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Abstract 

Background/M&M: A vital aspect of disease management and policy making lies in the understanding of the 
universal distribution of diseases. Nevertheless, due to differences all‑over host groups and space–time outbreak 
activities, data are subject to intricacies. Herein, Bayesian spatio‑temporal models were proposed to model and map 
malaria and anaemia risk ratio in space and time as well as to ascertain risk factors related to these diseases and the 
most endemic states in Nigeria. Parameter estimation was performed by employing the R‑integrated nested Laplace 
approximation (INLA) package and Deviance Information Criteria were applied to select the best model.

Results: In malaria, model 7 which basically suggests that previous trend of an event cannot account for future 
trend i.e., Interaction with one random time effect (random walk) has the least deviance. On the other hand, model 6 
assumes that previous event can be used to predict future event i.e., (Interaction with one random time effect (ar1)) 
gave the least deviance in anaemia.

Discussion: For malaria and anaemia, models 7 and 6 were selected to model and map these diseases in Nigeria, 
because these models have the capacity to receive strength from adjacent states, in a manner that neighbour‑
ing states have the same risk. Changes in risk and clustering with a high record of these diseases among states in 
Nigeria was observed. However, despite these changes, the total risk of malaria and anaemia for 2010 and 2015 was 
unaffected.

Conclusion: Notwithstanding the methods applied, this study will be valuable to the advancement of a spatio‑tem‑
poral approach for analyzing malaria and anaemia risk in Nigeria.

Keywords: Spatio‑temporal, Heterogeneity, Bayesian Hierarchical, Deviance Information Criteria, Risk Ratio and 
R‑integrated nested Laplace approximation (INLA)
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Background
Childhood malaria infection has been a major concern, 
especially in developing countries like Nigeria. The 2021 
report from the World Health Organization (WHO) 
estimated that 241 million malaria cases with 627,000 
deaths worldwide [1, 2]. The increase in malaria infection 
dropped from 81% in 2000 to 59% in 2015 and 56% in 
2016 but went up again to 59% in 2020 due to Covid-19 
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pandemic. Globally, 96% of malaria cases is majorly from 
29 countries with Nigeria (27%) topping the list of 6 
countries that contribute almost 55% of malaria cases [1, 
3]. Children between the age of 0 to 59 months are most 
vulnerable with an estimate of 213 million to 228 million 
malaria cases between 2019 and 2020 and a mortality 
rate of 534,000 to 602,000 in the respective years; 80% of 
all malaria deaths are among children under age 5 years 
[1, 4]. Like most other vector borne diseases, malaria is 
characterized by spatio-temporal variations or changes 
due to demographic, socio-economic and geographical 
factors. These covariates can help determine the spatio-
temporal patterns of disease and recognize hotspots to 
aid efficient examination of disease, cost-effective alloca-
tion of resources and most importantly, effective disease 
control [5–10].

The spatio-temporal distribution of vector borne dis-
eases is not only determined by environmental factors. 
Political and state borders are also major determinants 
because of their involvement in the spatial distribution 
and enactment of control and prevention programmes 
[10]. This can be explained by a spatio-temporal study in 
Northern Thailand, where there was a sharp difference in 
the malaria prevalence with Myanmar border [7]. Also, 
only environmental and biological factors cannot justify 
the differences in local diseases as claimed by Ra et al.[6].

Anaemia is another disease that has become a public 
health challenge in Nigeria, especially amongst under 
aged 5  years children. It is a condition that arises as a 
result of the reduction of hemoglobin in the blood [11, 
12]. Globally, more than 273 million children under aged 
5  years are affected by anaemia [12]. Sub-Sahara Africa 
is the most endemic region with about 53.8% childhood 
anaemia cases [12]. According to the WHO classifica-
tion, anaemia is considered severe if its prevalence is 40% 
and above, moderate between 20% and 39.9%, and mild 
between 5% and 19.9% [12, 13]. Anaemia has become 
major public health due to its prevalence and effect on 
child’s health.

Pregnant women and children are most vulnerable to 
anaemia because of their high requirement of iron. Chil-
dren between the age of 6–59 months are anaemic if their 
haemoglobin level is below 11  g/dl. The major causes 
of anaemia in children are parasitic infection, dietary 
iron deficiency and inherited disorders but in malaria 
endemic region, malaria disease is the major cause [14, 
15].

The spread of malaria and anaemia in Nigeria has been 
a concern to researchers which has led to several studies 
such as [12, 16–20]. In [21], a quasi-experimental fixed-
effect model was used to investigate the effect of malaria 
on haemoglobin concentration in children under 5 years 
old. They concluded that there is a strong negative effect 

on haemoglobin levels among Burkina Faso’s children 
from malaria infection. Furthermore, [22] stated that 
anaemia caused by Plasmodium falciparum is a result of 
excess removal of nonparasitized red blood cells together 
with the destruction of parasitized red cells immune 
leading to malfunctioning of the bone marrow. Also, the 
main cause of mortality and morbidity in children who 
live in Kenyan malaria hotspots is falciparum malaria 
[23]. Given these literatures and more, there is a need to 
monitor the progress of malaria and anaemia in the near 
future and use the available data to forecast cases in space 
and for the possible spread of these diseases.

The spatial pattern of diseases and exposures does not 
explain the temporal variation which is also important 
and interesting. Besag et al. [24], foremost introduced a 
spatial pattern which was extended by incorporating a 
linear time trend for interaction [25]. Knorr‐Held [26], 
included a non-parametric temporal trend which com-
prises the time changing effect of predictors. Including 
disease surveillance studies, spatio-temporal models are 
mostly used in several fields of science [27]. With the 
help of Bayesian hierarchical modelling framework, the 
implementation of these models is made possible. These 
models accommodate a composite and workable struc-
ture in space and time models, with spatio-temporal 
interaction as the paramount feature. Here, our work is 
extended from the methods used by Bernardinelli et  al. 
[25], and Knorr‐Held [26] for spatio-temporal frame-
work. By applying the multilevel model analysis [27], we 
independently investigate the spatio-temporal distribu-
tion of malaria and anaemia and their associated risk fac-
tors using data from the Nigeria malaria indicator survey 
(NMIS) for 2010 and 2015.

Data description
This work obtained data from the Nigeria Malaria Indica-
tor Survey (NMIS) which was carried out by the National 
Malaria Elimination Program (NMEP), National Popula-
tion Commission (NPopC) and the National Bureau of 
Statistics (NBS). The data captures the surveys of 2010 
and 2015 which were the first and second malaria indi-
cator surveys conducted in Nigeria. The 2015 survey was 
put into action just a year after the 2010 survey and a 
year after the development of the new national malaria 
strategic plan that covers 2014–2020 [28]. The 2  years 
were used because this survey is usually carried out every 
5 years. To find out about the risk of malaria or anaemia 
disease, two-stage sampling was carried out. Clusters 
were selected from each urban/rural strata in the first 
stage and systematic sampling were done for selection 
of households in the second stage. The data has 12,623 
children under age 5 years old in total. 11,172 and 11,072 
children were tested for malaria and anaemia out of 
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12,623 respectively. Finally, the sample size of 9,533 was 
used for analysis after removing the missing values and 
this is 75.5% of the original data. Figure 1 shows the map 
of Nigeria comprising 6 geopolitical zones and their 37 
states including the capital territory. It further reveals the 
location of Nigeria in Africa. While the maps in Figs.  2 
and 3 indicate the prevalence of malaria and anaemia in 
each state.

In this study, the first dependent variable is the binary 
response from a child’s RDT outcome while the second 
dependent variable is the binary response to the anaemic 
status of a child. For both dependent variables, 1 repre-
sents the presence of malaria or anaemia infection and 0 
represents no presence of malaria or anaemia infection. 
The independent variables are the type of place of resi-
dence, source of drinking water, type of toilet facility, has 
electricity, has radio, has television, main floor material, 
main wall material, main roof material, wealth index, 
child’s age in months, sex, mother’s highest educational 
level, state, and region. Table 1 contains the summary of 
all the variables used in this work.

Methods
To begin with, a space–time model was proposed by Ber-
nardinelli et  al. [25] using Poisson distribution and the 
log risk ratio was defined as a linear function of time. 
Authors expressed the log risk ratio for area i ; i = 1, . . . , I 
for time t ; t = 1, . . . ,T  as

Following Besag et  al. [24] specification, φ = ui + vi 
are the spatial random effect (convolution model), where 
ui ’s are the structured variables and vi ’s are the unstruc-
tured variables.  µ is the overall mean, β is the universal 
linear time trend effect and δi is the random effect for 
interaction betwixt space and time. For the data to show 
the time trend, the parameters for the time trend were 
allocated unclear priors. In terms of the interaction ran-
dom effect δi , the independent and identically distributed 
(i.i.d) Gaussian prior was adopted, though alternative 
prior specification can be given. Based on spatial models, 
the priors for unstructured and structured spatial effects 
were described.

(1)log(θit) = ηit = µ+ ui + vi + (β + δi)× t.

Fig. 1 Location map of Nigeria showing the 6 geopolitical zones and their 37 states including the capital territory
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On the other hand, Knorr‐Held [26] reformed the ear-
lier method by disabling the parametric limitations. The 
authors adopted a Binomial distribution for the num-
ber of cases in the country i (i = 1, . . . , I) at t th time 
(t = 1, . . . ,T ) , while the log odds are expressed as:

where γt , νt refers to the temporal random effects that 
take care of unnamed attributes of year t , and δit ; the 
interaction effects that take care of differences not 
described by the main effects. Intrinsic conditional 
autoregression (iCAR) and first order random walk 
structure were assigned to ui and γt , while independ-
ent Gaussian priors were assigned to υi and νt . Based on 
the temporal effects interaction and spatial effects, the 
interaction δit was presumed to have four forms of prior 
inference.

Bernardinelli et  al. [25] and Knorr‐Held [26] per-
formed their parameter estimation under the fully Bayes-
ian approach with the use of Markov chain Monte Carlo 
(MCMC) through Gibbs sampling techniques. Here, 
INLA approximation to fully Bayesian estimation was 
used. Therefore, the method used in this study is dis-
cussed as follows.

Let yiky be malaria or anaemia status of child k in state 
i : i = 1, . . . , 37 during year y : y = 1, 2 . The response out-
come variable is a binary response, and it is defined as:

where yiky is the binary response outcome and it follows a 
Bernoulli distribution as.
yiky ∼ Bernoulli

(

θiky
)

 , where θiky are unspecified prob-
abilities associated to the outcome probabilities of the 
models. The logistic regression model is expressed as;

where β0 is the model intercept and the linear predictor 
ηiky = X

′

ikyβ with covariate vector X =
(

xiky1, . . . , xikyq
)′

,  
β =

(

β1, . . . ,βq
)

 is the vector regression coefficient. We 
employed the combined formulation of the structured 
additive regression to permit flexibility where the classi-
cal predictor can be expanded to a better flexible additive 
predictor. Therefore, the structured additive predictor is 
expanded to spatio-temporal modelling as

where fspat , fyear , and fiy are respectively functions suita-
ble for space, year and space-year interaction. The spatial 

(2)

log

(

πit

1− πit

)

= ηit = µ+ ui + υi + γt + νt + δit

Yiky =

{

1, Anaemia

0,No anaemia

(3)logit
(

θiky
)

= β0 + ηiky

(4)ηiky = X
′

ikyβ + fspat(si)+ fyear
(

y
)

+ fiy
(

si, y
)

Fig. 2 Map of Nigeria showing state rates based on sampling 
weights of under 5 years old malaria prevalence

Fig. 3 Map of Nigeria showing state rates based on sampling 
weights of under 5 years old anaemia prevalence
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components fspat are disintegrated into two i.e., spatially 
unstructured funstr and spatially structured fstr effects. 
However, fyear show the random year effects and this is 
modelled as a first-order random walk or AR(1) accord-
ing to [29]. While fiy

(

si, y
)

 is a space-year interaction.
To ascertain the wellness of the estimators, these seven 

models were compared as follows.

Model 1: ηiky = X
′

ikyβ + fstr(si)+ funstr(si)

Model 2: ηiky = X
′

ikyβ + fstr(si)+ funstr(si)+ βy

Model 3: ηiky = X
′

ikyβ + fstr(si)+ funstr(si)+ fyear
(

y
)

Model 4: ηiky = X
′

ikyβ + fstr(si)+ funstr(si)+ fiy
(

si, y
)

Model 5: ηiky = X
′

ikyβ + fstr(si)+ funstr(si)+ βy + fiy
(

si, y
)

Table 1 Exploratory data analysis

Variables Category Malaria Anaemia

Positive (%) Negative (%) Positive (%) Negative (%)

Type of place of residence Urban 8.4 22.5 17.9 13

Rural 36.9 32.2 50.5 18.6

Source of drinking water Tap/Other water 17.5 22.3 26.6 13.2

Well water 27.7 32.5 42 18.2

Wealth index Poor 23.3 15.4 28.6 10

Middle 10.8 10.9 15.5 6.2

Rich 11.1 28.5 24.2 15.5

Region North Central 8.6 10.1 11.2 7.5

Northeast 7.8 10.7 11.6 7

Northwest 13.9 10.8 19.1 5.1

Southeast 3.7 7.4 7.3 3.8

South South 6.7 8.9 12 3.8

Southwest 4.4 7 7.3 4.3

Child’s age in months 6–14 months 5.9 11.2 13.2 3.8

15–23 months 5.8 8.9 11.2 3.5

24–32 months 7.6 9.3 12 4.9

33–41 months 8.4 9.2 11.4 6.2

42–50 months 8.3 8.1 10.1 6.3

51–59 months 9.3 8 17.4 6.8

Sex Male 23.1 27.4 35.5 15

Female 22.1 27.4 32.9 16.6

Electricity No 30 22.4 38.6 13.9

Yes 15.2 32.4 29.7 17.8

Television No 31.7 24.8 41.6 14.7

Yes 13.6 29.9 26.8 16.9

Radio No 18 16.7 42.3 25.6

Yes 27.2 38.1 22.5 9.2

Mother’s educational level No education 24.9 19.8 32.9 11.5

Primary 9.2 10.2 13.5 6

Secondary 9.6 9.9 18.9 10.8

Higher 1.1 5.3 3.3 3.1

Main floor material Earth/Other 25 21.4 33.3 13.1

Cement/Ceramics 20.2 33.4 35.1 18.5

Main wall material Wood/Other 28 22 36.2 13.6

Cement/Bricks 17.2 32.8 32.2 18

Main roof material Wood/Other 17.4 14.2 22.7 8.9

Zinc/Metal 27.9 40.5 45.6 22.8

Type of toilet facility Flush/Other toilet 22.7 25.4 32.8 15.7

Pit toilet 22.5 29.4 35.5 16
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Model 6: ηiky = X
′

ikyβ + fstr(si)+ funstr(si)+ fyear
(

y
)

+ fiy
(

si , y
)

Model 7: ηiky = X
′

ikyβ + fstr(si)+ funstr(si)+ f1year
(

y
)

+ fiy
(

si , y
)

were,

• Xiky signifies the vector of categorical variables effects 
for child k in state i during year y

• β is a vector of regression coefficients
• βy means the year-specific fixed effects
• funstr(si) and fstr(si) are the unstructured and struc-

tured random effects respectively
• fyear and f1year show the smooth functions of the 

temporal random effects
• fiy

(

si, y
)

 signifies the spatial-year interaction effect

Model 1 simply takes care of the spatially structured 
random effects, and this accounts for unobserved signifi-
cant factors that change spatially transversely over the 
states and spatially unstructured random effects that 
caters for undetected variables inside the states. Hereaf-
ter, by assuming a categorical variable, it will have a linear 
effect on malaria and anaemia. The temporal effect is not 
assumed by this model. Model 2 follow the same pattern 
but in addition assumes a linear year trend taken by βy . 
On the other hand, Model 3 contains separable space and 
year random effect which takes care of the linear effect of 
categorical variables. Also, Model 4 and Model 1 are par-
allel to each other but additionally, Model 4 takes care of 
space and year interaction which captures differences 
that is not shown by the main effects. Regarding Model 5, 
the assumption is made on the linear effects of the cate-
gorical variables, spatial random effects, linear year trend 
and space year-interaction. While Model 6 and Model 7 
are alike but vary in prior assumptions of the temporal 
random year effects ( fyear , f1year ). Additionally, both 
models take on linear effects of categorical variables, spa-
tial random effects of the location, space, and year inter-
action. In other words, all models take on linear effects of 
categorical variables through the term X′

iky.

Prior specifications
Here, for the spatio-temporal logistic regression mod-
els, the full Bayesian approach was adopted. Diffuse pri-
ors were allocated to fixed effects and linear year trend, 
intrinsic conditional autoregressive (iCAR) was used to 
model the spatially structured random effects, while the 

independent and identically distributed (i.i.d) Gauss-
ian prior was assigned spatially unstructured random 
effects. A first-order random walk was used to model 
the temporal year random effects f1year . Nevertheless, it 
is interesting to note that varied prior specifications for 
the temporally changeable year effects fyear were given in 
the models and penalized spline was given to the spatio-
temporal logistic regression model. Also, independent 
penalized splines for the logistic independent first-order 
autoregressive model were adopted to model the spatial 
year-specific effects (interaction).

Parameter estimation
In this research, we discussed the procedure of param-
eter estimation of the spatio-temporal logistic regression 
model of malaria and anaemia using the fully Bayes-
ian approach. With due consideration, every unspeci-
fied parameter assumed random variables and was given 
adequate prior distributions. The posterior of the priors 
is given as:

where L
(

y|ϕ,ψ
)

 is the likelihood of the penal-
ized spline and p(ϕ,ψ) are the prior distribu-
tions of the spatio-temporal logistic regression 
model. The latent Gaussian field is expressed as 
ϕ =

{

{β},
{

βy
}

,
{

fstr(.)
}

,
{

funstr(.)
}

,
{

fyear(.)
}

,
{

f1year(.)
}

,
{

fiy(.)
}} 

while the equivalent hyperparameters are shown as 
ψ =

{

̺str , ̺unstr , ̺year , ̺1year , ̺iy
}

 . Conjugate gamma pri-
ors Gamma(1, 0.00005) were allocated to all hyperparam-
eters while R-integrated nested Laplace approximation 
(INLA) package was used to estimate the parameters.

Results
Table 2 shows the model fit values for the spatio-tempo-
ral logistic regression models of malaria which comprises 
Deviance Information Criteria (DIC) and the effective 
number of parameters (DP). Model 7 was chosen as a bet-
ter model because it gave the least DIC value of 10819.24. 
Therefore, the presentation of results and interpretations 
are based on Model 7 which includes both linear and 
nonlinear effects as well as the spatio-temporal effects.

Table  3 provides the adjusted posterior odds ratios 
estimates (AOR) and 95% confidence interval for the 

(5)p
(

ϕ,ψ |y
)

∝ L
(

y|ϕ,ψ
)

p(ϕ,ψ)

Table 2 Summary of the model comparisons of malaria

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

DIC 11122.29 11110.03 11114.02 10821.05 10820.58 10821.11 10819.24

DP 52.31 53.40 54.27 86.24 86.14 86.19 85.06
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best fitting model mentioned above. Here, the results for 
significant covariates were discussed alone. Regarding 
child’s age in months, the results showed an increase in 
the odds of malaria for all ages. In the same vein, there 
was a significant increase in the odds of malaria among 
children whose anaemic status is positive and those who 
live in rural area. On the other hand, odds of malaria 
decrease significantly with respect to wealth index and 
mother’s educational level (Secondary and Higher). Fur-
thermore, household with electricity had significantly 
lower odds of malaria compared to a household without 
electricity.

Figure  4 presents the mapped estimated residual spa-
tial effects of the year 2010 and year 2015. The essence is 
to study how disease prevalence and risk factors change 
with time. These maps show unobserved spatial factors 
that are not captured in the survey or that capture the 
effects of cultural patterns. From the figure, there was 
an obvious spatial pattern change over the two years. 
Though higher concentrations in the two years are scat-
tered, the states inside the Northeast, Northwest and 
Southwest regions have higher odds of 0.99–2.2 of 
malaria. In 2010, states in the north-east had higher odds 
of malaria but had lower odds of malaria later in 2015. .

Table 3 Adjusted posterior odd ratios estimates (AOR) of malaria with 95% confidence interval

∗means significant

CI means Confidence Interval

Variables Malaria (Model7)
AOR 95% CI

Child’s age in months (grouped) (ref = 1)

 2 1.452* (1.235, 1.707)

 3 1.979* (1.692, 2.315)

 4 2.399* (2.051, 2.807)

 5 2.787* (2.372, 3.277)

 6 3.221* (2.742, 3.787)

Source of drinking water (ref = Tap/Other water)

 Well water 0.957 (0.863, 1.061)

Has electricity (ref = No)

 Yes 0.819* (0.715, 0.939)

Main wall material (ref = Wood/Other)

 Cement/Bricks 0.943 (0.813, 1.094)

Main floor material (ref = Earth/Other)

 Concrete\Ceramics 0.919 (0.807, 1.047)

Main roof material (ref = Wood/Other)

 Zinc/Metal 1.004 (0.887, 1.137)

Anaemic status (ref = No)

 Yes 2.963* (2.657, 3.306)

Wealth index (ref = Poor)

 Middle 0.758* (0.641, 0.897)

 Rich 0.468* (0.365, 0.601)

Mother’s educational level (ref = No education)

 Primary 0.915 (0.794, 1.056)

 Secondary 0.748* (0.642, 0.871)

 Higher 0.442* (0.339, 0.574)

Sex(ref = Male)

 Female 1.019 (0.930, 1.118)

Has radio(ref = No)

 Yes 0.983 (0.884, 1.093)

Type of place of residence (ref = Urban)

 Rural 1.637* (1.436, 1.867)

Has television (ref = No)

 Yes 0.947 (0.814, 1.103)
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Table  4 contains the results of  DIC and the effective 
number of parameters DP of the model fit values for 
the spatio-temporal logistic regression models of anae-
mia.   From the summary, Model 6 gave the least DIC 
value of 10330.78. Therefore, the interpretation and pres-
entation of results were based on this model.

Figure  5 shows the  posterior relative risk of malaria. 
Here, there was an obvious change in the relative risk of 
malaria over the two years. This implies that there has 
been an increase in the relative risk of malaria from 2010 
to 2015.

Table 5 presents the adjusted posterior odds ratios esti-
mates (AOR) and 95% confidence interval for the best fit-
ting model mentioned above. Discussion on the results 
was basically on the significant covariates. There was a 
significant decrease in odds of anaemia for children in 
age categories 3, 4, 5, and 6 but insignificant for  age cat-
egory 2. Also, the odds of anaemia decrease significantly 
with increasing  mother’s educational level. Further-
more, sex, household that has radio and television had 
significantly lower odds of anaemia. On the other hand, 
child’s age in months, the results showed that there was 
an increase in the odds of malaria but only significant 
for children in age categories 2, 3 and 6. While the odds 
of anaemia increased significantly for malaria rapid test 
results, source of drinking water, wealth index and type 
of place of residence.

Figure 6 is the graphical representation of child’s age 
in months and the adjusted odd ratio (AOR) of malaria 
and anaemia. The relationship between child’s age in 
months and the adjusted odd ratio of malaria increase 

Fig. 4 Maps displaying residual spatial effects of malaria in Nigeria for year 2010 and 2015 obtained from spatio‑temporal interaction logistic 
regression model, i.e., Model 7

Table 4 Summary of the model comparisons of anaemia

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

DIC 10472.33 10474.30 10472.42 10330.80 10330.85 10330.78 10330.87

DP 53.11 54.10 53.09 83.12 83.59 83.11 83.18

2010 2015
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Fig. 5 Depicting estimated posterior relative risk of malaria for the 
logistic regression best fitting model
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significantly across the age group. While anaemia 
decreases significantly. This might be due to the stim-
ulation of antimalarial immune defenses by malaria 
antigen in breast milk which reduces malaria risk in 
infants attributable to breastfeeding [30]. As children 
are weaned, they are vulnerable to malaria as they have 
lost maternal immunity and are yet to develop self-
immunity against infection [31]. As a result, there will 
be a decrease in anaemia infection because individuals 
at some point develop a disease-controlling immunity 
that makes them asymptomatic [32].

Figure 7 displays the mapped estimated adjusted pos-
terior odds of residual spatial effects of the year 2010 and 
2015 in Nigeria. In our first work, we focused on the evo-
lution of the geographical variation of anaemia. The map 
in Fig. 4 represents the estimated residual spatial effects 
for the two years. The colours for the regions are the 
same as described above. In both years, the South-South 
and partially South-West regions showed a higher con-
centration of anaemia with odds ratio of 0.90–2.2. Not-
withstanding, in 2010, some part of North-Central region 
had a higher concentration of the same odds ratio. Other 
things seem similar to the previous figure.

Table 5 Adjusted posterior odd ratios estimates (AOR) of anaemia with 95% confidence interval

∗means significant

CI means Confidence Interval

Variables Malaria (Model7)
AOR 95% CI

Child’s age in months (grouped) (ref = 1)

 2 0.910 (0.763, 1.086)

 3 0.599* (0.506, 0.708)

 4 0.402* (0.341, 0.473)

 5 0.330* (0.280, 0.390)

 6 0.303* (0.256, 0.358)

Source of drinking water (ref = Tap/Other water)

 Well water 1.134* (1.021, 1.259)

Has electricity (ref = No)

 Yes 1.019 (0.881, 1.180)

Main wall material (ref = Wood/Other)

 Cement/Bricks 0.908 (0.774, 1.065)

Main floor material (ref = Earth/Other)

 Concrete\Ceramics 1.027 (0.900, 1.170)

Main roof material (ref = Wood/Other)

 Zinc/Metal 0.932 (0.818, 1.062)

Result of malaria rapid test (ref = No)

 Yes 2.985* (2.676, 3.331)

Wealth index (ref = Poor)

 Middle 1.206* (1.005, 1.448)

 Rich 1.229 (0.946, 1.595)

Mother’s educational level (ref = No education)

Primary 0.849* (0.730, 0.987)

 Secondary 0.795* (0.680, 0.928)

 Higher 0.659* (0.526, 0.825)

Sex (ref = Male)

 Female 0.784* (0.713, 0.862)

Has radio (ref = No)

 Yes 0.778* (0.695, 0.871)

Type of place of residence (ref = Urban)

 Rural 1.475* (1.295, 1.679)

Has television (ref = No)

 Yes 0.789* (0.673, 0.925)
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Figure  8 provides the estimated posterior relative risk 
of anaemia. There was an increase in the relative risk of 
anaemia in the two years i.e., the transmission of anaemia 
infection was high in 2015.

Discussion
This research work applied spatio-temporal models to 
investigate the relative risks and geographical variation 
of malaria and anaemia in Nigeria. This research work 
was carried out with the sole aim of developing and 
applying the exact statistical models to assess determi-
nant factors and geographical distinctions of malaria and 
anaemia. In addition, to apply a unified framework of 

flexible models within Bayesian hierarchical modelling to 
understand various factors associated with this discreet 
type of malaria and anaemia prevalence among children 
from 0 to 59 months in Nigeria. The models considered 
are an augmentation to classical models which include 
spatial and spatio-temporal models for identification of 
geographical variation of year-specific effects. Logistic 
regression was developed to assess influential factors 
and state variation of malaria and anaemia prevalence. 
The structured additive modelling approach gives allow-
ance for different kinds of predictors to be included in 
classical models in an additive manner by borrowing 
strength from both parametric and non-parametric mod-
els. Integrated nested Laplace approximation was used 
to investigate the spatio-temporal effect on childhood 
malaria and anaemia disease with the application of MIS 
(Malaria indicator survey) datasets in Nigeria. For each 
model, the Deviance Information Criteria (DIC) were 
compared, and the best model was used to fit malaria 
and anaemia data of Nigeria. Among the models consid-
ered, the spatio-temporal interaction logistic regression 
model was chosen as the best model to fit malaria data 
while for anaemia, model 6 (interaction with one random 
time effect (autoregressive prior of order 1(AR1))) was 
chosen. For both diseases, variation can be seen among 
the Nigeria states and clustering among states with high 
malaria and anaemia relative risk (RR). Child’s age in 
month, main wall material, anaemic status, wealth index, 
mother’s educational level and type of place of residence 
were significantly related to malaria and anaemia except 
for the source of drinking water, sex, and household that 
has radio and television that were significantly related 

Fig. 6 Relationship between child’s age in months and AOR of 
malaria and anaemia

Fig. 7 Maps displaying residual spatial effects of anaemia in Nigeria for year 2010 and 2015 sprang from the spatio‑temporal interaction logistic 
regression model i.e., Model 6
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to only anaemia over the two years period, this is in line 
with [33, 34]. While anaemia is seen as a dominant deter-
minant of malaria, malaria as well as a major determinant 
of anaemia[35, 36]. In the two years considered, we found 
out that the states within the northern, southern, and 
western regions have the higher prevalence of malaria 
and anaemia. The lowest prevalence of malaria and anae-
mia was seen in states within the eastern region. Also, we 
estimated year temporal effects on malaria and anaemia. 
For both diseases, the plots showed no obvious change in 
the spread of malaria and anaemia.

There are always limitations in every research. In this 
study, the main limitation is the number of years available 
for us to estimate the spatio-temporal trends of malaria 
or anaemia. This matter poses a hinderance to investigat-
ing the trend of malaria or anaemia pandemic during the 
early years. Also, this study used secondary data from 
cross-sectional surveys which did not allow the causal 
relationships to be established. Furthermore, though iron 
deficiency is one of the major causes of anaemia, there 
was no information on iron levels in children. Notwith-
standing the limitations, the strength of this study is in 
the use of individual-level malaria RDT results instead of 
indicators or estimates of malaria or anaemia.

Conclusion
There is room for further investigation on this research 
work. In this work, FB approach within the Bayesian hier-
archical modelling to model malaria and anaemia preva-
lence in Nigeria. Furthermore, the Bayesian structured 
additive approach was used to model the determinants of 
malaria and anaemia. The findings from this work show 
that there will be likely a reduction in the spread of these 
diseases if commendations are adequately adhered to. 

Therefore, government should focus on improving moth-
er’s education and standard of living. Also, pertaining to 
these diseases, there should be aggressive awareness on 
social television programs.
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