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Abstract 

Background:  Targeted research on residual malaria transmission is important to improve strategies in settings 
pursuing elimination, where transmission reductions prove challenging. This study aimed to detect and characterize 
spatial heterogeneity and factors associated with Plasmodium falciparum infections and exposure, P. falciparum apical 
membrane antigen 1 (PfAMA1) antibody (Ab) response, in the Central Highlands of Madagascar (CHL).

Methods:  From May to July 2014, a cross-sectional school-based survey was carried out in 182 fokontany (villages) 
within 7 health districts of the CHL. Rapid diagnostic tests (RDTs) and a bead-based immunoassay including PfAMA1 
antigen biomarker were used to estimate malaria prevalence and seroprevalence, respectively. Local Moran’s I index 
was used to detect spatial “hotspots”. Remotely sensed environmental data—temperature, vegetation indices, land 
covers, and elevation—were used in multivariable mixed-effects logistic regression models to characterize factors 
associated with malaria infection and cumulative exposure.

Results:  Among 6,293 school-children ages 2–14 years surveyed, RDT prevalence was low at 0.8% (95% CI 0.6–1.1%), 
while PfAMA1 Ab seroprevalence was 7.0% (95% CI 6.4–7.7%). Hotspots of PfAMA1 Ab seroprevalence were observed 
in two districts (Ankazobe and Mandoto). Seroprevalence increased for children living > 5 km from a health centre 
(adjusted odds ratio (OR) = 1.6, 95% CI 1.2–2.2), and for those experiencing a fever episode in the previous 2 weeks 
(OR 1.7, 95% CI 1.2–2.4), but decreased at higher elevation (for each 100-m increase, OR = 0.7, 95% CI 0.6–0.8). A clear 
age pattern was observed whereby children 9–10 years old had an OR of 1.8 (95% CI 1.2–2.4), children 11–12 years 
an OR of 3.7 (95% CI 2.8–5.0), and children 13–14 years an OR of 5.7 (95% CI 4.0–8.0) for seropositivity, compared with 
younger children (2–8 years).

Conclusion:  The use of serology in this study provided a better understanding of malaria hotspots and associated 
factors, revealing a pattern of higher transmission linked to geographical barriers in health care access. The integration 
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Background
Malaria remains one of the most important causes of 
morbidity and mortality in sub-Saharan Africa. While 
many countries in the African region have the poten-
tial to eliminate malaria in the medium or long term—
malaria case incidence reduced from 363 to 225 cases 
per 1000 populations at risk in 2000 and 2020, respec-
tively—Madagascar has still been aiming to improve case 
management for  at least 95% of diagnosed cases and to 
ensure the permanent availability of diagnostic-and-
treatment tools for 95% of health facilities since 2013 [1, 
2]. Madagascar has a highly heterogeneous distribution 
of malaria transmission, with areas of high transmis-
sion in the east and west coast of the island, and areas of 
very low and low transmission in the Central Highlands 
(CHL) and surrounding Fringes areas, respectively [3, 4]. 
The National Malaria Control Programme (NMCP) has 
targeted five districts in the highlands for malaria elimi-
nation, with the goal to reach zero deaths, and to extend 
the number of districts targeted for elimination from 5 
in 2018 to 13 by 2022, mainly in CHL and surrounding 
Fringes areas. However, progress so far has been elusive 
[5].

Characterizing malaria transmission intensity in 
near-elimination settings using passive surveillance 
and standard diagnostic methods can be challenging, as 
asymptomatic infections can outnumber symptomatic 
infections and are hard to detect with malaria rapid diag-
nostic tests (RDTs) only [6–8]. Yet, asymptomatic cases 
with low detectable levels of parasitaemia can constitute 
potential reservoirs for malaria [6, 8, 9]. In these settings, 
serological assays for antibody detection can be a pow-
erful tool for estimating cumulative exposure in addition 
to RDTs and microscopy during large-scale surveillance, 
such as Malaria Indicator Surveys [10, 11]. Field studies 
have also shown that the predominant immunoglobu-
lin G (IgG) subclass profiles of Plasmodium falciparum 
are influenced by age and exposure to infection [12]; in 
particular, IgG-specific antibody responses to P. falcipa-
rum merozoite antigens—the apical membrane antigen 
1 (PfAMA1) and the 19  kDa C-terminal region of the 
merozoite surface protein 1 (PfMSP1-19)—and other 
blood-stage antigens can be good biomarkers of P. falci-
parum exposure in populations with low immunity such 
as children less than 15 years of age [13–15]. Thus, anti-
body responses against P. falciparum antigens, such as 

PfAMA1, can be particularly useful and informative to 
differentiate individuals based on their cumulative expo-
sure, and to aid in characterizing factors associated with 
spatial heterogeneity in near-elimination settings [16, 17].

In moderate or low malaria transmission settings, char-
acterizing malaria prevalence can yield somewhat homo-
geneous patterns at higher levels of spatial analysis. Yet, 
fine-scale population-based parasitaemia data can reveal 
local spatial heterogeneity in areas previously assumed 
to have uniform transmission [18]. Country-level sur-
veys like the Demographic and Health Surveys (the finest 
resolution dataset used for Madagascar) have an average 
resolution of one cluster per 1000  km2 approximately 
[19]. Data at more granular levels can help to elucidate 
factors influencing malaria transmission like climate 
(including temperature, rainfall) and environmental fac-
tors (vegetation, elevation, and land covers), guiding dis-
trict-scale programmatic efforts to control malaria [18]. 
Such data, when analysed with appropriate methods, can 
allow identification of malaria transmission hotspots and 
their characteristics [20], therefore, allowing targeting of 
transmission residual pockets; which is critical in settings 
pursuing elimination.

After several years of blanket spraying in the CHL, 
more targeted indoor residual spraying (IRS) has been 
applied selectively to epidemic-prone areas since 2003 
and insecticide-treated mosquito nets (ITNs) are regu-
larly distributed to the population in mass campaigns 
into these settings [21]. The World Health Organiza-
tion (WHO) has recommended at least one ITN per 
household; in the CHL, ITN ownership and access—the 
proportion of household members with access to an 
ITN—were 25% and 16% in 2013, respectively, both the 
lowest in the country [22]. Moreover, in order to detect 
and treat cases early, NMCP has implemented the sys-
tematic use of RDTs since 2010 for all suspected malaria 
cases with fever (axillary temperature > 37.5  °C) or his-
tory of fever in 2  weeks, but such strategy misses low-
density asymptomatic infections that can still contribute 
to transmission in near elimination settings [6, 23–25].

In 2014, a cross-sectional school-based survey was 
carried out in seven districts of the CHL and sur-
rounding Fringes areas to better characterize malaria 
transmission via use of serological markers of P. fal-
ciparum exposure [11]. Results showed that the abil-
ity of annual parasite incidence estimates using health 

of antibody-assays into existing surveillance activities could improve exposure assessment, and may help to monitor 
the effectiveness of malaria control efforts and adapt elimination interventions.
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facility routine data of malaria-confirmed patients by 
RDT to characterize malaria transmission declined 
at lower transmission levels as compared with a sero-
logical approach [11]. Using this dataset, this study 
expands on the previous analyses and aims (1) to char-
acterize the spatial heterogeneity of malaria trans-
mission intensity and to detect hotspots of both P. 
falciparum infection prevalence and PfAMA1 anti-
body (Ab) seroprevalence in CHL and surrounding 
Fringes; and (2) to identify sociodemographic, cli-
matic, and environmental associated factors with such 
heterogeneity in malaria infection and exposure. These 
were not elucidated in Steinhardt et al. [11].

Methods
Study area
This study was carried out in 2014 in seven health dis-
tricts from the CHL and surrounding Fringes areas 
(Fig.  1A). The health districts targeted were Ankazobe 
and Anjozorobe to the north of the capital city Antanana-
rivo; Ambatofinandrahana, Ambohimahasoa, Ambositra, 
Betafo, and Mandoto to the south. The CHL and sur-
rounding Fringes areas are characterized by unstable and 
episodic malaria transmission. Data from routine sur-
veillance suggested that these areas had the lowest inci-
dence in the country during 2013–2014, as measured by 
RDT [26], with more than 90% of the malaria infections 

Fig. 1  Map of the study area in the Central Highlands (CHL) of Madagascar with the locations of investigated fokontany. A Lower strata of malaria 
infection risk, defined by Howes et al. [3], in the CHL and Fringes areas are shown in the grey shaded area and higher-risk strata are shown in 
blue-green. The seven investigated districts are indicated in red and the black diamond represents the capital of Madagascar, Antananarivo. B 
Fokontany boundaries of investigated schools are shaded in grey; communes (a group of fokontany) in grey lines; districts in dashed-black lines; and 
the nearest health facilities (at < 5 km) from the fokontany centroid coordinates are marked by red crosses [27]
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occurring in the area due to P. falciparum [3]. In 2013, 
malaria prevalence in children aged 6–59 months, char-
acterized via microscopy, was 0.7% and 2.5%, respec-
tively, in CHL and surrounding Fringes areas [22]. While 
transmission is low, previous analyses of routine malaria 
surveillance data have indicated that substantial hetero-
geneity in malaria transmission exists in the CHL [4], 
which needs fine-scale risk and exposure assessment to 
adapt and improve malaria elimination efforts [3].

Data collection
Survey and biological sample collection
To better understand and detect spatial heterogeneity 
in P. falciparum infection in the CHL and surrounding 
Fringes areas, a school-based seroepidemiological study 
was carried out from May to July 2014. The study has 
been described in detail by Steinhardt et al. [11]. Briefly, a 
cross-sectional survey using bead-based serological mul-
tiplex analyses was implemented in low-transmission and 
elimination settings [17]. In the seven sampled districts, 
all geographically accessible communes that presented 
no known safety issues for the study were surveyed, for 
a total of 93 communes out of 107 (Fig.  1B): for each 
selected commune, one primary school in proximity of 
a health facility (within 5  km distance) and one farther 
away (> 10 km) were selected. Overall, 182 fokontany (the 
smallest administrative unit,  ~ villages) were considered 
for investigation (Fig. 1B). Thirty children under 15 years 
old were selected randomly per school. This age group 
has been found to reflect populations with low immu-
nity [14, 28, 29]. For each selected child, a questionnaire 
on demographics, residence, recent symptoms and trips 
(outside the commune), and household (or community) 
control measures (bed net use, IRS) was administered to 
their parent (or guardian).

Malaria RDTs [CareStart Malaria RDT, HRP2/pLDH 
(Pf/PAN) Combo; Access Bio] were performed with fin-
ger prick blood to detect malaria infections in all selected 
children. Children with a positive RDT were treated with 
artesunate-amodiaquine with age-appropriate doses, as 
recommended by national guidelines. Additionally, cap-
illary blood was collected for all children in microvette 
tubes (Microvette 500 Z-Gel; Sarstedt) for later serologi-
cal analyses. Collected samples were transported to Insti-
tut Pasteur de Madagascar’s immunology laboratory in 
Antananarivo and stored at − 20 °C until used [11].

Serological data
Laboratory serological analyses were conducted using 5 P. 
falciparum antigens: three soluble recombinant proteins 
(PF13, PfMSP1, and PfAMA1), and bovine serum albu-
min-conjugated peptides (PfCSP and PfGLURP) from 
P. falciparum, using procedures previously described 

[11, 30, 31]. In short, antigen-coupled beads and plasma 
were deposited in 96-well plates and analyzed using the 
Luminex-MAGPIX system and xPONENT 4.1 software. 
IgG levels were expressed as median fluorescence inten-
sity (MFI). A pool of sera from malaria-immune African 
adults and plasma samples from malaria-naive European 
individuals were included in each assay as positive and 
negative controls, respectively. Seropositive and seroneg-
ative groups were defined from MFI values as previously 
described [11], using two-component Gaussian mixture 
model (Additional file 1: Method S1 and Fig. S1).

For the purpose of this study, only the PfAMA1 anti-
body response was used because: (1) this marker had 
similar sensitivity and specificity as a latent class anti-
gen modeled in Steinhardt et  al. using all 5 previously 
described antigens [11], and (2) it has been shown to act 
as biomarker of P. falciparum exposure in populations 
with low immunity such as young children, when previ-
ously exposed individuals acquire a long-lived compo-
nent of the antibody response which increases with age 
[13, 14].

Environmental and remotely sensed data
Descriptions and resolutions of environmental, climatic, 
and remotely sensed data are provided in supplemental 
information (Additional file  1: Table  S1). Briefly, tem-
porally dynamic climatic and environmental variables 
were downloaded from Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite data for each 
investigated fokontany [32]. These included the follow-
ing temperature and vegetation indices (vegetation cover 
proxies): (1) all 8-days Land Surface Temperature (LST) 
and emissivity composites; and (2) all 16-days vegetation 
indices composites—Normalized Difference Vegetation 
Index (NDVI) and Enhanced Vegetation Index (EVI) [32]. 
For each of these indices, values matched at one, two and 
three months prior to the survey date were obtained for 
each investigated school (within a fokontany) [33].

The remaining environmental variables were assumed 
to be static for each fokontany including: (1) The annual 
MODIS land cover type product for 2014 [34]; (2) ele-
vation, measured from the shuttle radar topography 
mission elevation surface [35]; and (3) health facili-
ties location in the study area, obtained from recently 
published data [27]. For land cover data, the interna-
tional geosphere-biosphere programme legend and class 
descriptions were used [36], and 5 main classes were 
utilized: (a) forests, (b) woodlands, (c) grasslands or cere-
als, (d) wet, croplands or mosaics, and (e) others’ class 
grouping shrublands, wetlands, barren, build-up or water 
bodies.

Environmental and remotely sensed data processing 
were performed using standard geographic information 
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system computational techniques (Additional file  1: 
Method S2). The R package {MODISTools} was used for 
downloading and processing of MODIS data, which pro-
vides a simplified interface between R software [37] and 
MODIS land product subsets [32].

Data analyses
Spatial distribution and clustering of P. falciparum infection 
risk and cumulative exposure
Descriptive and spatial analyses of malaria infection 
prevalence and PfAMA1 Ab IgG seroprevalence were 
conducted by fokontany. Malaria hotspots were assessed 
via detection of spatial autocorrelation in the data using 
the local Moran’s I as an indicator of spatial heterogene-
ity [20]. Logit scale was used to produce more normal 
distributions of both malaria infection prevalence and 
PfAMA1 Ab seroprevalence. Empirical neighbourhood 
of investigated fokontany was defined in order to have 
at least one neighbour and within a maximum distance, 
approximately 17  km between two farthest fokontany 
(Additional file 1: Fig. S2). Then, global and local Moran’s 
I values were calculated using Monte Carlo simulations 
(n = 999) and equal row-standardized spatial weights [38] 
to test its significance [39]. This test can be interpreted 
as an indicator of local pockets of non-stationarity, or 
hotspots, and assesses the influence of a fokontany on the 
magnitude of the global statistic to identify “outliers” [40, 
41]. Functions in the R package {spdep} were used to cal-
culate these indices; and a threshold of p < 0.05 was cho-
sen to identify significant spatial autocorrelation.

Statistical models to characterize determinants of P. 
falciparum infection and cumulative exposure by PfAMA1 Ab 
data
Both P. falciparum infection and exposure models were 
carried out at two levels: (1) at fokontany level, to assess 
the effect of mean temperature and vegetation index—
lagged by one month based on univariable analyses of 
different lagged indices (1–3  months) association with 
aggregated positivity of malaria infection and expo-
sure, respectively—elevation, percentage of land cover 
class and distance to health facilities (Additional file  1: 
Table S1); (2) and at individual-level including additional 
demographic and household covariates (Additional file 1: 
Table S2). In both exposure (PfAMA1 response positiv-
ity) models the school malaria infection prevalence was 
included as a potential indicator (mediator) of the sero-
positivity response and to assess its correlation to detect 
higher risk fokontany.

Mixed-effects binomial logistic regression analyses 
with two observational-level random effects—to account 
for within-district and -commune correlations—were 
used to model P. falciparum infection and PfAMA1 Ab 

positivity at fokontany- and individual-level [42, 43]. Uni-
variable analyses were conducted first to explore the rela-
tionship with each of the climatic, environmental, and 
sociodemographic variables; all covariates which showed 
significant effects on P. falciparum infection positivity 
(or PfAMA1 Ab seropositivity) in univariable analyses 
were then included in multivariable analyses. Next, sets 
of candidate models were compared and ranked using 
multi-model selection procedures through the R package 
{MuMIn} according to the lowest second-order Akaike 
information criterion [44–46] (Additional file 1: Method 
S3).

Data analyses were carried out using R software v3.6.0 
[37] and R package {lme4} [47].

Results
Individual‑, household‑ and fokontany‑level characteristics
Overall, 6293 school-children ages 2–14  years were 
enrolled from 182 fokontany where investigated primary 
schools were located. The median age of participants was 
10 years (IQR: 8–11) and 47.4% were male (2984 of 6293). 
About two-thirds of children sampled (64.7%, 4073 of 
6293) were 2–10 years old. Most households (55.4%, 3114 
of 5619) in the investigated areas had two or more ITNs 
for its members (median = 6.0 individuals per household, 
IQR = 5.0–8.0) (Table 1). A total of 53 (0.8%, 95% CI 0.6–
1.1%) children tested positive for malaria by RDT, with no 
differences between age groups (2–8 years, 9–10  years, 
11–12  years and 13–14  years) (p = 0.62). However, 443 
(7.0%, 95% CI 6.4–7.7%) children were seropositive to 
PfAMA1 antibody with a significant increase in sero-
positivity across age, both for male and female (p < 0.001) 
(Fig. 2).

Spatial distribution and hotspots of P. falciparum infection 
prevalence by RDT and of PfAMA1 Ab seroprevalence
Malaria infection by RDT was highest in the fokon-
tany located in the northern districts of Ankazobe and 
Anjozorobe. Overall, only 32 out of 182 fokontany had a 
malaria infection prevalence greater than or equal to 1%, 
the highest prevalence being 28.1% (Fig.  3A). PfAMA1 
Ab seroprevalence was higher than malaria infection 
prevalence overall (Fig.  2), both in fokontany in the 
northern and western parts of the study site, with higher 
heterogeneity in its distribution. For instance, PfAMA1 
Ab seroprevalence was greater than 12.0% in fokontany 
of 5 different districts across the study area (Ankazobe, 
Anjozorobe, Mandoto, Betafo and Ambatofinandrahana) 
(Fig. 3B).

Spatial autocorrelation and hotspots of malaria infec-
tion prevalence and PfAMA1 Ab seroprevalence were 
identified across the study sites. Positive and significant 
Moran’s I indices were found for both P. falciparum 
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infection prevalence and Ab seroprevalence, with val-
ues of 0.24 (p = 0.001) and 0.59 (p = 0.001) respectively, 
indicative of spatial clustering of areas with similar 
malaria transmission (high or low). High clusters fokon-
tany are the combination of “High-High” or “Low–High” 
clusters; that represent fokontany with expected val-
ues (prevalence or seroprevalence) matching with the 

weighted mean of each fokontany’s neighbours, or those 
with abnormally observed low but expected high values, 
respectively (Fig. 3C and D). For P. falciparum infection 
prevalence, hotspots (“High-High” clusters) were iden-
tified mostly in one single area in the northern districts 
of Ankazobe and Anjozorobe (Fig.  3C). Overall, high 
clusters identified across districts were consistent using 

Table 1  Characteristics of the study participants (N = 6293), households (N = 5619) and fokontany (N = 182)

NDVI Normalized Difference Vegetation Index at the previous month; LST daytime Land Surface Temperature and emissivity composites at the previous month; ITNs 
insecticide-impregnated mosquito-nets; SD standard deviation
a Shrublands, wetlands, barren, or water bodies land cover

Fokontany-level variables Mean (range) Individual-level variables n (%)

Climatic, environmental and land cover RDT positive 53 (0.8)

 NDVI lag-1 0.5 (0.3–0.8) PfAMA1 Ab seropositive 443 (7.0)

 LST Day lag-1 (°C) 25.1 (18.1–30.4) Age (years)

 Forests (%) 1.7 (0.0–65.2) 2–8 2,310 (36.7)

 Woodlands (%) 12.2 (0.0–100.0) 9–10 1,763 (28.0)

 Grasslands or cereals (%) 80.0 (0.0–100.0) 11–12 1,549 (24.6)

 Wet, croplands or mosaics (%) 2.6 (0.0–100.0) 13–14 671 (10.7)

 Other land cover classes (%)a 0.2 (0.0–20.0) Sex (male) 2,984 (47.4)

 Elevation (m) 1305.3 (773.3–2140.7) Fever last 2 weeks 481 (7.6)

Travel in last 2 months 213 (3.4)

 School RDT prevalence, % (SD) 0.9 (2.8) Use of ITN last night 2,792 (44.4)

 PfAMA1 Ab seroprevalence, % (SD) 7.2 (11.0) Presence of RDT positive household 
member

24 (0.4)

 Distance > 5 km from health facility, n (%) 59 (32.4)

Household-level variables

 No. of members, mean (SD) 6.5 (2.3)

 No. of ITNs, n (%)

  0 2,148 (38.2)

  1 357 (6.4)

  2–4 2990 (53.2)

  5–10 124 (2.2)

Fig. 2  Overall distributions across age and sex of A malaria infection prevalence by RDT, and B PfAMA1 Ab seroprevalence. Vertical bars represent 
95% CI of proportions
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both RDT prevalence or PfAMA1 Ab seroprevalence. 
However, hotspots of PfAMA1 Ab seroprevalence were 
not observed in Anjozorobe but rather in the south-
ern district of Mandoto (Fig.  3D). Fokontany with sero-
prevalence greater than 10% were found in Ankazobe 
and Mandoto (Additional file  1: Fig. S3). Thus, analyses 
of Abs revealed nearly twice as many hotspots as those 
based on P. falciparum infection prevalence by RDT, sug-
gesting some level of agreement between both detection 
methods.

Local determinants of P. falciparum infection by RDT 
and exposure by PfAMA1 Ab at the fokontany‑level
For P. falciparum infection model, univariable analyses 
at the fokontany-level revealed significant positive asso-
ciations with longer distance to health facilities, higher 
temperatures the previous month, and percentage of 
land cover classes such as grasslands or cereals. Negative 
associations were observed between P. falciparum infec-
tion and the fokontany at higher elevation, and greater 
values of NDVI during the previous month. However, the 
very low RDT prevalence observed in the study popula-
tion (53 RDT + out of 6,293) prevented finding consistent 
factors associated in multivariable analyses: only higher 
temperatures the previous month in a fokontany was 
found as risk factor of malaria infection at fokontany-
level (Table  2), and a fever episode in the previous two 
weeks at individual-level (Additional file 1: Table S5).

For P. falciparum exposure (PfAMA1 Ab response) 
model, univariable analyses at the fokontany-level 
revealed significant positive associations with distance 
to health facilities and school RDT prevalence, while 
associations with environmental and climatic indicators 
were more variable. Exposure to P. falciparum tended to 
increase with higher temperatures the previous month, 
and with increased percentage of grasslands or cereals 
land cover classes in a fokontany; while it decreased with 
higher values of vegetation (NDVI) the previous month, 
the percentage of woodlands, or elevation (Table 2). After 
excluding variables with strong collinearity (Additional 
file 1: Figs. S6 and S7) and adjusting for the effect of other 
variables in the multivariable model of exposure to P. fal-
ciparum, living further than 5  km from a health facility 
was associated with increased odds of exposure (adjusted 

odds ratio (OR) = 1.6, 95% CI [1.2–2.2]), and every 10% 
(one unit) increase in school-level RDT prevalence was 
associated with a doubling in the odds of PfAMA1 Ab 
response aggregated at fokontany-level (OR = 1.9, 95% CI 
[1.2–3.1]). Out of all the environmental and climatic vari-
ables, only elevation was significantly associated with P. 
falciparum exposure, with a 30% decrease in the odds for 
every 100  m (one unit) increase in elevation (OR = 0.7, 
95% CI [0.6–0.8]) (Table 2).

No evidence of residual spatial autocorrelation was 
found in the final multivariable model for PfAMA1 Ab 
response at the fokontany-level; and no deviance to nor-
mal distribution was observed to its residuals (Table  2, 
Additional file 1: Figs. S8 and S9). That suggests that spa-
tially-structured factors were accounted for in the model 
of P. falciparum exposure risk, or the considered district-
and-commune level random effects.

Factors associated with PfAMA1 antibody seropositivity 
at the individual‑level
Individual seropositivity decreased with higher values 
of vegetation (NDVI) the previous month, the percent-
age of land cover such as woodlands, and the elevation 
of fokontany (Additional file  1: Table  S2). When adjust-
ing for individual-level factors in the multivariable 
model, distance from health facilities, school-level RDT 
prevalence, and elevation were remained statistically 
significant, with similar coefficients as in the P. falci-
parum exposure (PfAMA1 Ab response) model at the 
fokontany-level (Fig.  4). In addition, the probability of 
being seropositive increased with age: children aged 
9–10 years, 11–12  years and 13–14  years were likely to 
be more seropositive than youngest 2–8  years group, and 
the corresponding ORs [95% CI] were, respectively, 1.8 
[1.3–2.4], 3.7 [2.8–5.0] and 5.7 [4.0–8.0]. Having a fever 
episode in the previous two weeks (OR = 1.7 [1.2–2.4]) 
was also identified as risk factor.

Discussion
Pockets of residual transmission in low transmission set-
tings can pose significant challenges to achieving malaria 
elimination goals [48]. Research on malaria transmis-
sion heterogeneity in settings pursuing elimination is 
therefore important to allow better targeting of malaria 

(See figure on next page.)
Fig. 3  Epidemiology and local clustering of P. falciparum infection prevalence by RDT and PfAMA1 antibody (Ab) seroprevalence across the study 
area. A Spatial distribution of malaria infection prevalence, and B Spatial distribution of PfAMA1 Ab seroprevalence. Dark-maroon colored fokontany 
had higher prevalence and the optimal 5-classes by Jenks classification were used for both malaria infection by RDT and PfAMA1 Ab prevalence. The 
dark-red diamond represents the capital of Madagascar, Antananarivo. C Malaria infection prevalence clusters, and D PfAMA1 Ab seroprevalence 
clusters. “High-High” clusters represent fokontany with observed values matching with the weighted mean of each fokontany’s neighbours, which 
is high; “High-Low” clusters are those with abnormally observed high but expected low values; “Low–High” clusters are those with abnormally 
observed low but expected high values; and no deviance from the stationarity assumption are marked with “none”. These figures are supported by 
Additional file 1: Fig. S4 and Fig. S5, Additional file 2: Table S3 and Additional file 3: Table S4
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Fig. 3  (See legend on previous page.)
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control activities. Since data collection for this study was 
conducted, Madagascar and other low-income countries 
have seen a trend of increasing malaria incidence, which 
further justifies the need of new approaches to reverse 
this trend [49]. Using a seroprevalence study of 6293 
school-children in the highlands of Madagascar (CHL 
and Fringe areas) to characterize the spatial heteroge-
neity of P. falciparum infection, approximately 7.0% of 
children had been exposed to P. falciparum according to 
the Ab response despite a very low prevalence of malaria 
infection using RDTs (0.8%). Furthermore, hotspots of 
PfAMA1 Ab seroprevalence were observed in multiple 
districts in the area, many of which were not observed 
via malaria RDTs. Exposure to the malarial parasite, as 
indicated by seroprevalence, increased with a child’s 
age (Fig. 2), for children living further than 5 km from a 
health facility, and for those experiencing a fever episode 
in the previous 2 weeks.

Spatial heterogeneity of malaria infection prevalence 
and PfAMA1 Ab seroprevalence were confirmed across 
the study sites, revealing an important number of sero-
prevalence hotspots in districts of the northern and 
southern part of CHL and Fringe areas of Madagas-
car. These findings are in accordance with a previous 
serological study carried out in Madagascar [50], and 

Table 2  P. falciparum infection and exposure (PfAMA1 Ab response) model mixed-effects regression models at fokontany-level

Wald-test approximation was used for CIs (confidence interval) and p-values

NDVI Normalized Difference Vegetation Index at the previous month; LST daytime Land Surface Temperature and emissivity composites at the previous month; OR 
odds ratio
a NDVI was scaled 1/10, as one unit increase means 0.1 increase
b LST Day was scaled in 5 °C unit, as one unit increase means 5° C increase
c Variables scaled in 10% unit, as one unit increase means 10% increase
d Elevation scaled in 100 m, as one unit increase means 100 m increase
e Adjusted odds ratio

***p-value < 0.001; **p-value < 0.01; *p-value < 0.05

Factors associated P. falciparum infection model P. falciparum exposure (PfAMA1 Ab response) 
model

Univariable Multivariable Univariable Multivariable

OR 95%CI ORe 95%CI OR 95%CI ORe 95%CI

Health Facilities > 5 km 1.8 1.1–3.1 2.1 1.8–2.6 1.6 1.2–2.2***

School RDT prevalencec 4.4 3.5–5.6 1.9 1.2–3.1**

NDVI at lag-1a 0.7 0.6–1.0 0.8 0.7–0.9 1.0 0.8–1.3

LST Day at lag-1b 5.4 3.0–9.7 8.9 2.9–28.0*** 4.5 3.7–5.5

Grasslands or cerealsc 1.2 1.1–1.4 1.1 1.1–1.2 0.9 0.9–1.0

Forestsc 0.7 0.3–1.5 0.8 0.7–1.0

Woodlandsc 0.8 0.7–1.0 1.2 0.9–1.5 0.9 0.8–0.9

Wet, croplands or mosaicsc 0.8 0.5–1.3 0.9 0.8–1.0

Elevationd 0.7 0.6–0.8 0.7 0.6–0.7 0.7 0.6–0.8***

Fig. 4  Factors associated with PfAMA1 Ab seropositivity model of 
individual-level covariates. Blue- and red-horizontal bars represent 
the 95% CI of odds ratio (ORs) of each factors with associated positive 
and negative effect, respectively. The green line represents the 
ORs value equal to one (1). This figure is supported by Additional 
file 1: Table S2. NDVI was scaled 1/10, as one unit increase means 
0.1 increase. School RDT prevalence and grasslands/cereals cover 
were scaled in 10% unit, as one unit increase means 10% increase. 
Elevation was scaled in 100 m, as one unit increase means 100 m 
increase. Levels of significance are marked with (***) for p < 0.001, (**) 
for p < 0.01, and (*) for p < 0.05



Page 10 of 13Rakotondramanga et al. Malaria Journal          (2022) 21:242 

similar heterogeneities in malaria transmission were 
found using routine surveillance data in west Fringes of 
highlands (Fig.  3) [3, 4]. Factors associated with these 
spatial heterogeneities were further characterized at the 
fokontany-level. In this study, two factors associated 
with P. falciparum cumulative exposure at the fokontany 
and individual levels were school P. falciparum infec-
tion prevalence by RDT and having a fever in the previ-
ous 2  weeks, respectively. This suggests, on one hand, 
that PfAMA1 Ab may capture additional information 
on cumulative exposure to malaria parasite in children 
helping to identify a greater proportion of transmission 
hotspots; on the other hand, the correlation between 
RDT and PfAMA1 suggests that conventional RDTs can 
still be used in settings pursuing elimination, especially 
in areas with high-density infections [23, 24] not able 
to afford the additional operational costs of serological 
studies. Further studies are needed to better understand 
the cost-effectiveness of more accurate diagnostic tech-
niques for low-density infections such as PCR [51].

Children with geographical barriers in health care 
access, who lived further than 5 km from health facilities 
(around one third of the study population) were signifi-
cantly more exposed to P. falciparum, which could have 
important implications for malaria elimination efforts in 
these areas. These results suggest that suboptimal testing 
and treatment of malaria infections in these areas, due 
to geographic barriers to access health care [52], could 
result in undetected pockets of malaria transmission 
that undermine elimination goals. Indeed, previous stud-
ies have shown that persistent geographic inequalities in 
health care access still exist in rural areas of Madagascar, 
with an exponential decrease in the use of health facili-
ties over the first 5 km [53]. Community health programs 
can be an effective way to remove geographic barriers 
to health care access [54], since two community health 
workers are present in every fokontany independently 
of their distance to a health facility. However, current 
national guidelines for community case management 
of malaria only target children under 5 years, the group 
at the highest risk of mortality from malaria infections. 
In this study, this group was found to be least exposed 
to P. falciparum (with zero seropositive to PfAMA1 
Ab) although it was not representative of this age group 
because the study was restricted to school-aged children; 
and in rural Madagascar, children generally start school at 
age 5. A sub-analysis of factors associated with exposure 
of ≤ 5  years children (seroprevalence = 2.6% [5 of 194]) 
suggests the absence of the barrier of distance to health 
facilities (Additional file 1: Table S6), which may indicate 
effective case management but could also be due to small 
sample sizes for this group. In parallel, this national strat-
egy of malaria community case management leaves out 

the vast majority of the population, and current plans to 
expand it to all ages in Madagascar [55] could, therefore, 
help address symptomatic malaria cases in these pock-
ets of malaria transmission and accelerate elimination 
efforts.

Among environmental factors associated with P. fal-
ciparum cumulative exposure, PfAMA1 Ab response at 
the fokontany-level was higher at lower elevations, but 
there was little additional effect of other environmental 
and climatic factors examined. Elevation is widely used in 
malaria mapping as an established proxy of malaria trans-
mission due to its association with precipitation and tem-
perature which, along with vegetation cover, are generally 
found to be important predictors of malaria incidence 
and transmission, given their role on Anopheles spp sur-
vival, development, breeding, and biting rates [56–60]. 
In this setting, elevation was significantly and negatively 
correlated with temperature and grasslands or cereals 
land covers, but positively with vegetation cover proxies 
(NDVI and EVI) (Additional file  1: Fig. S6 and Fig. S7), 
which might explain why these variables had little to no 
effect in the final multivariable models (Table 2, Fig. 4).

At the individual level, P. falciparum exposure risk 
increased with age, which could be due to repeated expo-
sure of children—acquiring a long-lived component of 
the Ab response—to infective female Anopheles mos-
quito bites. Antibody responses are boosted by active 
P. falciparum infections as children get older, which is 
similar to endemic areas and informative for character-
izing spatial heterogeneity [14]. In addition, behaviour 
and access to protective measures vary for different age 
groups: given the targeting of children under 5 years and 
pregnant women in malaria control strategies, net use is 
especially important in older children and adolescents, 
but tends to be lowest in these age groups [61–63]. In this 
setting, 56.4% of children were in households with two or 
more bed nets, but neither the individual use of an ITN 
nor the number of ITNs in a household was associated 
with PfAMA1 Ab seropositivity. Moreover, other studies 
have found that older children spent more time outdoors 
in the evening, when Anopheles spp biting rates are typi-
cally higher, putting them at higher risk for being bitten 
by infective mosquito than other age groups [64, 65]. 
That might explain the important role played by these 
older children and adolescents as reservoirs that could 
sustain malaria transmission [6], even in very low trans-
mission risk settings of Madagascar (< 1% parasite preva-
lence) as previously highlighted by Kang et al. [33].

This study had several limitations. First, the cross-sec-
tional design reflects a snapshot of children’s infection 
or cumulative exposure, dependent on underlying study 
setting contexts. Further, these findings might not be 
representative of other low malaria transmission settings 
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in the highlands of Madagascar due to their diversity in 
malaria transmission dynamics (central, fringe east ver-
sus fringe west highlands) and vector ecology [26, 66]. 
Second, since data in this study were collected in 2014, 
a more recent serological survey could give better infor-
mation on malaria transmission intensity, to inform how 
Madagascar should adapt its interventions to reverse the 
current trend of increasing malaria cases [49].

Conclusions
In this setting, serological markers (PfAMA1 Ab) ena-
bled to highlight hotspots of malaria seroprevalence in 
multiple districts in the highlands of Madagascar (CHL 
and Fringe areas)—many of which were not observed via 
malaria RDTs—and associated factors, revealing a pat-
tern of higher transmission linked to geographical barri-
ers in health care access. Targeting these residual pockets 
could reduce malaria transmission at the community 
level [67, 68]. Nevertheless, sub-optimal testing and 
treatment of malaria infections in CHL and surround-
ing Fringes areas could undermine elimination efforts by 
NMCP, at the moment when Madagascar should adapt 
interventions to face the current challenge of plateau-
ing or increasing malaria cases [5, 49]. Serological mark-
ers—especially when used in young children—could add 
benefits to routine malaria surveillance, provide a good 
picture of malaria transmission structure [13], and help 
to support and evaluate community interventions aimed 
at elimination [15].
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