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Abstract

Background: Metal artifacts appearing as streaks and shadows often compromise
readability of computed tomography (CT) images. Particularly in a dental CT in which
high resolution imaging is crucial for precise preparation of dental implants or ortho-
dontic devices, reduction of metal artifacts is very important. However, metal artifact
reduction algorithms developed for a general medical CT may not work well in a den-
tal CT since teeth themselves also have high attenuation coefficients.

Methods: To reduce metal artifacts in dental CT images, we made prior images by
weighted summation of two images: one, a streak-reduced image reconstructed from
the metal-region-modified projection data, and the other a metal-free image recon-
structed from the original projection data followed by metal region deletion. To make
the streak-reduced image, we precisely segmented the metal region based on adap-
tive local thresholding, and then, we modified the metal region on the projection data
using linear interpolation. We made forward projection of the prior image to make the
prior projection data. We replaced the pixel values at the metal region in the original
projection data with the ones taken from the prior projection data, and then, we finally
reconstructed images from the replaced projection data. To validate the proposed
method, we made computational simulations and also we made experiments on teeth
phantoms using a micro-CT. We compared the results with the ones obtained by the
fusion prior-based metal artifact reduction (FP-MAR) method.

Results: In the simulation studies using a bilateral prostheses phantom and a dental
phantom, the proposed method showed a performance similar to the FP-MAR method
in terms of the edge profile and the structural similarity index when an optimal global
threshold was chosen for the FP-MAR method. In the imaging studies of teeth phan-
toms, the proposed method showed a better performance than the FP-MAR method in
reducing the streak artifacts without introducing any contrast anomaly.

Conclusions: The simulation and experimental imaging studies suggest that the pro-
posed method can be used for reducing metal artifacts in dental CT images.

Keywords: Metal artifact reduction, Dental CT, Adaptive local thresholding, Prior
image, Iterative image reconstruction
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Background

Metal artifacts often compromise readability of computed tomography (CT) images
when the patient has metal implants or metal devices in his or her body. Metal artifacts
usually appear as strong streaks around the metallic objects because the attenuation
coefficients of metallic objects are much higher than those of human body tissues. High
attenuation of the x-ray beam in the metallic objects induces signal saturation in the
projection data, beam hardening, photon scattering, and photon starvation, all of which
contribute to producing metal artifacts.

Many metal artifact reduction (MAR) methods have been developed since the intro-
duction of a medical CT to the clinical field decades ago. Most of MAR techniques iden-
tify the trace of metallic objects on the projection data and then modify the projection
data at the metal trace by interpolating the pixel values around the metal trace [1-6].
The interpolation process is computationally efficient, but it often makes other artifacts
in the resulting images due to the interpolation errors [7]. To reduce the interpolation
errors, many forward-projection-based methods have been introduced [8-13]. In the
forward-projection-based methods, the missing data at the metal trace are inferred by
forward-projecting the prior images. To reduce the metal artifacts effectively, generating
prior images, that can provide missing projection data at the metal trace, is critical. In
generating prior images, precise metal segmentation of the CT images is essential. Any
wrong metal segmentation would result in residual metal artifacts after the metal arti-
fact correction. Particularly in a dental CT, wrong metal segmentation is a big concern
since teeth have x-ray attenuation coefficients that are not very different from those of
metallic objects [14]. Therefore, segmentation of metal regions in dental CT images is
often unsatisfactory since teeth are mistakenly identified as metallic objects. To further
reduce metal artifacts, iterative image reconstruction methods, such as the expectation
maximization method or the algebraic reconstruction technique (ART), can be used
with some regularization [15-19]. Total variation minimization is often used for reg-
ularization in the iterative image reconstruction [20, 21]. However, the iterative image
reconstruction with regularization is computationally expensive. Some hybrid methods
have been also introduced to balance the metal artifact reduction and the computational
cost [22, 23]. Recently, a metal artifact reduction method has been introduced with con-
sideration of the beam hardening effect of a polychromatic x-ray beam [24].

We propose a MAR technique for a dental CT in which a metal trace is identified
directly from the projection data rather than from the CT images. To accurately iden-
tify a metal trace, we use the local statistics of pixel values inside and around the metal
trace that has been first identified by applying global thresholding to the projection data.
After identifying the metal trace from the projection data, we replace the pixel values
at the metal trace with the ones computed from the prior images. For the prior image
generation, we use the recently introduced method, so called fusion prior-based MAR
(FP-MAR) [12]. To validate the proposed method, we have performed imaging studies
of dental phantoms using a micro-CT as well as computational simulation studies. We
present the simulation and experimental results with comparison to the results obtained
by FP-MAR.
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Methods

The metal artifact reduction algorithm

Segmentation of metal trace in the projection images

Due to higher attenuation coefficients of metallic dental devices than those of biologi-
cal tissues and teeth, metallic devices make high contrast in every projection image
acquired by a 3D dental CT. Once the metal regions in the projection images have been
identified by exploiting the high contrast, the pixel values at the metal trace in the sino-
gram should be modified before the back-projection to reduce metal artifacts in the CT
images. Whatever methods are employed to modify the pixel values at the metal trace in
the sinogram, accurate segmentation of metal regions in the projection image is crucial
for successful reduction of metal artifacts. Despite the high attenuation coefficients of
metallic dental devices, segmentation of metal regions is often unsatisfactory since many
objects are overlapped in the projection image. Global thresholding by applying a single
threshold all over the image region may result in a smaller or bigger segmented region
than the original size.

In most MAR algorithms, global thresholding is used to identify metal regions due to
its computational efficiency [12]. However, small errors in the metal segmentation in the
projection image would lead to residual streak artifacts in the reconstructed images. So,
we expand the segmented region, obtained by the global thresholding with a little low
threshold level, to the exact size. In the expansion algorithm, the result of global thresh-
olding, M(s,t,0), on the original projection image, Puyis(s,t,0), is used as a seed for
expansion. In M(s, t,0) and Py (s, £, 6), s and ¢ represent the horizontal and vertical axes
on the detector plane, respectively, and 6 represents the scan angle of the cone-beam-
based dental CT. The global thresholding with a global threshold value T is applied to
the projection image set all over the scan angle:

_ 0 lfPorig(S’t’e) =T
M(s8,0) = { 1 ifporig(s, t,0) <T v

in which the global threshold T is empirically chosen in a way that only the metallic
objects are segmented. In the mask M(s,¢,6), a segmented region tends to be a little
smaller than the actual size of the metallic object. In every mask M(s, t,0), we identify
the islands of zeroes in (s,£) domain, i.e., the metal regions. After identifying the islands
of zeros, we compute the standard deviation of pixel intensity o(i,8), the maximum pixel
intensity A(i,0), and the minimum pixel intensity B(;,0) at the i-th metal region in the
projection image at the scan angle of 6. After that, we find the starting point, s;, and the
ending point, sy, in every row of the island of zeroes. We define the search window Win
which we find the exact boundary of the metallic object. The criterion to decide whether
a pixel in a row within W actually belongs to the metal region or not is given below:

. 0 if B(i,0) +aoc(i,0) < Poig(s, t,0) < A(i,0) — ac (i,0)
M, t,0) = se sy —W,s0+ W] (2)
1 otherwise

in which a scaling factor a is to be found empirically to enhance the expansion perfor-
mance. Since Eq. (2) takes account of the local statistics of pixel intensity inside a metal
region identified by Eq. (1), the metal mask obtained by Eq. (2) better represents the
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actual metal region. If the metal region is overlapped with other high density structures,
the maximum and minimum pixel intensities will rise so that the local lower bound and
higher bound will be increased to keep the segmented region from growing too much.
Since the metal region searching after the global thresholding is performed only within
the small window of 2W around the metal boundary, the computational burden is mini-
mal. In all the simulations and experiments in this work, we have used the scaling fac-
tor of 2. After expanding the segmented region in the horizontal direction, we apply the
same rule in the vertical direction too.

Figure 1a, c show the 2D phantoms to be used for the computational simulation of the
metal artifact generation and correction. Figure la simulates bilateral prostheses in the
pelvis region with Fig. 1c simulating dental implants and teeth. The phantom, shown in
Fig. 1a, consists of a muscle tissue, bones, and titanium implants. The phantom, shown
in Fig. 1c, consists of soft tissues, bones, teeth, and titanium implants. A tooth in the

phantom consists of dentin surrounded by a thin enamel layer. Figure 1b, d show the

a

Titanium

Titanium

Fig. 1 aThe bilateral prostheses phantom that has two metallic objects in it. b The image of the bilateral
prostheses phantom reconstructed by filtered backprojection without any metal artifact correction. € The
dental phantom that has two metallic objects in it. d The image of the dental phantom reconstructed by
filtered backprojection without any metal artifact correction. The ROI A and Bin a and b are the regions for
the evaluation of metal artifact correction
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images reconstructed by the filtered backprojection without any metal artifact correc-
tion. In the image reconstruction, the number of views was 720, and the image matrix
size was 512 x 512. For the image reconstruction, the projection data were computed
by taking a line integral of the phantom with consideration of the energy dependency
of the attenuation coefficients of the constituent parts of the phantom. Figure 2 shows
the energy-dependent attenuation coefficients of the titanium, bone, enamel, dentin and
muscle. The energy dependency of the soft tissue, not shown in Fig. 2, is very similar to
the one of the muscle.

Figure 3 shows the sinograms of the simulation phantom shown in Fig. 1a during
the segmentation steps. In this simulation, the phantom is two-dimensional, hence,
the ¢-direction is not considered in the segmentation steps. Figure 3a shows the origi-
nal sinogram of the phantom. Figure 3b shows the metal mask obtained by the global
thresholding with Fig. 3¢ showing the metal mask after the expansion in the s-direction.
Figure 3d shows the difference between Fig. 3b, c.

30000
25000
20000 —— Titanium
— --- Bone
‘ -~ Muscl
§ 15000 uscle
e Dentin
......... Enamel
10000
5000
0
1 1.5 2 3 4 5 6 8 10 15 20 30 40 50 60 80 100 150
Energy (KV)
Fig. 2 The energy dependency of the attenuation coefficients of the phantom components indicated in

Fig. 1

Fig. 3 a The original sinogram of the phantom shown in Fig. 1a. b The metal mask obtained by the global
thresholding. € The metal mask after the expansion in the horizontal direction (W = 30). d The difference
between b and ¢
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Prior image generation

After segmenting the metal parts, we compute prior images that will be used to replace
the metal region in the projection image. After identifying the metal region in the pro-
jection image as described in the previous section, the projection image is multiplied by
the metal mask so that the pixel values in the metal region are set to zero. Then, the pixel
values in the metal region are filled with the ones computed by linear interpolation of
the pixel values at both sides of a row in the metal region. Figure 4a shows the sinogram
after replacing the metal region by linear interpolation row by row. From the sinogram
after the linear interpolation, a streak-free image Iy (x, y) is reconstructed as shown in
Fig. 4b. This will be the first component of the prior image I, (x, y). In computing the
streak-free image, iterative image reconstruction methods like the simultaneous alge-
braic reconstruction technique (SART) are preferred since iterative image reconstruc-
tions generate less streak artifacts than filtered backprojection.

The second component of the prior image is generated from the image reconstructed
from the original projection data without artifact correction, as shown in Fig. 4c. From
the image shown in Fig. 4c, the metal parts are removed to get a metal-free image
Lus (%,y) as shown in Fig. 4d. In the metal free image, the metal parts are nullified after
identifying the metal parts by global thresholding.

The prior image is calculated by weighted summation of Iy (x, y)and Lnf (x,7)as dem-
onstrated in the Wang’s work [12]. For the weighted summation, the difference between
the streak-free image and the metal-free image is computed by D(x,y) = I {x,y) — 1,,{.y).

After finding the maximum value (D, ,,) and the minimum value (D,,) of D(x,y) over

max.

the whole image region, D(x,y) is normalized by:

D(x, y) —_ Dmin

Dy(x,y) =
n(x y) Dmax - Dmin

3)

Metal trace

replacement

SART with

metal region
filling

Metal Forward

deletion projection

Fig. 4 The flow chart of the proposed metal artifact reduction method. a, b The streak-free image genera-
tion, ¢, d the metal-free image generation, e the prior image generated by fusion of the two images, f the
prior sinogram generated by the forward projection of the prior image, g the identified metal trace in the
sinogram, h the corrected sinogram, i the final reconstructed image
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Then, the weighting function is computed by [12]:

w(x,y) = 71 N [Mr @)

4

in which p and ¢ are control parameters. The prior image is then generated by:
Iy (%, ) = W@ Y s (%, ) + (1 — w(x, y)gr (%, 9). (5)

The control parameters in the weighting function, p and ¢, should be chosen so as to
ensure both edge preservation and artifact reduction in the prior image. A small p can
lead to residual streak artifacts, a small ¢ can generate a prior image very similar to the
streak-free image while a large ¢ can generate a prior image very similar to the metal-free
image [12]. By the trial and error approach, we have found that p should be between 10
and 20, ¢ should be around 0.1 for small metallic objects and around 0.45 for large metal-
lic objects.

Projection data correction
After computing the prior image shown in Fig. 4e, the original projection data are cor-

rected to reduce streak artifacts. The prior projection image, P,

prior (s,£,0) is computed by

forward-projecting the prior image as shown in Fig. 4f. The prior image has less streak
artifacts, lower pixel intensity in the metal region, and less beam hardening artifacts,
that is, it is similar to the original image except at the metal region. The metal region in
the original projection image, shown in Fig. 4g, is replaced with the one in the prior pro-
jection image as shown in Fig. 4h:

i)(S, t’ 0) = M(S, tr Q)Porig(sr t’ 0) + (1 - M(Sr t} 9))Pprior(sy t; 9)' (6)

In the corrected projection image, the original projection data are kept outside the
metal region. From the corrected projection data, final images are reconstructed by
SART followed by metal region filling.

To quantitatively evaluate the performance of metal artifact correction, the structural
similarity (SSIM) index has been used. The SSIM index was developed as a measure of
structural information change from the original image to the distorted image, and it was
considered to be a good measure for perceived image distortion [25]. The SSIM index
was computed using the open software [26] on the regions of interest (ROIs) A and B at
each simulation phantom shown in Fig. 1a, c. The ROI A is positioned in between the
metal objects to evaluate the similarity hampered by the streak and shadow artifacts,
and the ROI B surrounds the metallic object to evaluate the similarity of the corrected
image to the original metallic structure.

Experimental setup

We took 3D tomographic images of two dental phantoms using a lab-built micro-CT to
verify the proposed MAR method. The micro-CT consists of a micro-focus x-ray tube
(L8101-01, Hamamatsu, Japan) and a CsL:Tl flat panel detector (C7942, Hamamatsu,
Japan). In between the micro-focus x-ray tube and the flat panel detector lies a precision
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rotation stage for a CT scan. The micro-focus x-ray tube has a focal spot size of 5-20 pm
depending on the operating tube voltage and current. The maximum tube voltage and
current are 150 kV and 500 pA, respectively. The flat panel detector has a 50 um pixel
pitch with a matrix size of 2240 x 2240. A photograph of the micro-CT system is shown
in Fig. 5.

To verify the proposed MAR method experimentally, we made two dental phantom
as shown in Fig. 6. The phantoms consist of real human teeth, some metal screws and
amalgam dental fillings as indicated in Fig. 6. We took 3D CT images of the phantoms
with a tube voltage and current of 80 kVp and 300 pA, respectively. The number of pro-
jection views was 720 over 360°, and the detector integration time was 1 ms. The source

Fig. 5 The lab-built micro-CT system consisting of a micro-focus x-ray source, a flat-panel detector and a
rotating stage

Fig. 6 aThe dental phantom having real human teeth, a metal screw and dental fillings. b The dental phan-
tom having real human teeth, two metal screws and dental fillings
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to object distance (SOD) and source to detector distance (SDD) were set to make an
appropriate geometric magnification of 4.3. In the imaging experiments, the SDD and
SOD were 432.5 and 331.5 mm, respectively.

Results

We have reconstructed images from the simulated projection data of the two simula-
tion phantoms and from the experimental projection data of the two dental phantoms
using the proposed method and the FP-MAR method. Figure 7a, b show the images of
the bilateral prostheses phantom reconstructed by the FP-MAR method with different
global thresholds of 0.05 and 0.07, respectively. The projection data were normalized by
the peak value so that they had the maximum value of 1.0 all over the scan angles. The
lower global threshold results in the residual streaks and shadow artifacts as can be seen
from Fig. 7a. The global threshold giving the least streak artifact has been found to be
around 0.07 as can be seen in Fig. 7b. Figure 7c shows the image of the simulation phan-
tom reconstructed by the proposed method with the global threshold of 0.05 and the
weighting parameters of p = 10 and ¢ = 0.1. Figure 7d—f show the difference images
of Fig. 7a—c, respectively, from the original phantom image. Similarly, Fig. 8 shows the
simulated dental phantom images reconstructed by the FP-MAR method and the pro-
posed method along with the difference images. The lower global threshold, 0.05, for
the FP-MAR method results in the residual streaks and shadow artifacts as can be seen
from Fig. 8a. The optimal global threshold, 0.07, for the FP-MAR method results in the
least streak artifact as can be seen in Fig. 8b. Figure 8c shows the image reconstructed by
the proposed method with the global threshold of 0.05 and the weighting parameters of
p = 10 and ¢ = 0.1. In the difference images shown in Fig. 8d—f, the proposed method

Fig. 7 The metal artifact correction results of the bilateral prostheses phantom. a FP-MAR with THR = 0.05.
b FP-MAR with THR = 0.07. ¢ The proposed method with a global threshold of 0.05 (p = 10, ¢ = 0.1). d—f Dif-
ference of a—c from the original image shown in Fig. Ta




Hegazy et al. BioMed Eng OnLine (2016) 15:119 Page 10 of 14

Fig. 8 The metal artifact correction results of the dental phantom. a FP-MAR with THR = 0.05. b FP-MAR with
THR = 0.07. ¢ The proposed method with a global threshold of 0.05 (p = 10, ¢ = 0.1). d—f Difference of a-¢
from the original image shown in Fig. 1c

(Fig. 8f) also shows a performance similar to the optimal case in the FP-MAR method
(Fig. 8e).

Figure 9a, b show the pixel intensity profiles along the solid lines shown in Fig. 1a, c,
respectively. Before the correction, the profiles show high overshoots and undershoots
around the metal region in both the cases. The FP-MAR method shows a profile simi-
lar to the proposed method when the optimal threshold was used, but it shows residual
overshoots and undershoots when the lower threshold was used. Table 1 summarizes
the similarity measures at the ROI A and B shown in Fig. 1. In both the simulation stud-
ies, SSIM is low when the images are not corrected or corrected by the FP-MAR method
with some wrong segmentation. SSIM of the proposed method is very close to the ones
of the FP-MAR method with optimal segmentation in both phantom images.

—
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Fig. 9 aThe pixel intensity profiles along the line shown in Fig. 1a for the bilateral prostheses phantom.

b The pixel intensity profiles along the line shown in Fig. 1c for the dental phantom
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Table 1 Structural similarity index (SSIM) values at ROl A and B

ROIA ROIB
Bilateral prostheses phantom
Uncorrected 0.832 0.715
FP-MAR (mis-segmented) 0.890 0913
FP-MAR (well-segmeted) 0.995 0.993
Proposed method 0.995 0.994
Dental phantom
Uncorrected 0.277 0.708
FP-MAR (mis-segmented) 0.398 0613
FP-MAR (well-segmeted) 0.988 0.991
Proposed method 0.989 0.992

Figure 10 shows the metal segmentation results of the dental phantom shown in
Fig. 6a. Figure 10a is one of the projection images acquired at the CT scan in which the
metal implant is clearly seen. Two dental fillings are also seen less conspicuous than the
metal implant. Figure 10b, c are the segmentation results made by the global threshold-
ing and the proposed method, respectively. The metal regions in Fig. 10c appear larger
than those in Fig. 10b after elaborating with the adaptive local thresholding. Figure 10d
is the difference between Fig. 10b, c.

We corrected the projection data of the two dental phantoms shown in Fig. 6, acquired
by the micro-CT, by the proposed method and by the global thresholding for the FP-
MAR method. We used two global thresholds for the FP-MAR method, one is the same
as the one used for the proposed method and the other is large enough to extract all the
metal regions despite some misclassifications of teeth as metallic objects. From the cor-
rected projection data, we reconstructed 3D images using SART. With the aids of GPU-
based parallelization, the computation time for reconstructing 3D images with a matrix
size of 512 x 512 x 512 was 12 min from the projection images with a matrix size of
1120 x 1120 and 720 views.

The upper and lower rows in Fig. 11 show the images of the dental phantoms shown
in Fig. 6a, b, respectively. Figure 11a, e show the images of the dental phantoms without
any metal artifact correction. Figure 11b, ¢ show the images corrected by the FP-MAR

a i
-
iC ‘ l - [l ']' X7

Fig. 10 An example of the metal segmentation for the dental phantom shown in Fig. 6a. a A projection
image of the dental phantom. b The metal regions segmented by the global thresholding. € The metal
regions segmented by the proposed method. d The difference between b and ¢

b
-
d
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Fig. 11 The upper and lower rows are the images of the dental phantoms shown in Fig. 6a, b, respectively. a,
e The images reconstructed without metal artifact correction. b, f The images reconstructed by the FP-MAR
method with a global threshold of 0.07 (partial segmentation of the metallic objects). ¢, g The images recon-
structed by the FP-MAR method with a global threshold of 0.1 (full segmentation of the metallic objects). d, h
The images reconstructed by the proposed method with a global threshold of 0.07 (p = 10, c = 0.1)

method with global thresholds of 0.07 and 0.1, respectively, and Fig. 11d shows the
image corrected by the proposed method with a global threshold of 0.07. Figure 11f, g
show the images corrected by the FP-MAR method with global thresholds of 0.07 and
0.1, respectively, and Fig. 11h shows the image corrected by the proposed method with
a global threshold of 0.07. With the lower threshold in Fig. 11b, f, metal artifacts still
persist. With the higher threshold in Fig. 11c, g, some tooth regions, indicated by the
arrows, are classified as metal regions causing contrast anomaly as well as residual streak
artifacts. Figure 11d, h show less streak artifacts than the images obtained by the FP-
MAR method without introducing any contrast anomaly.

Discussion

Unlike the FP-MAR method, we applied the metal segmentation to the projection
images in which metal artifacts do not appear, and we made streak-free images to gen-
erate the prior images. We used the prior images to make the replacement data at the
metal trace on the projection images, thereby reducing the metal artifacts in the final
image reconstruction. A simple global thresholding of the projection images may result
in wrong metal segmentation, either smaller or bigger size than the original size, due
to overlapping of other structures. However, adaptive local thresholding based on the
pixel intensity statistics in and around the metal regions secured better metal segmenta-
tion than the global thresholding. The FP-MAR method showed residual metal artifacts
when the global thresholding left some metal parts unsegmented. If the global thresh-
old was set so as to segment all the metal parts in the FP-MAR method, streak artifacts
could be reduced but with some contrast anomaly at the region of wrong segmentation.
We observed that setting an optimal global threshold for the FP-MAR method in exper-
imental dental images was not easy since the teeth caused x-ray attenuation not very
different from the metallic objects. In the forward-projection-based method for metal
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artifact correction, generation of high-quality prior images is essential. Adaptive local
thresholding is widely used in medical image processing such as bone segmentation in
CT images [27, 28]. Owing to the adaptive local thresholding of the projection images
in which streak artifacts are not present, we could generate higher quality prior images.

The proposed method would find some applications in dental CT when the patient has
many metallic objects such as dental implants, crowns, and amalgam fillings. If there are
too strong streak artifacts in dental CT images, segmenting the metallic objects without
misclassifying the streak artifacts as metallic objects will not be easy. We need further
studies to verify the proposed method with some clinical data. The dental phantoms we
used have simple structures, but bony structures such as an alveolar bone, a maxillary
bone and a mandibular bone are present around the teeth in a real human. The bony
structures would make it challenging to segment metal regions on the projection images
of a real human.

Conclusions

In both the simulations and experimental studies with a micro-CT, the proposed method
significantly reduced metal artifacts in dental CT images. The proposed method would
have some advantages when the dental CT images have strong streak artifacts caused by
multiple metallic objects.
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