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Abstract 

Background: In a typical electrophysiological experiment, especially one that includes 
studying animal behavior, the data collected normally contain spikes, local field 
potentials, behavioral responses and other associated data. In order to obtain informa-
tive results, the data must be analyzed simultaneously with the experimental settings. 
However, most open-source toolboxes currently available for data analysis were devel-
oped to handle only a portion of the data and did not take into account the sorting of 
experimental conditions. Additionally, these toolboxes require that the input data be in 
a specific format, which can be inconvenient to users. Therefore, the development of 
a highly integrated toolbox that can process multiple types of data regardless of input 
data format and perform basic analysis for general electrophysiological experiments is 
incredibly useful.

Results: Here, we report the development of a Python based open-source toolbox, 
referred to as NeoAnalysis, to be used for quick electrophysiological data process-
ing and analysis. The toolbox can import data from different data acquisition systems 
regardless of their formats and automatically combine different types of data into a 
single file with a standardized format. In cases where additional spike sorting is needed, 
NeoAnalysis provides a module to perform efficient offline sorting with a user-friendly 
interface. Then, NeoAnalysis can perform regular analog signal processing, spike train, 
and local field potentials analysis, behavioral response (e.g. saccade) detection and 
extraction, with several options available for data plotting and statistics. Particularly, 
it can automatically generate sorted results without requiring users to manually sort 
data beforehand. In addition, NeoAnalysis can organize all of the relevant data into an 
informative table on a trial-by-trial basis for data visualization. Finally, NeoAnalysis sup-
ports analysis at the population level.

Conclusions: With the multitude of general-purpose functions provided by NeoAnal-
ysis, users can easily obtain publication-quality figures without writing complex codes. 
NeoAnalysis is a powerful and valuable toolbox for users doing electrophysiological 
experiments.

Keywords: NeoAnalysis, Python, Electrophysiology, Analysis, Toolbox, Spike, Offline 
sorting, Saccade detection
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Background
Rapid advancements in electrophysiological techniques in the past few decades have 
enabled researchers to gather vast amounts of data from numerous neurons [1]. Mean-
while, various software tools have also been developed for data storage, exploration, and 
analysis [2, 3]. Electrophysiological experiments studying animal behaviors (e.g. rodents 
and primates) typically include a variety of data, such as the neuronal and behavioral 
data collected by the data acquisition system as well as any associated data indicating 
the animal status, the stimulus parameters, and other constraints [4]. Informative results 
require the processing and simultaneous analysis of all of this information; this requires 
analysis tools that are capable of handling neural data and performing the analysis of 
the data according to the experimental settings. Typically different data acquisition sys-
tems use their proprietary formats for data storage, which impedes data sharing and also 
makes the development of analysis tools challenging.

Currently, several commercial programs for electrophysiological data processing and 
analysis (e.g. Offline Sorter [5], Neuroexplorer [6]) are available. However, they are costly 
and often cannot satisfy the demands of the rapid developments being made in the 
field of electrophysiology. Subsequently, open-source software packages are constantly 
emerging. Some of these toolboxes, such as the Spike Train Analysis Toolkit [7], the 
FIND [8] and the Chronux [9], are very popular. However, these toolboxes are developed 
based on MATLAB, which is not a free program, and may not be affordable for labora-
tories with a limited budget. Therefore, it would be better to develop a toolbox to pro-
cess electrophysiological data based on open-source software. In this study, we propose 
using a programming language that has been widely used in scientific computing and is 
compatible with all major operating systems including Windows, Linux, and Mac OS: 
Python, a freely available program with plenty of existing open-source packages. Addi-
tionally, using certain packages like pandas [10], Python is capable of integrating differ-
ent types of data, including numbers, strings, and lists into one data table regardless of 
the length of each element. This flexibility and compatibility make Python very suitable 
for handling the complex electrophysiological data, which contain multiple types of data.

In fact, several Python-based toolboxes have already been developed to process and 
analyze specific portions of the electrophysiological data. For example, Neo is a useful 
package aiming to standardize electrophysiological data and solve the data format prob-
lem [11]; Klusters can be used to perform offline spike sorting [12]; Spyke Viewer can be 
used to analyze spike trains [13]; and Elephant can be used to analyze spike trains and 
time series data, including local field potentials (LFP) [14]. However, in practice, using a 
variety of different toolboxes during data analysis is inconvenient and inefficient. Among 
them, the Klusters still requires the input data be formatted in specific ways, making it 
difficult to use. More important, although these toolboxes provide basic plotting func-
tions, they do not take into account the sorting of experimental conditions. To plot the 
result of a specific condition, users have to manually sort the data before using these 
toolboxes. One toolbox that integrates all of these functions, including spike sorting, 
spike train and LFP analysis with condition sorting, and supports all data formats for the 
major data acquisition systems, will facilitate the efficient analysis of electrophysiological 
data. Recently, Garcia et al. [4] proposed a similar framework for data storage and analy-
sis called OpenElectrophy. However, they did not provide specific analysis and statistic 
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functions. Even in the proposed data frame, it is difficult to visualize data and the user 
interaction requires further improvement. In particular, this toolbox does not take into 
account the detection of saccades, which are important behavioral indicators for some 
experiments [15, 16]. In this study, we developed a toolbox called NeoAnalysis, which 
overcomes the shortages of other packages and facilitates efficient analysis.

Implementation
Design principles

NeoAnalysis aims to provide an out-of-the-box tool for users to process and analyze dif-
ferent types of data obtained during a typical electrophysiological experiment. To this 
end and overcome the aforementioned shortages of existing toolboxes, we develop Neo-
Analysis following the principles described below:

The first concern is the data format problem. Currently, different data acquisition sys-
tems save the recorded data in their proprietary file formats. We want NeoAnalysis to 
support most formats for the major commercial systems including Blackrock (Black-
rock Microsystems LLC, Utah, USA), Plexon (Plexon Inc., Dallas, TX, USA), and TDT 
(Tucker-David Technologies; Alachua, FL, USA). Therefore, it is necessary to convert the 
input data to a standardized format, which will ease the subsequent work in scripting 
analysis programs. As we know, a typical electrophysiological experiment normally col-
lects spikes, analog signals (e.g. LFP), experimental settings, and behavioral responses 
(Fig. 1). The solution is to divide these data into four basic entities regardless of their 
original formats: Spike, Analog, Event, and Comment.

  • A Spike entity contains the time points at which the action potentials occur, as well as 
their waveforms and unit classification.

  • An Analog entity contains the continuous data that was recorded at a given sampling 
frequency, such as LFP.

  • An Event entity contains the time points and the labels defining the occurrence of 
specific events, such as the onset of a stimulus or the occurrence of a button press.

  • A Comment entity contains the time points and the labels that define the experimen-
tal settings, such as the orientation of the stimulus in each trial.

With the help of Neo [11], which is an open source package aiming to standardize 
electrophysiological data, the input data can be easily imported to generate the Spike, 
Analog and Event entities. However, the obtained Event entity (Neo_Event) actually 
includes both events and comments according to our definition. Given comments are 
required for condition sorting during data analysis, mixing these two entities will make 
this procedure difficult. So we extend the Neo package in our program to further divide 
the Neo_Events to the real Event entity and Comment entity according to our definition. 
Then, we save these entities in a standardized format. Examples of how these entities are 
organized in the output file are shown on the right side of Fig. 1. This procedure substan-
tially eliminates the limitation due to data format and enhances the compatibility of this 
toolbox.

Secondly, to ensure the toolbox can handle the entire workflow for electrophysiologi-
cal data analysis, we design six modules for users to import and convert data, detect 
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spikes, perform offline spike sorting, filter analog signal, analyze single session data and 
population data (Fig. 2).

TransFile

The TansFile module assists users to convert the raw data of any supported format to an 
HDF5 file using the preceding principle. The HDF5 format is used because it is a highly 
efficient format for data I/O, especially for data of a large volume and a complex struc-
ture. In addition, it is a unified format that can be used by different operating systems 
and programming languages [17].

SpikeDetection

The SpikeDetection module is used to detect spikes from the raw signals. Given most 
data acquisition systems support online spike detection, this module will not be used 
for most users. In the case when non-standard recording systems are used and addi-
tional spike detection procedure is required, we designed this module for users to detect 
spikes with a graphic user interface (GUI). In addition to manually setting the threshold 
and selecting waveform [18], this module supports automated spike detection based on 
a widely used unsupervised algorithm proposed by Quiroga et al. in 2004 [19].
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Fig. 1 The principle for data standardization in a typical electrophysiological experiment. The experiment 
normally runs in a trial-by-trial manner, so the data collected must include the experimental settings defining 
the conditions in each trial and the behavioral and neuronal responses. These data can be divided into Event, 
Comment, Spike and Analog entities. The Event entity represents the occurrence of specific events, such as 
a stimulus is turned on or a button is pressed (green bar in the top panel). The Comment entity contains 
information that defines the experimental settings, such as the orientation of the stimulus in each trial (blue 
bar in the top panel). The Spike entity records the action potentials (middle panel), and the Analog entity 
records analog signals including local field potential (bottom panel). For a given data set, we convert the data 
into these four entities regardless of their original format and save in a standardized format for future use. The 
right side shows how these entities are organized in the output file
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SpikeSorting

The SpikeSorting module is for resorting spikes with a GUI. In the current design, it sup-
ports both automated and manual sorting. The algorithm for automated sorting is an 
unsupervised method based on wavelet analysis and superparamagnetic clustering [19, 
20]. In cases when users are not satisfied with the result of automated sorting, we pro-
vide additional manual options: the window discriminator and the principal component 
analysis (PCA) discriminator. Users can either use the line widget to select waveforms 
or the polygon widget to select data points for re-sorting. We also provide a 3D view 
of the first three principal components. This 3D space can be rotated, zoomed in, and 
zoomed out to reveal the distribution density of the data set in this space with appropri-
ate transparency.
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Fig. 2 The six major modules of NeoAnalysis and their functions. Each panel represents one module, and 
arrows indicate the general workflow. The TransFile module is used to import data from any of the supported 
formats and extract the data to Analog, Spike, Event and Comment entities, and then convert to a standard-
ized format (HDF5). The AnalogFilter module is used to filter analog signals. The SpikeDetection module can 
detect spikes from the analog signal and then feed to the SpikeSorting module, which resorts spikes offline. 
The graphics module first organizes all of the relevant data into a data table on a trial-by-trial basis for data 
visualization, and then provides functions to analyze the data and display the results. This module supports 
data computation and saccade detection in addition to common analyses of spikes, local field potentials, 
and other behaviors. The last module, PopuAnalysis, can retrieve the saved result of each single session and 
perform population analysis
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AnalogFilter

The AnalogFilter is used to filter the Analog data using common filters including band-
pass, band-stop, low-pass, and high-pass filters. For each of these filters, users can select 
the filter method from the available list including Chebyshev I, Chebyshev II, Cauer/
Elliptic, and Bessel/Thomson. In addition, users can define their own filters. The current 
design provides a GUI window for users to perform filtering. Alternatively, users can 
also use command scripts.

Graphics

The graphics is a module used for data visualization and analysis. In our design, this 
module first groups data into a table on a trial-by-trial basis according to experimental 
conditions, and then allows users to perform analyses such as plotting PSTH. In the data 
table, a row represents a trial, and a column represents a specific type of data, such as 
stimulus onset time, offset time, reaction time, spike, and LFP. There is also an available 
option to customize the table to include only selected trials using specific settings (speci-
fied by the parameter ‘limit’). This is very useful when you only want to analyze a portion 
of the data. For the data in the table, the graphics module can do more than just plot the 
whole group of data; it can also sort the data according to the given conditions (specified 
by the parameter ‘sort_by’). The sorting function here supports up to two levels of condi-
tioning. For example, one experiment studies the difference in orientation tuning using 
grating stimuli of different spatial frequencies. Suppose there are two spatial frequencies 
and eight orientations, then the sorting function can classify the results into two major 
categories, each category containing eight conditions. For spike train analysis, the graph-
ics module provides functions to draw raster, PSTH, and the accumulated spike counts; 
for analog data (e.g. LFP), the graphics module can draw the average signals and perform 
spectrum analysis or a time–frequency analysis; for behavioral responses (e.g. choices, 
reaction times), the graphics module provides several general-purpose functions to ana-
lyze scalar values. Additionally, the graphics module provides functions to calibrate eye 
position, to detect saccades, and to extract saccade information. For all of these analy-
ses, the results can be stored in a workspace for further analysis (e.g. population analy-
sis). The graphics module does not provide any GUI for the aforementioned functions. 
Instead, users need to type their commands through the Python command window in 
order to run a specific function. All of the functions provided here have several open-
ing settings, and users can easily change these parameters to obtain the required results. 
Therefore, the commands are more flexible in terms of analyzing complex electrophysi-
ological data.

PopuAnalysis

In order to analyze the electrophysiological data at the population level, we designed the 
PopuAnalysis module. This module uses the results stored in the workspace obtained 
from analyzing single session data. For the spike train analysis, this module can plot the 
mean PSTHs for different conditions across a population of neurons. For analog data, 
this module can plot the mean signal, the power spectrum, and the time–frequency 
spectrum for different conditions across the population. For behavioral data (e.g. reac-
tion time), this module can plot the mean values with error bars across the population. 
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In addition, this module provides several commonly used statistical functions including 
descriptive statistics, t test, and ANOVA.

Features and capabilities

Following the design principles, NeoAnalysis has the following features:

  • NeoAnalysis supports most data formats from the major commercial data acquisi-
tion systems through combining the Neo package [a powerful open-source module 
for data input/output (I/O)] [11].

  • NeoAnalysis provides user-friendly GUIs and data viewing through integrating the 
open-source module PyQtGraph [21]. The PyQtGraph is a Python based graphics 
and GUI library, which uses less memory and performs much more efficiently than 
simply using the embedded graphic library ‘matplotlib’ [22]. Furthermore, NeoAnal-
ysis puts a lot of emphasis on user interaction design. In particular, it provides several 
easy-to-use widgets for offline spike sorting.

  • NeoAnalysis groups all of the experimental information, including the recorded sig-
nals, behavioral responses, and the results of preprocessing into a table on a trial-by-
trial basis. This informative table can be easily displayed and can be further sorted 
according to given conditions (e.g. experimental conditions). Furthermore, Neo-
Analysis provides many other functions to manipulate the table and run the further 
analysis.

  • NeoAnalysis provides a complete workflow for electrophysiological data analysis, 
which covers data standardizing, data preprocessing, single unit analysis, data stor-
age, and population data analysis. Throughout the entire data analysis process, users 
do not have to switch between different programs and toolboxes. More important, 
NeoAnalysis takes into account the experimental conditions and supports analyzing 
with automatic condition sorting. Therefore, users can obtain sorted results by sim-
ply specifying parameters in the commands without writing additional scripts.

  • NeoAnalysis is capable of processing eye movement information, including calibrat-
ing eye position and detecting saccades. During experiments, when recording eye 
movement trajectories, it is essential to detect the occurrence of saccades and to 
extract the relevant information. Previous open-source toolboxes generally do not 
provide such functions.

  • Due to the incompatibilities between Python 2.7 and Python 3.5, NeoAnalysis pro-
vides two slightly different versions for these two releases.

Results
Procedures of analysis using NeoAnalysis

After successfully installing NeoAnalysis1, users can use the toolbox following the proce-
dures depicted in Fig. 2. A step-by-step tutorial can be found in the user manual.2 In brief, 

1 The NeoAnalysis v.1.0.0 can be freely downloaded from https://github.com/neoanalysis/NeoAnalysis.
2 For the purpose of stability and compatibility, NeoAnalysis integrates the Neo and PyQtGraph packages. Installation of 
these two packages is not necessary, however, users do need to install the other required packages, including numpy, scipy, 
matplotlib, scikit-learn, quantities, pyopengl, pandas, h5py, statsmodels, PyWavelets, and seaborn. The installation guide 
can be found in the user manual.

https://github.com/neoanalysis/NeoAnalysis
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users first import the raw data of any supported format and convert to HDF5 format. Then 
users can perform spike detection (see Additional file 1), spike sorting and/or signal filter-
ing on the converted data. Next, if the experiment includes data regarding eye movement, 
users can perform saccade detection and extraction. Otherwise, users can begin to analyze 
spike trains, LFPs, and other behavioral data using the corresponding plotting functions. 
The results of each analysis session can be saved for future use. If users want to analyze the 
data for a population of neurons, NeoAnalysis can retrieve the saved workspace and per-
form analysis and statistics across the data gathered for an entire population.

Spike sorting

Offline spike sorting can be done using the SpikeSorting module. The following codes 
are used in order to start the module with a 3D view:

An interface with several buttons and panels is then displayed. Users can load data 
from a specific location by clicking the Load button at the bottom of the control panel. 
All of the spike channels will be shown in the drop-down box labeled as ‘Channel’, and 
users can select the channel of interest to begin the sorting process. All of the spikes 
recorded in the selected channel are shown in the bottom panel (labeled as ‘times-
tamps’). A sliding window is provided so that a portion of the spikes can be selected to 
display their waveforms, which are shown in the left panel (labeled as ‘waveforms’). The 
right panel shows the principal components of all spikes in the selected channel (labeled 
as ‘PCA’, Fig.  3a). Users can check the ‘AutoSortThisChannel’ box to start automated 
sorting using the wavelet analysis and superparamagnetic clustering method [19, 20]. 
The parameters displayed below have been set to be optimal based on a previous study 
[19]. Generally, this function generates satisfying results without adjusting these param-
eters. Though users can adjust the UnitsNum to define the number of sorted units, this 
actually does not change the result of the major units but only assign those units of 
minority spikes to the unsorted one (unit 0). In cases when users are not satisfied with 
the automated sorting, we provide the option to sort manually. Users can choose either 
the window discriminator or the PCA discriminator to perform the sorting. When using 
the window discriminator, users can use the segment widget (two red lines with square 
ends, which can be moved, stretched, shortened, and oriented) to select spike waveforms 
in the left panel. When using the PCA discriminator, a polygon widget (red polygon with 
square nodes, which can be moved, reshaped, and edges can be added or removed) is 
provided to select spike principal components in the right panel. The selected spikes 
can then be assigned to unit 1–unit 9 (unit 0 means unsorted). It is important to note 
that any re-sorting done using either discriminator will be simultaneously displayed in 
both panels. In the meantime, this module provides a 3D view of the first three princi-
pal components of all the spikes in the selected channel (Fig. 3b). Even though no other 
operation is allowed, it provides users an overview of the data and helps users verify the 
selection using the PCA discriminator. After users are satisfied with the sorting results, 
they can click the Save button to save the data. Otherwise, they can click the ResetAll 
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button to start over. An additional movie shows this procedure in more detail (see Addi-
tional file 2).

Single unit analysis

The graphics module of NeoAnalysis provides users several useful functions to perform 
the basic analysis. A remarkable feature of these functions is that they are all equipped 
with a powerful ‘sort_by’ option, which allows users to obtain results according to the 

Sliding window

Segment
widget

Polygon widget

Automated sorting

Manual sorting

Spike channel

Load/Save data PCA components to display

a

b

Fig. 3 The graphic user interfaces for offline spike sorting. a The main interface, in which the center shows 
the control panel for major operations; the bottom panel shows all spikes in the selected channel with a 
sliding window to select a portion of spikes; the left panel shows the waveforms of the selected spikes, and 
the right panel shows the principal components of all spikes in the selected channel. Users can check the 
AutoSortThisChannel box to start automated sorting. In addition, users can use the segment widget (two red 
lines with square ends) to select waveforms or use the polygon widget (red polygon with square nodes) to 
select data points for re-sorting. b A 3D view to display the first three principal components of all spikes in 
the selected channel



Page 10 of 17Zhang et al. BioMed Eng OnLine  (2017) 16:129 

experimental conditions (see “Design principles”). The graphics module first provides 
users a data table that includes all of the experimental information and the recorded sig-
nals on a trial-by-trial basis. Then, through the use of the ‘sort_by’ option in combination 
with other settings, users can obtain the required results without having to write com-
plex codes. The following command lines illustrate how the graphics module computes 
PSTH, plots raster and calculates spike counts.

In the Python console window, run the following codes:

In line 1, the graphics module from NeoAnalysis is imported for single unit analysis. 
Line 3 defines the path and the filename of the data. Line 4 initiates the graphics class by 
setting the parameters filename, trial_start_mark and comment_expr. The trial_start_
mark is the marker representing the start of a trial, which is used to separate the raw 
data into different trials. The comment_expr tells the program how the experimental 
conditions and parameters are stored in the data. In this example data, the experimen-
tal condition (here is ‘patch_direction’) and the setting of each trial (here is a value in 
degree) are stored together as a comment entity with a semicolon in between (i.e. ‘patch_
direction:degree’). By setting the comment_expr as ‘key:value’, the program decodes the 
key as ‘patch_direction’, and the value for a particular trial is the degree of that trial. 
This option provides users the flexibility to store their experimental parameters. After 
this step, all data are reorganized into an informative data table on a trial-by-trial basis, 
which can be displayed using the code in line 5. A portion of the table is shown in the 
graphics panel of Fig. 2.

Considering that experimental conditions are stored as ‘string’ in the data, converting 
them to ‘numeric’ will make the sorting faster during conditioning, as the data are sorted 
by their logical orders. This is done using the code in line 6.

Raster with accumulated PSTH can be plotted using the function in line 7. Most 
parameters, including bin_size, overlap, Mean, Sigma, filter_nan, and fig_column have 
default values, which means that users do not necessarily have to input these param-
eters if they do not have particular requirements. Users do need to define the parameters 
channel, sort_by, align_to, pre_time, and post_time. The channel parameter defines the 
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spike channel and the unit order, in case there are multiple units recorded. The sort_by 
parameter defines which experimental conditions are used to sort the data. The align_
to parameter defines which event marker is used to align the data. In this example, the 
event marker ‘event_64721’ represents the onset time of the visual stimuli. The pre_time 
and post_time parameters represent the time range (relative to the align_to parameter) 
selected for the analysis. The bin_size and overlap parameters represent the bin width for 
computing the PSTH and the overlap between two adjacent bins. The Mean and Sigma 
define the Gaussian kernel for data smoothing. The output of line 7 is shown in Fig. 4, 
which shows the smoothed PSTH at the bottom and the raster at the top of each panel. 
Notably, this function does not just plot a figure, it also allows for plotting the results 
according to the required experimental conditions.

The command in the line 8 plots the spike counts during the period defined by the 
parameter timebin. Other parameters use the same convention as in line 7. The output 
of this command is shown in Fig. 5, which shows the direction tuning of this example 
neuron.

Spectrum analysis

A common analysis for LFP is to plot the spectrogram. The graphics module provides 
several functions to perform the spectrum analysis using the periodogram method [23]. 
For example, the function below plots the time–frequency spectrum of LFP for the low 
frequency domain (< 100 Hz):
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This function sorts the data in channel ‘analog_26’ using the patch_direction param-
eter, and the time window defined by pre_time and post_time. Setting the color_bar to be 
‘True’ turns on the scale bar. By default, the function uses a ‘hann’ window to calculate 
the density across the time–frequency domain. Users can refer to the manual for more 
details about the available options. The result is shown in Fig. 6.

Saccade detection

NeoAnalysis provides a function called find_saccade to detect saccades. The algorithm 
for saccade detection in this function is based on setting thresholds for eye movement 
speed, duration, and distance [24]. These parameters have already been set to optimal 
values, according to our experience; however, users can reset these parameters if the 
default settings do not satisfy their needs. The results of saccade detection contain infor-
mation regarding when and where a saccade starts and ends, as well as the amplitude 
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given period for one condition defined by the user (same as Fig. 4)
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of the saccade. This information is also added to the aforementioned data table that 
contains all of the experimental settings and recorded signals. In addition, NeoAnalysis 
provides another function called choose_saccade, which can be used to select saccades 
during a given period of time and/or within a certain range of amplitude. An example 
of saccade detection is illustrated in Fig. 7, in which the black vertical lines indicate the 
start and end times, and the red and green spots indicate the start and end positions of 
the detected saccade, respectively.

Data analysis at population level

The results obtained from the analysis discussed above can be stored in a workspace for 
each recording session. NeoAnalysis then provides a module, named PopuAnalysis, to 
analyze the population data across all sessions. In the following example, we illustrate 
how to use this module to analyze behavioral and electrophysiological data at the popu-
lation level using a simulated workspace named ‘sample_workspace.h5’.

Using the codes above, first the workspace in the data folder is loaded (line 1-3), and 
then the mean reaction time is computed for the different experimental conditions with 
line plot displays (line 4). The parameter store_key in line 4 defines which data will be 
analyzed in the workspace, and the parameter conditions defines the conditions for data 
sorting. In this example, there are two levels of conditions, with each level containing 
three factors (‘a’, ‘b’, ‘c’ and ‘A’, ‘B’, ‘C’ for level 1 and level 2, respectively). The result of this 
analysis is shown in Fig. 8.
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Fig. 7 An example of the saccade detection using the graphics module. The red and green lines represent 
the horizontal and vertical eye position, respectively. The black vertical lines indicate the start and end time, 
and the red and green spots indicate the start and end position of the detected saccade, respectively
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For spike train analysis at the population level, the function plot_spike is used:

The command line above compares the neuronal activities among four experimental 
conditions: (‘a’, ‘A’), (‘a’, ‘B’), (‘b’, ‘A’) and (‘b’, ‘B’). The parameter store_key defines the 
data to be analyzed. If the parameter normalize is set to be True, the neuronal activities 
from different neurons will be normalized before calculating the mean responses. The 
fig_mark denotes where to put the vertical reference lines to indicate specific events (e.g. 
stimulus onset). The error_style sets the error bar style in the figure and ci sets the confi-
dence interval. The result of this command is shown in Fig. 9.

Discussion
Comparison with other toolboxes

We have illustrated the implementation of the NeoAnalysis toolbox, which we have 
shown to be quite powerful and efficient as compared to other open-source packages. 
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The NeoAnalysis covers the whole workflow for electrophysiological data analysis, while 
the Klusters [12] and the Spyke Viewer [13] can only perform a portion of the analy-
sis. More important, NeoAnalysis can easily generate sorted results based on the given 
conditions (up to two levels) without writing additional scripts, while other toolboxes 
require users to manually sort data beforehand. Therefore, these ready for use functions 
provided by NeoAnalysis reduce the requirement for users’ scripting abilities and sub-
stantially improve the analysis efficiency.

There is another open-source toolbox called OpenElectrophy [4], which has a similar 
scope as NeoAnalysis but does not provide specific analysis and statistic functions. Ope-
nElectrophy uses MySQL, an open-source database, for data storage. Interacting with 
the data in the database is a challenge for users who are not familiar with structured 
query language (SQL). Furthermore, the data in the database is stored as tables and the 
relation between different tables is complex. Additionally, despite OpenElectrophy also 
supporting offline spike sorting, it differs from NeoAnalysis in several aspects: First, the 
data visualization in the SpikeSorting module of NeoAnalysis is developed based on the 
PyQtGraph [21], whereas the OpenElectrophy uses matplotlib [22]. Matplotlib is very 
slow and requires a vast amount of memory when plotting large amounts of data, thus is 
unsuitable for the visualization of large amounts of data. Second, the SpikeSorting mod-
ule is more user-friendly. For example, it provides several easy-to-use widgets for the 
data selection process. In addition, the SpikeSorting module provides a 3D view to dis-
play the first three principal components. Data in this 3D space are plotted with appro-
priate transparency to reveal the data distribution density and users can interact with 
the 3D space using their mouse. In contrast, the 3D view provided by OpenElectrophy is 
unable to plot data in a transparent way and is not user-friendly.

Future directions

In addition to the current functions, the NeoAnalysis toolbox can be expanded in the 
following (but not limited to) directions to meet the more specific demands of different 
users. First, in addition to the current spike sorting methods, we will try to provide more 
options for users if they are not satisfied with the current methods. Second, more plot-
ting functions for both electrophysiological and behavioral data analyses, as well as more 
statistical options will be added. Plotting functions are packed as sub-functions of the 
graphics module, and, if users would like to, they are encouraged to include their own 
functions. Third, considering that there is no GUI for the graphics and the PopuAnalysis 
modules, we will develop a GUI for users who are not comfortable using scripts (such as 
simple commands). Fourth, for users who may encounter data import problems, we will 
offer to help users develop interfaces to import data of any format. In summary, we wel-
come users to interact with us to improve or modify the toolbox.

Conclusions
In summary, NeoAnalysis is an open-source toolbox for electrophysiological data analy-
sis. It provides many useful functions for general purposes, including the freely available 
module for offline spike sorting and other easy-to-use functions for plotting and analy-
sis. We conclude that NeoAnalysis is a powerful toolbox for users doing electrophysi-
ological experiments and is worth distributing in the field.



Page 16 of 17Zhang et al. BioMed Eng OnLine  (2017) 16:129 

Abbreviations
PSTH: peristimulus time histogram; LFP: local field potential; I/O: input/output; GUI: graphic user interface; PCA: principal 
components analysis.

Authors’ contributions
BZ and JD designed the software and wrote code; BZ and JD wrote the manuscript; TZ supervised the project. All 
authors read and approved the final manuscript.

Author details
1 State Key Laboratory of Brain and Cognitive Sciences, Institute of Psychology, Chinese Academy of Sciences, Bei-
jing 100101, China. 2 Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China. 
3 Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center 
for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), 
Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China. 

Acknowledgements
We thank Prof. Eytan Domany for kindly providing the C code for the Superparamagnetic Clustering. We thank Shenbing 
Kuang, Shengguang Li for helpful discussions, and we also thank Yan Yang for providing the test data.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets and demo codes generated and/or analyzed during the current study are available in the GitHub reposi-
tory, https://github.com/neoanalysis/NeoAnalysis_sample_data.

The NeoAnalysis program and its manual are freely available at: https://github.com/neoanalysis/NeoAnalysis.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was supported by the National Natural Science Foundation of China (31271175 to TZ, 31600870 to JD), the 
Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences (Y5CX112005 to JD), and the Youth Inno-
vation Promotion Association CAS (2017120 to JD).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 July 2017   Accepted: 3 November 2017

References
 1. Stevenson IH, Kording KP. How advances in neural recording affect data analysis. Nat Neurosci. 2011;14(2):139–42.
 2. Muller E, Bednar JA, Diesmann M, Gewaltig MO, Hines M, Davison AP. Python in neuroscience. Front Neuroinform. 

2015;9:11.
 3. Ince RA, Mazzoni A, Petersen RS, Panzeri S. Open source tools for the information theoretic analysis of neural data. 

Front Neurosci. 2010. https://doi.org/10.3389/neuro.01.011.2010.
 4. Garcia S, Fourcaud-Trocme N. OpenElectrophy: an electrophysiological data- and analysis-sharing framework. Front 

Neuroinform. 2009;3:14.
 5. Offline Sorter| Plexon. http://www.plexon.com/products/offline-sorter. Accessed 9 Nov 2017.
 6. NeuroExplorer—data analysis software for neurophysiology. http://www.neuroexplorer.com/. Accessed 9 Nov 2017.
 7. Goldberg DH, Victor JD, Gardner EP, Gardner D. Spike train analysis toolkit: enabling wider application of informa-

tion-theoretic techniques to neurophysiology. Neuroinformatics. 2009;7(3):165–78.

Additional files

Additional file 1. Demo of spike detection. This movie illustrates how to use the SpikeDetection module to detect 
spikes from the sample data.
Additional file 2. Demo of spike sorting. This movie illustrates how to use the SpikeSorting module to perform 
offline spike sorting using the sample data.

https://github.com/neoanalysis/NeoAnalysis_sample_data
https://github.com/neoanalysis/NeoAnalysis
https://doi.org/10.3389/neuro.01.011.2010
http://www.plexon.com/products/offline-sorter
http://www.neuroexplorer.com/
https://doi.org/10.1186/s12938-017-0419-7
https://doi.org/10.1186/s12938-017-0419-7


Page 17 of 17Zhang et al. BioMed Eng OnLine  (2017) 16:129 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 8. Meier R, Egert U, Aertsen A, Nawrot MP. FIND—a unified framework for neural data analysis. Neural Netw. 
2008;21(8):1085–93.

 9. Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a platform for analyzing neural signals. J Neurosci Meth-
ods. 2010;192(1):146–51.

 10. McKinney W. pandas: a foundational Python library for data analysis and statistics. In: Python for High Performance 
and Scientific Computing, Tsukuba, Japan, 1–3 June 2011. p. 1–9.

 11. Garcia S, Guarino D, Jaillet F, Jennings T, Propper R, Rautenberg PL, Rodgers CC, Sobolev A, Wachtler T, Yger P, Davi-
son AP. Neo: an object model for handling electrophysiology data in multiple formats. Front Neuroinform. 2014;8:10.

 12. Hazan L, Zugaro M, Buzsaki G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data 
processing and visualization. J Neurosci Methods. 2006;155(2):207–16.

 13. Propper R, Obermayer K. Spyke viewer: a flexible and extensible platform for electrophysiological data analysis. 
Front Neuroinform. 2013;7:26.

 14. Yegenoglu A, Denker M, Phan LD, Holstein D, Chorley P, Ito J, Jennings T, Meyes R, Quaglio P, Rostami V, et al. 
Elephant—open-source tool for the analysis of electrophysiological data sets. In: Bernstein Conference; Heidelberg, 
Germany; 2015. p. 134–5.

 15. Dai J, Brooks DI, Sheinberg DL. Optogenetic and electrical microstimulation systematically bias visuospatial choice 
in primates. Curr Biol. 2014;24(1):63–9.

 16. Noton D, Stark L. Scanpaths in eye movements during pattern perception. Science. 1971;171(3968):308–11.
 17. Folk M, Cheng A, Yates K. HDF5: a file format and I/O library for high performance computing applications. In: Pro-

ceedings of Supercomputing; 1999. p. 5–33.
 18. Lewicki MS. A review of methods for spike sorting: the detection and classification of neural action potentials. 

Network. 1998;9(4):R53–78.
 19. Quiroga RQ, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamag-

netic clustering. Neural Comput. 2004;16(8):1661–87.
 20. Blatt M, Wiseman S, Domany E. Superparamagnetic clustering of data. Phys Rev Lett. 1996;76(18):3251–4.
 21. PyQtGraph—scientific graphics and GUI Library for Python. http://www.pyqtgraph.org/. Accessed 9 Nov 2017.
 22. Hunter J. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5.
 23. scipy.signal.periodogram—SciPy v0.13.0 reference guide. https://docs.scipy.org/doc/scipy-0.13.0/reference/gener-

ated/scipy.signal.periodogram.html. Accessed 9 Nov 2017.
 24. Liston D, Krukowski A, Stone L. Saccade detection during smooth tracking. Displays. 2013;34(2):171–6.

http://www.pyqtgraph.org/
https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.signal.periodogram.html
https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.signal.periodogram.html

	NeoAnalysis: a Python-based toolbox for quick electrophysiological data processing and analysis
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation
	Design principles
	TransFile
	SpikeDetection
	SpikeSorting
	AnalogFilter
	Graphics
	PopuAnalysis

	Features and capabilities

	Results
	Procedures of analysis using NeoAnalysis
	Spike sorting
	Single unit analysis
	Spectrum analysis
	Saccade detection
	Data analysis at population level

	Discussion
	Comparison with other toolboxes
	Future directions

	Conclusions
	Authors’ contributions
	References




