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Abstract 

Background:  Reactive case detection (RCD) is an integral part of many malaria control and elimination programmes 
and can be conceived of as a way of gradually decreasing transmission. However, it is unclear under what circum‑
stances RCD may have a substantial impact on prevalence, how likely it is to lead to local elimination, or how effective 
it needs to be to prevent reintroduction after transmission has been interrupted.

Methods:  Analyses and simulations of a discrete time compartmental susceptible-infectious-susceptible (SIS) model 
were used to understand the mechanisms of how RCD changes transmission dynamics and estimate the impact of 
RCD programmes in a range of settings with varying patterns of transmission potential and programme character‑
istics. Prevalence survey data from recent studies in Zambia were used to capture the effects of spatial clustering of 
patent infections.

Results:  RCD proved most effective at low prevalence. Increasing the number of index cases followed was more 
important than increasing the number of neighbours tested per index case. Elimination was achieved only in simula‑
tions of situations with very low transmission intensity and following many index cases. However, RCD appears to be 
helpful in maintaining the disease-free state after achieving malaria elimination (through other interventions).

Conclusion:  RCD alone can eliminate malaria in only a very limited range of settings, where transmission potential 
is very low, and improving the coverage of RCD has little effect on this range. In other settings, it is likely to reduce 
disease burden. RCD may also help maintain the disease-free state in the face of imported infections. Prevalence sur‑
vey data can be used to estimate a targeting ratio (the ratio of prevalence found through RCD to that in the general 
population) which is an important determinant of the effect of RCD.
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Background
The effects of different interventions against malaria have 
different temporal dynamics. Spectacular short-term 
effects do not necessarily result in elimination or in long-
term transmission reduction, but both preventive (such 
as insecticide-treated nets, indoor residual spraying, 
intermittent preventive treatment) and curative (mass 
treatment) interventions deployed at fixed coverage 
generally have their maximal impact on the reproduc-
tion number at the start of the programme. This applies 

even when deployment is recurrent [1], unless opera-
tions improve over time. Irrespective of the initial level 
of transmission, the chances of interrupting transmis-
sion with such approaches are consequently maximized 
by concentrating resources in a pulse of intervention or 
front-loading the programme. This was recommended 
practice in the mid-twentieth century [2, 3].

In contrast to this, the recent history of malaria pro-
grammes seems to indicate that elimination requires 
sustained intervention over long periods [4]. In some 
cases, this may reflect a cognitive bias: if malaria disap-
peared because of environmental change associated 
with gradual socio-economic development (one plausi-
ble explanation for ‘stickiness’ of elimination [5]), then it 
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would be mistaken to attribute success to the long-term 
maintenance of a programme of preventive interventions 
alongside development in other sectors. A well-timed 
short-lived programme (or even business as usual) might 
have been more efficient.

An alternative or complementary explanation for long 
timelines is that intervention programmes have had 
impacts on the reproduction number that increased 
over time. One way in which this may have occurred 
is that impacts may cumulate with interventions with 
long durations. For instance, distribution of long-lasting 
insecticidal nets (LLINs) at a rate greater than their attri-
tion rate, or larval source reduction by incrementally 
removing breeding sites may lead to gradual increases in 
impact, eventually leading to environments that cannot 
sustain transmission.

Another way of gradually decreasing transmission, 
leading to a steady advance towards elimination may be 
reactive intervention deployment. Approaches are reac-
tive if there is targeting in space or time in response to 
information gained in the course of the programme. 
Targeting and containment of local epidemics was the 
main approach of the only successful eradication pro-
gramme for a human infection to date, that of smallpox 
[6], and it is tempting to argue by analogy that a similar 
strategy should be used for malaria. However, in many 
areas, malaria typically has a very high basic reproduc-
tion number and often has a large asymptomatic reser-
voir, which means that the logistical challenge of finding 
infections is much greater than for smallpox. Malaria is 
also an endemic infection for which both preventive and 
curative interventions are possible, as opposed to an epi-
demic disease against which the only interventions were 
preventive, so there is a wider range of possible reactive 
strategies against malaria. The reactions might range 
from treatment of passively detected cases, to follow-up 
of cases with test, treat and/or focal vector control of 
household members and/or their neighbours, to targeted 
mass drug administration. The most obvious reactive 
intervention is to treat people living near to the home of 
a clinical case (with or without diagnostic testing). This is 
often called reactive case detection (RCD).

Effective surveillance-response (i.e. reactive) strate-
gies are essential in final stages of an elimination pro-
gramme, since persistence of the disease-free-state 
depends both on detecting imported infections and 
preventing their spread [7]. If elimination is achieved 
in the absence of such capacity it will be impossible to 
verify that transmission is interrupted, and undetected 
reintroductions will be inevitable. This is implicitly 
understood by the managers of successful programmes, 
such as those of Morocco [8] or Sri Lanka [9]. How-
ever, theoretical analyses of elimination strategies have 

neglected the possibility that reactive interventions 
may also have been an essential part of the package that 
reduced transmission to levels where this endgame was 
possible.

This paper considers the theory of reactive interven-
tion strategies applied in malaria intervention pro-
grammes with the analysis of a simple discrete-time 
susceptible-infectious-susceptible (SIS) model [10] of 
infection that does not consider heterogeneity in trans-
mission potential in time or between hosts. The analysis 
here considers the asymptotic dynamics of this model 
and the qualitative changes to the asymptotic dynam-
ics resulting from reactive strategies to better under-
stand the role that these strategies have on elimination. 
The paper introduces three different models for reac-
tive interventions, culminating with one parameterized 
with data from Southern Zambia [11, 12]. Although 
there is a long history of dynamical models of malaria 
transmission [13–15], there has been little focus to date 
on such reactive interventions. A notable exception, 
using a spatially explicit stochastic individual-based 
simulation model suggested that case management was 
more effective than RCD in low transmission settings; 
and vector control and case management should be 
the focus in higher transmission settings, with RCD or 
mass treatment used to reduce the asymptomatic reser-
voir [16].

The distinguishing characteristic of reactive interven-
tions is that they are deployed selectively in time and 
space, in response to surveillance data. This selectivity 
means that the number of infections that are addressed 
at any one time-point is inflated above the number that 
would be addressed if the intervention was applied 
indiscriminately. In the models proposed here for RCD, 
this effect is captured by inflating the number of infec-
tions treated with a quantity termed the targeting ratio, 
defined as the ratio between the number of infected 
individuals treated by the reactive component, to the 
number that would have been treated had the selec-
tion been a simple random sample rather than neigh-
bours of the index cases. The targeting ratio is thus 
approximately equivalent to the ratio of the prevalence 
of infection in the neighbourhood of an index case to 
the prevalence in the general population. The targeting 
ratio is a single parameter that quantifies the clustering 
of malaria infections due to spatial heterogeneity. Using 
the Zambian data, it is shown how this quantity can be 
estimated from survey data obtainable before the RCD 
is initiated, making it feasible to predict the dynamic 
effect of an RCD programme from cross-sectional data 
obtainable in advance without the need for detailed 
spatial analysis techniques (which are often difficult for 
programmes to conduct).
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Methods
SIS model of transmission dynamics
The state variable, parameters and notation of the SIS 
model are given in Table 1.

The equation for the number of infectious individu-
als, It , for the simple SIS model [10] in the absence of 
intervention is

The fixed points (equilibria) of this model are the solu-
tions of

which is equivalent to:

This quadratic equation has two solutions, the dis-
ease-free (trivial) equilibrium, Idfe = 0 , and the endemic 
(positive) equilibrium point,

The stability of Idfe is determined by differentiating the 
right-hand side of Eq.  (1) with respect to I at the fixed 
point,

implying that Idfe = 0 is locally asymptotically stable 
if β + γ < 1 , and unstable if β + γ > 1 . Furthermore, 
I∗ exists ( I∗ > 0 ) if and only if β + γ > 1 . Therefore, 
β + γ > 1 is the condition for transmission to be sus-
tained. By definition, γ < 1 so β+γ−1

β
< 1 and I∗ < N  . 

This, however, does not guarantee the stability of I∗ , 
which could be unstable with the existence of other 
attractors for certain regions of the parameter space.

The value of the basic reproduction number is

Models of reactive case detection
The RCD programme is assumed to be added to a rou-
tine case management system, which serves as a passive 
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surveillance component of a surveillance-response sys-
tem. The RCD functions by investigating a constant 
number of passively detected index cases per unit time 
( ι ), and testing and treating a constant number ( ν ) of 
neighbours of these index cases. The effect of the sys-
tem on the controlled reproduction number, Rc, is then 
determined by ι , ν and the targeting ratio ( τ ), which is 
equivalent to the ratio of the prevalence of infection 
in the neighbourhood of an index case to the preva-
lence in the general population. The coverage of RCD, 
defined as the proportion of all infections detected, in 
unit time, is then: Φ = ιντ

N
; the proportion of individu-

als tested that is positive (assuming a perfect diagnos-
tic) is τp (where p is the point prevalence of the general 
population), and the number of infections detected 
(and treated) per unit time is ϕ = NpΦ = ιντp , and the 
proportion that escape detection (the escape probabil-
ity) ε = 1−Φ.

RCD is included in the general SIS model by assum-
ing both the standing crop of infections (or equivalently 
the infectious reservoir contributing new infections), is 
reduced by ϕt , the number of infections detected (and 
treated) per unit time. Thus:

where the minimum function is required to ensure that 
the number of infections, It ≥ 0 (necessary for model 
(b) below). Three different models (a–c below) for reac-
tive case detection and the particular form for ϕt were 
implemented.

SIS model with constant targeting ratio ( τ)
The model for RCD with the simplest dynamics assumes 
a constant value for τ that is independent of prevalence. 
This is a strong simplifying assumption which results in a 
model that is equivalent to repeated regular deployments 
of mass test and treat at coverage levels amplified by τ , so 
that

Equation 3 then becomes

If τιν ≥ N  , then It+1 = 0 , irrespective of It (correspond-
ing to the reactive component immediately finding all 
the infections because the amplified coverage is greater 
than the population size) and the disease-free (trivial) 
equilibrium, Idfe = 0 is achieved within one time-step. 

(3)
It+1 =

β

N
(It −min(ϕt , It))(N − It)+ γ (It −min(ϕt , It)),

ϕt(It) = τινp = τινIt/N .

It+1 =
β

N
(It −min(τινIt/N , It))(N − It)

+ γ (It −min(τινIt/N , It)).
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If τιν < N  then the effect of the RCD programme is to 
multiply both β and γ by the constant ε = 1− τιν/N  (the 
proportion of infections that escape treatment in any one 
time step) so that

leading to the endemic equilibrium,

and controlled reproduction number,

implying that Idfe = 0 is locally asymptotically sta-
ble if β + γ < 1/ε , and unstable if β + γ > 1/ε , so 
β + γ > 1/ε is the condition for transmission to be sus-
tained. Correspondingly, the condition for the RCD 
programme to achieve elimination can be expressed as 
a function of R0 by substituting from Eq. 2. This gives a 
critical value of ε of

SIS model with varying targeting ratio ( τ ) but constant 
treatment rate ( ϕ)
An alternative to assuming τ to be constant is to assume a 
constant value of ϕt that does not depend on prevalence. 
This corresponds to the situation where the performance of 
the RCD programme is limited because of fixed capacity to 
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βIt
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,
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β
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β

1/ε − γ
,
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1
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.

diagnose and treat infections. This may approximate real-
ity if staffing levels or the unit cost of treatments determine 
throughput. Therefore Eq. (3) remains as is, and ϕt becomes 
a model parameter, ϕ.

It follows that, if It ≤ ϕ (when the follow up capacity of 
the programme is greater than the number of infected indi-
viduals in the population), then It+1 = 0 , hence Idfe = 0,If 
It > ϕ,

In contrast to the model with constant τ , the escape prob-
ability varies in the course of the RCD programme, since

It follows that the escape probability increases with It , 
and in particular, that it is very low if It is small, so the end-
point achieved may depend on the initial prevalence.

The fixed points of this system are the solutions of

These are determined by the ranges of It within 
ϕ ≤ It ≤ N  where the right-hand side of Eq.  4 is 
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Table 1  Model parameters and notation

Symbol Parameter Assumed value 
or limits

Source

It Number of infectious individuals at time t 0 ≤ It ≤ 10000

N Total human population N = 10, 000 Approximate population of Zambian 
health centre catchment

β Transmission parameter, i.e. the potential number of new infections per 
infected individual at the next time step

β > 0

γ Proportion of infectious population that remains infectious at next time step 
(which includes the removal of infections through passive detection)

0 < γ < 1

ϕt Number of infections detected (and treated) at time t ϕt > 0

εt Escape probability: the proportion of infections that escape treatment at 
time t

0 < εt < 1

p Proportion of population that is (patently) infected 0 < p < 1

ι Number of index cases investigated per unit time ι > 0

ν Number of neighbours of passively-detected index cases investigated 0 < ν < N Fixed property of programme

τ Targeting ratio: ratio of the size of a random sample that would be need to 
be tested and treated, to the number actually treated, in order to achieve 
the same number of effective treatments. This is a measure of clustering of 
malaria infections

τ ≥ 1 Estimated from cross-sectional survey 
data
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constant or decreasing, conditional on R0 > 1 , (and 
hence β + γ > 1 from Eq.  2). There are three equilibria 
satisfying these conditions, namely the disease-free equi-
librium point, Idfe = 0 , and two endemic equilibria:

which exist if and only if (N (β + γ − 1)+ βϕ)2 >

4N (β + γ )βϕ.
The stability of the fixed points is not analytically derived 

here, but explored through numerical simulations and 
bifurcation analysis.

SIS model with varying targeting ratio ( τ ) and treatment rate 
(ϕ)

More generally, both τ and ϕt might vary over time because 
infections become harder to find as prevalence decreases 
(leading to a decrease in ϕt ) while targeting is a priori likely 
to improve as transmission becomes more localized. ϕt 
should, therefore, vary dynamically with p =

It
N  , so that:

where τ (ν, p) is a smooth function of p and of ν satisfy-
ing the constraints τ (ν, 1) = 1 (since targeting achieves 
nothing if everyone is infected) and τ (N , p) = 1 (since 
there can be no targeting if the whole population is 
tested). Various functional relationships satisfying these 
constraints, were explored and the one giving the best 
fit to the observed relationships between the numbers of 
infections found in a field study conducted in Zambia, as 
described below, and the numbers of individuals tested is 
described in Additional file 1.

The escape probability again varies over time and is

Analytical determination of the fixed points of this 
model is not feasible, so the fixed points and their stabil-
ity was explored numerically.

Estimating the targeting ratio from the field data
To parameterize model (c), the function τ (ν, p) was esti-
mated from the Zambian field data. Data from the cen-
suses carried out for a cluster-randomized trial of mass 
drug administration (MDA) and focal MDA (fMDA) in 
60 health facility catchment areas in Southern Province, 
Zambia [11] were used to estimate this function.

At the start of the trial, a total population of 212,049 
individuals were censused and their households geolo-
cated. The MDA involved two rounds of treatment with 
dihydroartemisinin–piperaquine (DHAP) with 88.1% and 
72.0% coverage, respectively. The fMDA arms entailed 

I
∗
=

N (β + γ − 1)+ βϕ ±
√

(N (β + γ − 1)+ βϕ)2 − 4N (β + γ )βϕ

2β
,

ϕt = ιν
It

N
τ (ν, p),

εt = 1−
ιντt

N
= 1−

ϕt

It
.

testing (with a histidine-rich protein II (HRP-2) based 
rapid diagnostic test (RDT)) for Plasmodium falciparum 
and treating all members of households in which any 
individuals had positive tests, and achieved 62.5% and 
54.0% coverage in the two distinct rounds [11]. These 
interventions were in addition to the activities of com-
munity health workers and high levels of access to anti-
malarial treatment at health facilities [11].

Two cross sectional parasitological surveys were car-
ried out, one before the intervention in May 2014 (941 
of 3036 individuals tested positive by RDT), and one 
afterwards in May 2015 (176 of 2107 individuals tested 
positive by RDT). Estimates of how τ should depend on 
ν and p were based on analyses of these surveys (Addi-
tional file 1), assuming that the clustering of positivity is 
independent of the diagnostic sensitivity. More general 
results of these surveys and of the intervention impacts 
in the trial are presented elsewhere [11].

Results
SIS model
The SIS transmission model (1) captures the most imme-
diately relevant characteristics of malaria transmission 
in humans in settings where elimination might be con-
sidered. In this model there is a stable endemic level of 
prevalence, which is a monotonic function of R0, for all 
but very high values of R0 (Fig. 1) (For values of approxi-
mately R0 > 57 , the endemic equilibrium goes through a 
period doubling bifurcation that eventually leads to cha-
otic dynamics as has been shown for the logistic differ-
ence equation model [17]).

Since high values of R0 are not relevant for this analy-
sis, R0 is assumed to remain below this threshold so the 
endemic equilibrium point is globally asymptotically 
stable for R0 > 1 and any positive initial prevalence will 
approach the endemic steady state prevalence—the solid 
blue line in Fig. 1. (Prevalence increases over time if the 
initial prevalence is lower than the endemic prevalence 
and decreases if the initial prevalence is higher than 
the endemic prevalence.) In transmission settings with 
R0 ≤ 1 , any positive initial prevalence will monotonically 
decrease towards zero over time (implying also protec-
tion against sporadic importation).

Models of RCD
The reduction in the steady state prevalence that is 
achieved by the RCD, the fixed points and their stability 
(hence the circumstances determining whether transmis-
sion can be eliminated with RCD), and the time that the 
programme takes to reach the steady state, depend on the 
formulation of the effect of RCD.

For model (a) of RCD with a constant targeting ratio, τ , 
RCD is able to eliminate transmission in settings where 



Page 6 of 13Chitnis et al. Malar J          (2019) 18:266 

R0 > 1 but does not qualitatively change the asymptotic 
dynamics of the system, as seen in the bifurcation dia-
gram in Fig.  2a. The exact threshold value of R0 where 
the transcritical bifurcation occurs (stable endemic trans-
mission is possible) depends on the assumed value of the 
targeting ratio and the number of people tested weekly 
by the RCD programme (the product of the number of 
index cases and the neighbours followed per index case).

For the models of RCD with varying τ, but constant ϕ 
(model b), there is a qualitative change in the asymptotic 
dynamics of the system, as shown in the bifurcation dia-
gram in Fig.  2b. The lower branch of unstable endemic 
equilibrium points divides the basins of attraction of the 
disease-free equilibrium point and the larger endemic 
equilibrium points. If the prevalence of infection is less 
than this unstable equilibrium point, then the disease will 
die out and RCD will lead to elimination. If the preva-
lence is greater than the unstable endemic equilibrium 
point, then the system will asymptotically approach 
the larger endemic equilibrium point and reactive case 
detection will be insufficient to eliminate transmission 
on its own. As the coverage of RCD increases, the two 
branches of endemic equilibrium points move to the 
right and compress towards the centre (the branch of 
larger endemic equilibrium points moves down and the 
branch of smaller endemic equilibrium points moves up). 
Therefore, the region where reactive case detection is suf-
ficient to not allow any transmission to occur is greater. 
For values of R0 where transmission can occur, the sta-
ble endemic prevalence in the presence of reactive case 
detection is lower, and the threshold prevalence below 
which RCD can eliminate transmission is higher.

For the models with varying τ and varying ϕ the bifur-
cation diagrams are shown in Fig.  2c and d. Similar to 
Fig. 2b, the lower branch of endemic equilibrium points 
divides the basins of attraction of the disease-free equi-
librium point and the larger endemic equilibrium points. 
If the prevalence of infection is less than this unstable 
equilibrium point, then the disease will die out and RCD 
will lead to elimination. If the prevalence is greater than 
the unstable endemic equilibrium point, then the system 
will asymptotically approach the larger endemic equilib-
rium point and reactive case detection will be insufficient 
to eliminate transmission on its own.

Figure 2c shows the bifurcation diagram for following 3 
index cases and investigating 50 neighbours, while Fig. 2d 
the diagram for following 50 index cases and investigat-
ing 3 neighbours each. These extreme cases shows that 
the values of ι and ν affect the equilibrium points, even 
if the total neighbours investigated are the same. In both 
cases, the branches corresponding to endemic equilibria 
have moved to the left when compared to Fig.  2b. This 
implies that in the (more plausible) model where number 

of cases detected by RCD depends on prevalence, RCD 
can only lead to elimination in a lower range of trans-
mission settings. Furthermore, the branches of unstable 
equilibria have also shifted down implying there is also 
a lower threshold of prevalence where RCD can lead to 
elimination.

Since the branch of equilibrium points in Fig.  2d is 
further to the right of that in Fig.  2c, RCD with these 
characteristics is able to eliminate and maintain elimina-
tion for a much larger range of R0 . For high values of R0 
the dashed red line in Fig. 2d is also higher than that in 
Fig.  2c implying that RCD can maintain elimination for 
a higher importation rate (or at a higher starting preva-
lence) when there are many index cases and testing fewer 
people per index case than vice versa. One version of this 
strategy would be to follow as many people as possible 
and only test household members.

Transient dynamics
Figures 3 and 4 show the transient dynamics of RCD for 
all three models for two transmission settings assum-
ing that initial prevalence is at the (pre-RCD) endemic 
equilibrium. If the transmission potential is high, 
where none of the three models predict extinction, 
the prevalence adjusts rapidly to a new endemic equi-
librium (Fig. 3a). Simultaneously, the treatment rate, ϕ 
(Fig.  3b), and the targeting ratio, τ (Fig.  3c), also rap-
idly adjust. The escape probability, ǫ (Fig.  3d) remains 
close to 1 in these scenarios since most infections are 
not treated. When the transmission potential is lower, 
so that extinction occurs in all three models, this hap-
pens quickly for models (a) and (b) but more slowly for 
model (c) (Fig. 4a). Similarly, the treatment rate adjusts 
rapidly for model (a) (Fig.  4b) and the escape prob-
ability adjusts rapidly for model (b) (Fig. 4d), while the 
treatment rate, targeting ratio and escape probability 
adjust slowly for model (c) (Fig. 4b–d). 

For model (a) with constant τ, as prevalence quickly 
declines to the new steady state (Figs.  3a and 4a), ϕ 
adjusts downwards to a new value (Figs. 3b and 4b), but 
the escape probability remains constant (Figs.  3d and 
4d), since the asymptotic dynamics of this system are 
similar to those of the simple SIS model in Fig. 1.

Since model (b) removes a constant number of 
infected individuals regardless of the prevalence 
level, the escape probability decreases as prevalence 
decreases leading to positive feedback, so RCD either 
causes the system to reach a new endemic prevalence 
when the transmission setting is high (Fig. 3) or elimi-
nation when the transmission setting is low and preva-
lence and the escape probability drop rapidly (Fig. 4).

In the high transmission setting where model (c) does 
not predict elimination, prevalence quickly approaches 
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the new endemic equilibrium (which is only slightly 
lower) and there is little change in the number of peo-
ple tested, the targeting ratio or the escape probability 
(Fig. 3). In the low transmission scenario where model 
(c) predicts extinction, prevalence first declines gradu-
ally, with a concomitant increase in targeting ratio. The 
positive feedback loop in this model not only leads to 
an i ncrease in the targeting ratio, but also in the num-
ber of people treated leading to a sharp decrease in the 
escape probability and consequently with a faster than 
exponential decrease in the prevalence (Fig.  4). This 
is particularly clear in Fig. 4a, where the curve for the 
prevalence has an inflection point, where it is initially 
convex at higher prevalence, but becomes concave at 
lower prevalence before quickly approaching zero.

Figure 5 shows the time to elimination, [where elimi-
nation is defined as zero prevalence for models (b) and 
(c) and prevalence < 0.01% for model (a)], for the three 
models for different parameter settings. Figure  5 sug-
gests that for models (a) and (b), the time to elimination 
and the likelihood of elimination depends on both, the 
transmission setting and the operational characteristics 
of the RCD programme. Furthermore, while elimina-
tion may be somewhat gradual for model (a), it either 
occurs rapidly or not at all for model (b). However, for 
the more realistic model of RCD [model (c)], the likeli-
hood of elimination depends strongly on the transmis-
sion setting but not on the operational parameters of 
RCD, suggesting, that in the settings where RCD would 
be sufficient to eliminate transmission, it would work 
even if coverage is low. For most settings where RCD 
is insufficient to eliminate transmission, improving the 
coverage of RCD would not necessarily lead to better 
outcomes.

Discussion
SIS models can capture the most relevant characteris-
tics of malaria transmission in humans in settings where 
elimination might be considered; in particular a stable 
endemic level of prevalence is achieved which is a mono-
tonic function of R0 (over the relatively low values of R0 
where elimination is feasible).

It makes the main conclusions clear by using a simple 
approximation for malaria transmission, which ignores 
factors such as super-infection and acquired immunity 
that are mostly relevant to high transmission settings 
where RCD would not be considered. Other simplifi-
cations are the lack of seasonality and heterogeneity, 
which would be important for quantitative predictions 
about any specific setting, but which should not affect 
the general principles and qualitative understanding 
of RCD derived here. In settings where transmission 
alternates between low and very low, seasonality may 

reduce the effectiveness of RCD during the very low 
transmission season towards that of the low transmis-
sion season (since there is less seasonal variation in 
prevalence). Programmes in higher transmission set-
tings are unlikely to consider RCD and seasonal malaria 
chemoprevention may be a more appropriate interven-
tion when relatively high transmission is concentrated 
in one season.

The simple models also did not include the sensitivity 
of diagnostic tests so could not distinguish between RCD 
and other reactive interventions as fMDA. The models 
here are more representative of fMDA, which was indeed 
found to be more effective than RCD from a study in 
Zambia [18].

Although the models did not explicitly consider con-
tinuous importation (which would be included by a con-
stant positive term, independent of It , in the right hand 
side of Eq.  (1), the bifurcation diagrams provide insight 
on the impact of irregular importation (as is likely to hap-
pen in reality).

The three formulations (a–c) differ substantially in 
the results of the stability analysis. Model (a) has quali-
tatively similar asymptotic dynamics to the baseline 
SIS model although RCD is able to achieve and main-
tain the disease free status for some values of R0 greater 
than 1, and reduces the endemic prevalence for values 
of R0 above this threshold—although the quantitative 
impact depends on the parameter values chosen. Mod-
els (b) and (c) show qualitatively different dynamics to 

Fig. 1  Bifurcation diagram showing fixed points of prevalence of 
the simple SIS model. The solid blue lines correspond to locally 
asymptotically stable equilibria. The dashed red lines correspond 
to unstable equilibria. The disease-free equilibrium point is locally 
asymptotically stable for R0 ≤ 1 and unstable for R0 > 1 (where a 
transcritical bifurcation occurs at R0 = 1 ). The endemic equilibrium 
point is locally asymptotically stable for R0 > 1 . Here the infectious 
period is assumed to be 200 days and the transmission parameter, β , 
is varied to provide the appropriate value of R0
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the SIS model and model (a), usually not seen in mod-
els of infectious diseases, where RCD is able to main-
tain a locally asymptotically stable disease-free state for 
any value of R0 . However, the basin of attraction (the 
prevalence level where infection would die out and the 
system would return to the disease-free state) decreases 
as R0 increases—so at high transmission levels, RCD 
can only maintain elimination if the importation pres-
sure is very low. There is also a threshold value of R0 

greater than 1 (where a saddle node bifurcation occurs), 
below which transmission cannot be maintained, and 
above which two endemic equilibria co-exist, with the 
unstable lower equilibrium point separating the basins 
of attraction of the stable endemic equilibrium point 
and the stable disease-free equilibrium point. For any 
value of R0 over this threshold, if a transient strategy 
such as mass drug administration or intensive vec-
tor control can reduce prevalence below the unstable 

Fig. 2  Bifurcation diagrams showing fixed points of prevalence for RCD models. The solid blue lines correspond to locally asymptotically stable 
equilibria. The dashed red lines to unstable equilibria. The infectious period for all models is set to 200 days and the transmission parameter, β , 
is varied to provide the appropriate value of R0 . a Model (a): τ = 5 , weekly total number of neighbours tested (product of ι and ν ) is 150. The 
disease-free equilibrium point is locally asymptotically stable for R0 less than a critical value and unstable above this value (where a transcritical 
bifurcation occurs). The endemic equilibrium point is locally asymptotically stable for R0 greater than the critical value. b Model (b): ϕ = 150 . The 
disease-free equilibrium point is locally asymptotically stable for any value of R0 . There are two endemic equilibria for values of R0 greater than a 
certain threshold (where a saddle node bifurcation occurs). The larger endemic equilibrium point is locally asymptotically stable and the smaller 
endemic equilibrium point is unstable. c Model (c): ι = 3 , ν = 50 ; the targeting ratio,τ , is calculated for the endemic prevalence in the absence of 
RCD. The disease-free equilibrium point is locally asymptotically stable for any value of R0 . There are two endemic equilibria for values of R0 greater 
than a certain threshold (where a saddle node bifurcation occurs). The larger endemic equilibrium point is locally asymptotically stable and the 
smaller endemic equilibrium point is unstable. d Model (c): ι = 50 , ν = 3 ; τ is calculated for the endemic prevalence in the absence of RCD. the 
disease-free equilibrium point is locally asymptotically stable for any value of R0 . There are two endemic equilibria for values of R0 greater than a 
certain threshold (where a saddle node bifurcation occurs). The larger endemic equilibrium point is locally asymptotically stable and the smaller 
endemic equilibrium point is unstable
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lower equilibrium point (below the dashed red line in 
Fig. 2b–d), RCD would then be able to push the system 
to elimination. Therefore, the higher this unstable equi-
librium is (and closer to the stable equilibrium—the 
solid blue line in Fig. 2b–d), the more likely that supple-
menting RCD with an additional potentially transient 
prevalence reducing intervention would lead to elimi-
nation. Furthermore, the stable endemic equilibrium 
prevalence for a particular value of R0 is also lower than 
the corresponding prevalence for the SIS model, so 
where RCD does not lead to elimination, it reduces the 
endemic prevalence.

This behaviour is markedly different from the backward 
bifurcation often seen in many infectious disease (and in 
particular malaria) models, although both exhibit sad-
dle node bifurcations and the bifurcation diagrams may 
look somewhat similar. In these models, a transcritical 
bifurcation occurs at R0 = 1 so the disease-free endemic 
equilibrium loses stability at R0 = 1 and transmission is 
endemic above this value. Furthermore, the saddle node 
bifurcation occurs at a value of R0 less than 1, so trans-
mission is always possible for R0 > 1 and even possible 
for some values of R0 < 1.

Model (c), where the targeting ratio, τ , is allowed to 
vary with prevalence and the search radius, does not 

Fig. 3  Time course for SIS models of RCD with R0 = 4 showing a Prevalence; b Treatent rate; c Targeting ratio; and d Escape probability. The models 
were initialized at the non-intervention endemic steady state for parameter values corresponding to R0 = 4 , the infectious period is assumed to be 
200 days and the transmission parameter, β , corresponds to R0 = 4 . The RCD parameter values are for model (a): τ = 5 and ιν = 150 (corresponding 
to parameter values in Fig. 2a); for model (b): ϕ = 150 (corresponding to parameter values in Fig. 2b); for model (c): ι = 10 and ν = 15 (intermediate 
between the parameter values in Fig. 2c and d). The targeting ratio is not defined for model (b) so is not presented in c. The simulation results show 
that in high transmission settings, the more realistic model for RCD (c) only leads to a small reduction in prevalence since the targeting ratio remains 
close to 1
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reduce the stable endemic equilibrium prevalence as 
much as model (b) so in this more realistic model, RCD is 
not as effective as the simplified model of RCD.

Furthermore, the unstable equilibrium point for model 
(c) is also lower than that for model (b) so the range of 
prevalence levels where RCD is sufficient to eliminate 
transmission or to prevent reintroduction is also not 
as great as for the simplified model. Further analysis of 
model (c) suggests that following more index cases and 
testing fewer neighbours is more effective than following 
fewer index cases and testing many neighbours because 
the targeting ratio is much higher over short distances 
(at least in the Zambian dataset analyzed here [12]). Even 
though malaria transmission is mediated by mosquitoes 
that frequently travel several hundred metres, people in 

the immediate vicinity of an infected person are much 
more likely to be infected than the average in the popu-
lation, presumably because of shared risk-factors. Over 
distances of tens or hundreds of metres there is rather lit-
tle to be gained by targeting. This is coherent with analy-
ses of the same data from Zambia that suggest that the 
impact of RCD with larger search ratios is limited except 
when prevalence is very low [12], and with a recent anal-
ysis of the RCD programme in eSwatini in which screen-
ing was carried out over radii of 500  m of index cases, 
26.7% of infections were found in the same household as 
the index case and a further 41% within 100 m [19].

Analysis of transient behaviour of model (c) suggests 
that the likelihood of elimination and time to elimina-
tion depends mostly on the transmission setting and 

Fig. 4  Time course for SIS models of RCD with low R0 showing a Prevalence; b Treatent rate; c Targeting ratio; and d Escape probability. The models 
were initialized at the non-intervention endemic steady state for parameter values corresponding to R0 = 1.6 . All parameters other than β are as in 
Fig. 3
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the operational characteristics of the RCD programme 
(number of index cases followed and neighbours tested) 
do have a large impact. Therefore, settings where RCD 
is implemented for elimination should be identified 
carefully.

In general, the simplest reactive strategy is treatment 
of passively detected cases, and previous simulations of 
a stochastic individual based simulation model, Open-
Malaria, indicate that if importation rates are low and 
transmission potential is reduced (for instance by vec-
tor control) [20], high coverage of case management can 
reliably prevent re-establishment of P. falciparum trans-
mission if it is interrupted. This can be considered as a 
limiting case in which resources allocated to testing or 
treating uninfected people are minimized. RCD goes 
beyond any possible improvement in passive case man-
agement coverage by potentially addressing asympto-
matic infections, or catching new infections just as they 
start to become symptomatic. For a fixed testing capac-
ity, RCD should aim to achieve a high specificity since 

each encounter with an uninfected person reduces pro-
gramme efficiency. Supplementing passive case detec-
tion with treatment of other household members (and 
perhaps their immediate neighbours) is one operationally 
attractive way of doing this because the other household 
members can more easily be located, and even simple 
strategies like dispensing a single dose of drugs, such as 
sulfadoxine-pyrimethamine for each family member, 
might be feasible.

The analysis of the three model formulations (a–c) helps 
to clarify what might be the most efficient way to optimize 
RCD. The limited range of settings where model (a) inter-
rupts transmission, suggests that improved technologies 
for targeting around index cases (e.g. by profiling to iden-
tify high-risk individuals) would not, on their own, have 
a big impact on the range of settings where transmission 
can be interrupted. Front-loading an RCD programme 
by searching a very wide radius until a target number of 
infections are found each time period [the very resource-
demanding process simulated by model (b)] may speed 

Fig. 5  Time to extinction in SIS models of RCD. Since the programme must screen at least one person for each index case, the function is shown 
only for ν > ι . The infectious period is assumed to be 200 days; transmission parameter is chosen to corresponding to the value of R0 shown on the 
x-axis; and the RCD parameters are described in the sub-figure titles and y-axis. The black lines indicate the parameter sets illustrated in Figs. 3 and 4. 
In model (c) the lack of monotonicity in time to extinction as a function of R0 arises because the function used for τ (ν, p) does not strictly enforce a 
requirement that ψ increases with ν
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up interruption of transmission but will be successful in 
fewer settings than the strategy of model (c) with constant 
search intensity, corresponding most closely to existing 
practice. Front-loading will make little difference to the 
total number of treatments required where transmis-
sion is interrupted, which is mainly a function of R0 and 
does not depend very much on the screening intensity or 
strategy also suggesting that as prevalence decreases, a 
feedback loop would occur so that after a “tipping point” 
could quickly lead to elimination, serving as a possible 
example of “accelerating to zero”.

Where RCD is effective, its effects depend largely on 
the targeting ratio. This is a measurable quantity, and 
can be determined from basic parasitological survey data 
even in the absence of a programme, so this could be part 
of a feasibility study before any commitment is made 
to implementing RCD. Alternatively (and better) data 
to parameterize the model could be obtained directly 
from programmes already implementing targeted case 
searches, providing there is some way of estimating the 
overall prevalence in the community. A meta-analysis 
four studies of RCD gave an average estimate of τ of 5.3 
(95% CI 3.3, 8.5) for searches in the immediate vicinity of 
the case [21]. This is rather close to the value we would 
expect for a search of only immediate household mem-
bers in the Zambian site. It is possible that the values of 
this quantity do not vary very much across sites, and it 
is reasonable to treat this as a best-case estimate for the 
model with constant τ . The targeting ratio measured in 
the same way, can also be used to design reactive vector 
control strategies, which may have greater impact on Rc 
and hence on the chances of eliminating the parasite.

Conclusion
The analyses here suggest that elimination of malaria 
can be achieved via RCD alone in only a very limited 
range of settings where transmission potential is very 
low, and improving the coverage of RCD has little effect 
on this range. RCD may also help maintain the disease-
free state in the face of imported infections. In a rather 
wider range of settings it is likely to reduce disease bur-
den and achieve new steady state endemicities. The 
reduction depends strongly on the targeting ratio, which 
can be estimated from prevalence survey data. Where 
the endemicity is reduced this may make it more feasi-
ble to achieve elimination by adding in further interven-
tions. Conversely scaling up of other interventions such 
as LLINs might reduce transmission to levels where RCD 
could achieve elimination. Further analyses of these mod-
els can be used to examine the synergies of non-targeted 
interventions with RCD, indicating the most efficient 
ways to complement it.

Additional file

Additional file 1.  Parameterisation of the models using Zambian field 
data.
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