavelets, and seaborn. The installation guide
can be found in the user manual.

https://github.com/neoanalysis/NeoAnalysis

Page 8 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

users first import the raw data of any supported format and convert to HDF5 format. Then
users can perform spike detection (see Additional file 1), spike sorting and/or signal filter-
ing on the converted data. Next, if the experiment includes data regarding eye movement,
users can perform saccade detection and extraction. Otherwise, users can begin to analyze
spike trains, LFPs, and other behavioral data using the corresponding plotting functions.
The results of each analysis session can be saved for future use. If users want to analyze the
data for a population of neurons, NeoAnalysis can retrieve the saved workspace and per-
form analysis and statistics across the data gathered for an entire population.

Spike sorting

Offline spike sorting can be done using the SpikeSorting module. The following codes
are used in order to start the module with a 3D view:

An interface with several buttons and panels is then displayed. Users can load data
from a specific location by clicking the Load button at the bottom of the control panel.
All of the spike channels will be shown in the drop-down box labeled as ‘Channel’, and
users can select the channel of interest to begin the sorting process. All of the spikes
recorded in the selected channel are shown in the bottom panel (labeled as ‘times-
tamps’). A sliding window is provided so that a portion of the spikes can be selected to
display their waveforms, which are shown in the left panel (labeled as ‘waveforms’). The
right panel shows the principal components of all spikes in the selected channel (labeled
as ‘PCA’, Fig. 3a). Users can check the ‘AutoSortThisChannel’ box to start automated
sorting using the wavelet analysis and superparamagnetic clustering method [19, 20].
The parameters displayed below have been set to be optimal based on a previous study
[19]. Generally, this function generates satisfying results without adjusting these param-
eters. Though users can adjust the UnitsNum to define the number of sorted units, this
actually does not change the result of the major units but only assign those units of
minority spikes to the unsorted one (unit 0). In cases when users are not satisfied with
the automated sorting, we provide the option to sort manually. Users can choose either
the window discriminator or the PCA discriminator to perform the sorting. When using
the window discriminator, users can use the segment widget (two red lines with square
ends, which can be moved, stretched, shortened, and oriented) to select spike waveforms
in the left panel. When using the PCA discriminator, a polygon widget (red polygon with
square nodes, which can be moved, reshaped, and edges can be added or removed) is
provided to select spike principal components in the right panel. The selected spikes
can then be assigned to unit 1–unit 9 (unit 0 means unsorted). It is important to note
that any re-sorting done using either discriminator will be simultaneously displayed in
both panels. In the meantime, this module provides a 3D view of the first three princi-
pal components of all the spikes in the selected channel (Fig. 3b). Even though no other
operation is allowed, it provides users an overview of the data and helps users verify the
selection using the PCA discriminator. After users are satisfied with the sorting results,
they can click the Save button to save the data. Otherwise, they can click the ResetAll

Page 9 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

button to start over. An additional movie shows this procedure in more detail (see Addi-
tional file 2).

Single unit analysis

The graphics module of NeoAnalysis provides users several useful functions to perform
the basic analysis. A remarkable feature of these functions is that they are all equipped
with a powerful ‘sort_by’ option, which allows users to obtain results according to the

Sliding window

Segment
widget

Polygon widget

Automated sorting

Manual sorting

Spike channel

Load/Save data PCA components to display

a

b

Fig. 3 The graphic user interfaces for offline spike sorting. a The main interface, in which the center shows
the control panel for major operations; the bottom panel shows all spikes in the selected channel with a
sliding window to select a portion of spikes; the left panel shows the waveforms of the selected spikes, and
the right panel shows the principal components of all spikes in the selected channel. Users can check the
AutoSortThisChannel box to start automated sorting. In addition, users can use the segment widget (two red
lines with square ends) to select waveforms or use the polygon widget (red polygon with square nodes) to
select data points for re-sorting. b A 3D view to display the first three principal components of all spikes in
the selected channel

Page 10 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

experimental conditions (see “Design principles”). The graphics module first provides
users a data table that includes all of the experimental information and the recorded sig-
nals on a trial-by-trial basis. Then, through the use of the ‘sort_by’ option in combination
with other settings, users can obtain the required results without having to write com-
plex codes. The following command lines illustrate how the graphics module computes
PSTH, plots raster and calculates spike counts.

In the Python console window, run the following codes:

In line 1, the graphics module from NeoAnalysis is imported for single unit analysis.
Line 3 defines the path and the filename of the data. Line 4 initiates the graphics class by
setting the parameters filename, trial_start_mark and comment_expr. The trial_start_
mark is the marker representing the start of a trial, which is used to separate the raw
data into different trials. The comment_expr tells the program how the experimental
conditions and parameters are stored in the data. In this example data, the experimen-
tal condition (here is ‘patch_direction’) and the setting of each trial (here is a value in
degree) are stored together as a comment entity with a semicolon in between (i.e. ‘patch_
direction:degree’). By setting the comment_expr as ‘key:value’, the program decodes the
key as ‘patch_direction’, and the value for a particular trial is the degree of that trial.
This option provides users the flexibility to store their experimental parameters. After
this step, all data are reorganized into an informative data table on a trial-by-trial basis,
which can be displayed using the code in line 5. A portion of the table is shown in the
graphics panel of Fig. 2.

Considering that experimental conditions are stored as ‘string’ in the data, converting
them to ‘numeric’ will make the sorting faster during conditioning, as the data are sorted
by their logical orders. This is done using the code in line 6.

Raster with accumulated PSTH can be plotted using the function in line 7. Most
parameters, including bin_size, overlap, Mean, Sigma, filter_nan, and fig_column have
default values, which means that users do not necessarily have to input these param-
eters if they do not have particular requirements. Users do need to define the parameters
channel, sort_by, align_to, pre_time, and post_time. The channel parameter defines the

Page 11 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

spike channel and the unit order, in case there are multiple units recorded. The sort_by
parameter defines which experimental conditions are used to sort the data. The align_
to parameter defines which event marker is used to align the data. In this example, the
event marker ‘event_64721’ represents the onset time of the visual stimuli. The pre_time
and post_time parameters represent the time range (relative to the align_to parameter)
selected for the analysis. The bin_size and overlap parameters represent the bin width for
computing the PSTH and the overlap between two adjacent bins. The Mean and Sigma
define the Gaussian kernel for data smoothing. The output of line 7 is shown in Fig. 4,
which shows the smoothed PSTH at the bottom and the raster at the top of each panel.
Notably, this function does not just plot a figure, it also allows for plotting the results
according to the required experimental conditions.

The command in the line 8 plots the spike counts during the period defined by the
parameter timebin. Other parameters use the same convention as in line 7. The output
of this command is shown in Fig. 5, which shows the direction tuning of this example
neuron.

Spectrum analysis

A common analysis for LFP is to plot the spectrogram. The graphics module provides
several functions to perform the spectrum analysis using the periodogram method [23].
For example, the function below plots the time–frequency spectrum of LFP for the low
frequency domain (< 100 Hz):

Time (ms)

Fi
rin

g
ra

te
 (s

pi
ke

s/
s)

Time (ms) Time (ms) Time (ms)

Fi
rin

g
ra

te
 (s

pi
ke

s/
s)

0 45 90 135

180 225 270 315

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
0

50

100

0

50

100

Fig. 4 The raster plots for the sample data generated by the graphics module. Each panel represents the
response to one condition defined by the setting sort_by (here is the drifting direction of the random dot
patch)

Page 12 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

This function sorts the data in channel ‘analog_26’ using the patch_direction param-
eter, and the time window defined by pre_time and post_time. Setting the color_bar to be
‘True’ turns on the scale bar. By default, the function uses a ‘hann’ window to calculate
the density across the time–frequency domain. Users can refer to the manual for more
details about the available options. The result is shown in Fig. 6.

Saccade detection

NeoAnalysis provides a function called find_saccade to detect saccades. The algorithm
for saccade detection in this function is based on setting thresholds for eye movement
speed, duration, and distance [24]. These parameters have already been set to optimal
values, according to our experience; however, users can reset these parameters if the
default settings do not satisfy their needs. The results of saccade detection contain infor-
mation regarding when and where a saccade starts and ends, as well as the amplitude

0 45 90 135 180 225 270 315
10

20

30

40

50

60

70

Sp
ik

e
co

un
ts

patch_direction (degree)
Fig. 5 The line plot of the spike counts for the sample data. Each point represents the spike count within a
given period for one condition defined by the user (same as Fig. 4)

0 45 90 135

180 225 270 315

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

0

20

40

60

80

100

-0.001

0.000

0.001

0.002

0.003

Time (s) Time (s) Time (s) Time (s)

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(H
z)

PS
D

 (m
V*

*2
/H

z)

Fig. 6 The time–frequency analysis for the sample data using the graphics module. The function analyzes
the power density over the low-frequency domain (< 100 Hz) during a given period. Each panel represents
the result for one condition (same as Fig. 4)

Page 13 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

of the saccade. This information is also added to the aforementioned data table that
contains all of the experimental settings and recorded signals. In addition, NeoAnalysis
provides another function called choose_saccade, which can be used to select saccades
during a given period of time and/or within a certain range of amplitude. An example
of saccade detection is illustrated in Fig. 7, in which the black vertical lines indicate the
start and end times, and the red and green spots indicate the start and end positions of
the detected saccade, respectively.

Data analysis at population level

The results obtained from the analysis discussed above can be stored in a workspace for
each recording session. NeoAnalysis then provides a module, named PopuAnalysis, to
analyze the population data across all sessions. In the following example, we illustrate
how to use this module to analyze behavioral and electrophysiological data at the popu-
lation level using a simulated workspace named ‘sample_workspace.h5’.

Using the codes above, first the workspace in the data folder is loaded (line 1-3), and
then the mean reaction time is computed for the different experimental conditions with
line plot displays (line 4). The parameter store_key in line 4 defines which data will be
analyzed in the workspace, and the parameter conditions defines the conditions for data
sorting. In this example, there are two levels of conditions, with each level containing
three factors (‘a’, ‘b’, ‘c’ and ‘A’, ‘B’, ‘C’ for level 1 and level 2, respectively). The result of this
analysis is shown in Fig. 8.

V
is

ua
l a

ng
le

 (d
eg

)

Time (ms)

Horizontal
Vertical

0 200 400 600 800 1000

-4

-2

0

2

4

-6

Fig. 7 An example of the saccade detection using the graphics module. The red and green lines represent
the horizontal and vertical eye position, respectively. The black vertical lines indicate the start and end time,
and the red and green spots indicate the start and end position of the detected saccade, respectively

Page 14 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

For spike train analysis at the population level, the function plot_spike is used:

The command line above compares the neuronal activities among four experimental
conditions: (‘a’, ‘A’), (‘a’, ‘B’), (‘b’, ‘A’) and (‘b’, ‘B’). The parameter store_key defines the
data to be analyzed. If the parameter normalize is set to be True, the neuronal activities
from different neurons will be normalized before calculating the mean responses. The
fig_mark denotes where to put the vertical reference lines to indicate specific events (e.g.
stimulus onset). The error_style sets the error bar style in the figure and ci sets the confi-
dence interval. The result of this command is shown in Fig. 9.

Discussion
Comparison with other toolboxes

We have illustrated the implementation of the NeoAnalysis toolbox, which we have
shown to be quite powerful and efficient as compared to other open-source packages.

a b c

195

200

205

210

215

220

R
ea

ct
io

n
tim

e
(m

s)

Condition level one

A
B
C

Level 2

Fig. 8 The behavioral data analysis at the population level for the sample workspace. This example analyzes
the reaction time for three level 1 conditions (a, b, c) under three level 2 conditions (A, B, C). Error bar indi-
cates SEM

(a, A)
(a, B)
(b, A)
(b, B)

Time (ms)

M
ea

n
of

 n
or

m
al

iz
ed

 fi
rin

g
ra

te

-200 0 200 400 600 800 1000 1200 1400

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Fig. 9 The mean firing rate of a population of neurons. This example shows the mean of the normalized
firing rate for four conditions across the population in the sample workspace. Different colors indicate the
different conditions. Shading indicates 68% confidence interval

Page 15 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

The NeoAnalysis covers the whole workflow for electrophysiological data analysis, while
the Klusters [12] and the Spyke Viewer [13] can only perform a portion of the analy-
sis. More important, NeoAnalysis can easily generate sorted results based on the given
conditions (up to two levels) without writing additional scripts, while other toolboxes
require users to manually sort data beforehand. Therefore, these ready for use functions
provided by NeoAnalysis reduce the requirement for users’ scripting abilities and sub-
stantially improve the analysis efficiency.

There is another open-source toolbox called OpenElectrophy [4], which has a similar
scope as NeoAnalysis but does not provide specific analysis and statistic functions. Ope-
nElectrophy uses MySQL, an open-source database, for data storage. Interacting with
the data in the database is a challenge for users who are not familiar with structured
query language (SQL). Furthermore, the data in the database is stored as tables and the
relation between different tables is complex. Additionally, despite OpenElectrophy also
supporting offline spike sorting, it differs from NeoAnalysis in several aspects: First, the
data visualization in the SpikeSorting module of NeoAnalysis is developed based on the
PyQtGraph [21], whereas the OpenElectrophy uses matplotlib [22]. Matplotlib is very
slow and requires a vast amount of memory when plotting large amounts of data, thus is
unsuitable for the visualization of large amounts of data. Second, the SpikeSorting mod-
ule is more user-friendly. For example, it provides several easy-to-use widgets for the
data selection process. In addition, the SpikeSorting module provides a 3D view to dis-
play the first three principal components. Data in this 3D space are plotted with appro-
priate transparency to reveal the data distribution density and users can interact with
the 3D space using their mouse. In contrast, the 3D view provided by OpenElectrophy is
unable to plot data in a transparent way and is not user-friendly.

Future directions

In addition to the current functions, the NeoAnalysis toolbox can be expanded in the
following (but not limited to) directions to meet the more specific demands of different
users. First, in addition to the current spike sorting methods, we will try to provide more
options for users if they are not satisfied with the current methods. Second, more plot-
ting functions for both electrophysiological and behavioral data analyses, as well as more
statistical options will be added. Plotting functions are packed as sub-functions of the
graphics module, and, if users would like to, they are encouraged to include their own
functions. Third, considering that there is no GUI for the graphics and the PopuAnalysis
modules, we will develop a GUI for users who are not comfortable using scripts (such as
simple commands). Fourth, for users who may encounter data import problems, we will
offer to help users develop interfaces to import data of any format. In summary, we wel-
come users to interact with us to improve or modify the toolbox.

Conclusions
In summary, NeoAnalysis is an open-source toolbox for electrophysiological data analy-
sis. It provides many useful functions for general purposes, including the freely available
module for offline spike sorting and other easy-to-use functions for plotting and analy-
sis. We conclude that NeoAnalysis is a powerful toolbox for users doing electrophysi-
ological experiments and is worth distributing in the field.

Page 16 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

Abbreviations
PSTH: peristimulus time histogram; LFP: local field potential; I/O: input/output; GUI: graphic user interface; PCA: principal
components analysis.

Authors’ contributions
BZ and JD designed the software and wrote code; BZ and JD wrote the manuscript; TZ supervised the project. All
authors read and approved the final manuscript.

Author details
1 State Key Laboratory of Brain and Cognitive Sciences, Institute of Psychology, Chinese Academy of Sciences, Bei-
jing 100101, China. 2 Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
3 Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center
for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI),
Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China.

Acknowledgements
We thank Prof. Eytan Domany for kindly providing the C code for the Superparamagnetic Clustering. We thank Shenbing
Kuang, Shengguang Li for helpful discussions, and we also thank Yan Yang for providing the test data.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets and demo codes generated and/or analyzed during the current study are available in the GitHub reposi-
tory, https://github.com/neoanalysis/NeoAnalysis_sample_data.

The NeoAnalysis program and its manual are freely available at: https://github.com/neoanalysis/NeoAnalysis.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was supported by the National Natural Science Foundation of China (31271175 to TZ, 31600870 to JD), the
Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences (Y5CX112005 to JD), and the Youth Inno-
vation Promotion Association CAS (2017120 to JD).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 July 2017 Accepted: 3 November 2017

References
 1. Stevenson IH, Kording KP. How advances in neural recording affect data analysis. Nat Neurosci. 2011;14(2):139–42.
 2. Muller E, Bednar JA, Diesmann M, Gewaltig MO, Hines M, Davison AP. Python in neuroscience. Front Neuroinform.

2015;9:11.
 3. Ince RA, Mazzoni A, Petersen RS, Panzeri S. Open source tools for the information theoretic analysis of neural data.

Front Neurosci. 2010. https://doi.org/10.3389/neuro.01.011.2010.
 4. Garcia S, Fourcaud-Trocme N. OpenElectrophy: an electrophysiological data- and analysis-sharing framework. Front

Neuroinform. 2009;3:14.
 5. Offline Sorter| Plexon. http://www.plexon.com/products/offline-sorter. Accessed 9 Nov 2017.
 6. NeuroExplorer—data analysis software for neurophysiology. http://www.neuroexplorer.com/. Accessed 9 Nov 2017.
 7. Goldberg DH, Victor JD, Gardner EP, Gardner D. Spike train analysis toolkit: enabling wider application of informa-

tion-theoretic techniques to neurophysiology. Neuroinformatics. 2009;7(3):165–78.

Additional files

Additional file 1. Demo of spike detection. This movie illustrates how to use the SpikeDetection module to detect
spikes from the sample data.
Additional file 2. Demo of spike sorting. This movie illustrates how to use the SpikeSorting module to perform
offline spike sorting using the sample data.

https://github.com/neoanalysis/NeoAnalysis_sample_data
https://github.com/neoanalysis/NeoAnalysis
https://doi.org/10.3389/neuro.01.011.2010
http://www.plexon.com/products/offline-sorter
http://www.neuroexplorer.com/
https://doi.org/10.1186/s12938-017-0419-7
https://doi.org/10.1186/s12938-017-0419-7

Page 17 of 17Zhang et al. BioMed Eng OnLine (2017) 16:129

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

 8. Meier R, Egert U, Aertsen A, Nawrot MP. FIND—a unified framework for neural data analysis. Neural Netw.
2008;21(8):1085–93.

 9. Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a platform for analyzing neural signals. J Neurosci Meth-
ods. 2010;192(1):146–51.

 10. McKinney W. pandas: a foundational Python library for data analysis and statistics. In: Python for High Performance
and Scientific Computing, Tsukuba, Japan, 1–3 June 2011. p. 1–9.

 11. Garcia S, Guarino D, Jaillet F, Jennings T, Propper R, Rautenberg PL, Rodgers CC, Sobolev A, Wachtler T, Yger P, Davi-
son AP. Neo: an object model for handling electrophysiology data in multiple formats. Front Neuroinform. 2014;8:10.

 12. Hazan L, Zugaro M, Buzsaki G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data
processing and visualization. J Neurosci Methods. 2006;155(2):207–16.

 13. Propper R, Obermayer K. Spyke viewer: a flexible and extensible platform for electrophysiological data analysis.
Front Neuroinform. 2013;7:26.

 14. Yegenoglu A, Denker M, Phan LD, Holstein D, Chorley P, Ito J, Jennings T, Meyes R, Quaglio P, Rostami V, et al.
Elephant—open-source tool for the analysis of electrophysiological data sets. In: Bernstein Conference; Heidelberg,
Germany; 2015. p. 134–5.

 15. Dai J, Brooks DI, Sheinberg DL. Optogenetic and electrical microstimulation systematically bias visuospatial choice
in primates. Curr Biol. 2014;24(1):63–9.

 16. Noton D, Stark L. Scanpaths in eye movements during pattern perception. Science. 1971;171(3968):308–11.
 17. Folk M, Cheng A, Yates K. HDF5: a file format and I/O library for high performance computing applications. In: Pro-

ceedings of Supercomputing; 1999. p. 5–33.
 18. Lewicki MS. A review of methods for spike sorting: the detection and classification of neural action potentials.

Network. 1998;9(4):R53–78.
 19. Quiroga RQ, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamag-

netic clustering. Neural Comput. 2004;16(8):1661–87.
 20. Blatt M, Wiseman S, Domany E. Superparamagnetic clustering of data. Phys Rev Lett. 1996;76(18):3251–4.
 21. PyQtGraph—scientific graphics and GUI Library for Python. http://www.pyqtgraph.org/. Accessed 9 Nov 2017.
 22. Hunter J. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5.
 23. scipy.signal.periodogram—SciPy v0.13.0 reference guide. https://docs.scipy.org/doc/scipy-0.13.0/reference/gener-

ated/scipy.signal.periodogram.html. Accessed 9 Nov 2017.
 24. Liston D, Krukowski A, Stone L. Saccade detection during smooth tracking. Displays. 2013;34(2):171–6.

http://www.pyqtgraph.org/
https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.signal.periodogram.html
https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.signal.periodogram.html

	NeoAnalysis: a Python-based toolbox for quick electrophysiological data processing and analysis
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Design principles
	TransFile
	SpikeDetection
	SpikeSorting
	AnalogFilter
	Graphics
	PopuAnalysis

	Features and capabilities

	Results
	Procedures of analysis using NeoAnalysis
	Spike sorting
	Single unit analysis
	Spectrum analysis
	Saccade detection
	Data analysis at population level

	Discussion
	Comparison with other toolboxes
	Future directions

	Conclusions
	Authors’ contributions
	References

