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Abstract 

Background:  The genetic diversity of malaria antigens often results in allele variant-specific immunity, imposing a 
great challenge to vaccine development. Rhoptry Neck Protein 2 (PvRON2) is a blood-stage antigen that plays a key 
role during the erythrocyte invasion of Plasmodium vivax. This study investigates the genetic diversity of PvRON2 and 
the naturally acquired immune response to P. vivax isolates.

Results:  Here, the genetic diversity of PvRON21828–2080 and the naturally acquired humoral immune response against 
PvRON21828–2080 in infected and non-infected individuals from a vivax malaria endemic area in Brazil was reported. 
The diversity analysis of PvRON21828–2080 revealed that the protein is conserved in isolates in Brazil and worldwide. A 
total of 18 (19%) patients had IgG antibodies to PvRON21828–2080. Additionally, the analysis of the antibody response in 
individuals who were not acutely infected with malaria, but had been infected with malaria in the past indicated that 
32 patients (33%) exhibited an IgG immune response against PvRON2.

Conclusions:  PvRON2 was conserved among the studied isolates. The presence of naturally acquired antibodies to 
this protein in the absence of the disease suggests that PvRON2 induces a long-term antibody response. These results 
indicate that PvRON2 is a potential malaria vaccine candidate.
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Background
Clinical manifestations of human malaria occur during 
the blood stage of infection by the Plasmodium para-
site. Merozoites invade red blood cells in a process that 
involves specific interactions between parasite ligands 
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and host cell receptors; the merozoites are propelled by 
actin/myosin motors through the moving junction (MJ). 
The MJ is a protein complex formed by Apical Membrane 
Antigen 1 (AMA1) and Rhoptry Neck Proteins (RON) 2, 
4, 5 [1]. RON2 homologs are present in various species 
of the Apicomplexa phylum [1–4]. In Plasmodium vivax 
and Plasmodium falciparum, this protein is expressed in 
schizonts and secreted by the rhoptries at the end of the 
erythrocytic cycle [3]. Although the interaction between 
RON2 and AMA1 is essential to the invasion process 
[5–7], the mechanism of interaction is not well under-
stood. RON2 is transferred to the red blood cell (RBC) 
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membrane and adopts a surface-exposed loop that binds 
to a hydrophobic groove in AMA1, which is secreted by 
micronemes at the parasite surface [1, 7, 8]. This inter-
action triggers the junction formation and the invasion 
process. In the same microenvironment of erythrocyte 
invasion, anti-parasite acquired immunity occurs largely 
through the recognition of blood stage antigens 
expressed by the merozoite.

Thus, merozoite proteins are important targets and 
promising candidates for a malaria vaccine [9–12]. How-
ever, the development of a vivax malaria vaccines is still 
at an initial stage, and blood stage antigens that could 
be novel vaccine candidates are not well known [13]. 
RON2 is present in various Plasmodium species and is 
likely exposed to the host immune system during eryth-
rocyte invasion, making this protein a potential target 
for antibody-mediated protective immunity and vaccine 
development.

The genetic diversity of a candidate antigen becomes 
relevant when pursuing an efficient protective immune 
response. The expression of P. vivax proteins with a high 
degree of polymorphism and the corresponding strain-
specific immune response represent major obstacles to 
vaccine development [14, 15]. The high antigenic diver-
sity of the parasite explains the slow development of 
naturally acquired immunity [16]. Thus, repeated anti-
gen exposure over several years is necessary to generate a 
great repertoire of antibodies against different serotypes 
in an endemic area [17].

In malaria endemic regions, individuals are naturally 
exposed to malaria, and therefore, they produce specific 
immune responses against several strains. The acquired 
immunogenicity is generally short-lived, strain-specific 
and developed gradually after repeated infections [17–
19]. This immunity can restrain parasitaemia, protecting 
the individual against severe disease and decreasing the 
risk of mortality.

In this work, the polymorphism patterns of P. vivax 
RON2 and the naturally acquired antibody responses to 
this antigen were characterized genetic diversity analysis 
and immunogenicity to PvRON2 lays a foundation for 
the potential future design and development of an effec-
tive PvRON2-based malaria vaccine.

Methods
Study area, population and sample collection
To evaluate the genetic diversity of pvron2 (sequence 
from nucleotide 5481–6240 from the pvron2 gene), a 
total of 36 P. vivax isolates were collected from patients 
in Manaus, Amazonas-Brazil at Fundação de Medicina 
Tropical Dr. Heitor Vieira Dourado (FMT-HVD) (CAAE-
0044.0.114.000-11/CAAE 54234216.1.0000.0005) and in 
Mâncio Lima and Acrelândia, Acre State (Fig. 1) between 

2011 and 2013 and in 2015 (936/CEP, 2010 and 1169/
CEPSH, 2014).

Humoral immune responses to a recombinant 
PvRON2 (rPvRON2) antigen in Manaus (−  03°06′26″S; 
60°01′34″W) (CAAE-0044.0.114.000-11/CAAE 
54234216.1.0000.0005) and in Itaituba (04°16′34″S; 
55°59′01″W), a gold mining area located in the most 
southwestern part of the State of Pará, were assessed 
(Fig.  1). The Annual Parasite Incidence designates 
Itaituba as an area with a high risk of malaria transmis-
sion (102.0 cases/1000 inhabitants per year) (CAAE—
001.219.346-15). In contrast, Manaus presents a low 
malaria transmission risk (5.8 cases/1000 inhabitants per 
year).

Samples of peripheral blood were collected from the 
following three groups: (1) individuals acutely infected 
with P. vivax in Itaituba (n = 93); (2) individuals who were 
not infected but previously had malaria (n = 97); and (3) 
acutely infected individuals from Manaus (n = 124). All 
individuals were previously diagnosed by thick blood film 
microscopy screens, and P. vivax mono infection was also 
determined by nested PCR, as previously described [20].

Target sequence
The PvRON2 gene has a length of 6612 bp. A synthetic 
gene fragment was designed based on the nucleo-
tide sequence of the pvron2 Sal1 strain (PlasmoDB 
PVX_117880). This sequence is only partially located in 
the PvRON2 region that binds to AMA1 during the MJ 
formation. Nevertheless, the selected region presented a 
high score in the antigenicity analysis, according to the 
Kolaskar and Tongaonkar method, using the program 
Immune Epitope database and Analyses Resource (IEDB 
Analysis Resource) [21].

Amplification and sequencing of pvron2 from Amazonian 
isolates
Genomic DNA from P. vivax isolates collected in Manaus 
was extracted using standard phenol–chloroform meth-
ods [22]. The DNA templates from the isolates collected 
in Mâncio Lima and Acrelândia were isolated from 
200  µL of whole blood using QIAamp DNA blood kits 
(Qiagen, Hilden, Germany), with a final DNA elution vol-
ume of 200 µL, according to the manufacturer’s instruc-
tions. DNA samples were stored at − 20 °C prior to use.

DNA samples of P. vivax were used as the template 
for the amplification of the pvron2 759pb sequence. 
Three DNA fragments were PCR-amplified to obtain 
the complete fragment. The oligonucleotide sequences 
used in this study are listed in Additional file  1. The 
PCR conditions used to amplify fragments one and 
three were as follows: 1 cycle of 5 min at 95 °C followed 
by 35 cycles of 30 s at 95 °C, 45 s at 60 °C, 1 min at 72 °C 
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and a final cycle of 5 min at 72 °C. To amplify fragment 
two, the PCR conditions were as follows: 1 cycle of 
5  min at 94  °C followed by 35 cycles of 30  s at 94  °C, 
30 s at 60 °C, 45 s at 72 °C and a final cycle of 5 min at 
72  °C. The reactions were performed using a reaction 
mixture containing 2.5 mM MgCl2, 0.5 mM each dNTP 
(Invitrogen), 0.5 units of Platinum Taq polymerase 
(Invitrogen) and 1  µM of each oligonucleotide primer 
in a final volume of 50  µL. The purified PCR product 
was sequenced using 3730xl DNA Analyzer (Applied 
Biosystems).

Sequence alignment and analysis
Amplified pvron2 sequences from 36 Brazilian Amazon 
isolates were analysed. The fragments were assembled 
using CodonCode Aligner v. 6.0.2, and the sequence 
data was deposited in the GenBank (accession numbers 
are listed in Additional file  2). Single nucleotide poly-
morphisms (SNPs) were identified in the alignment of 
103 pvron2 sequences from 7 other countries (Thailand, 
Mexico, Mauritania, China, Peru, Colombia and North 
Korea), which were previously deposited in the Plas-
moDB [23], and GenBank [24] databases. All sequences 

Fig. 1  Geographic areas where P. vivax samples were collected. Samples used in the genetic diversity analysis were collected in Manaus, Amazon 
state and Mâncio Lima and Acrelândia, Acre state. Samples from Manaus and Itaituba, Pará state were used in the immunogenicity analysis. The 
number of samples collected at each location is indicated on the map
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were compared to the P. vivax reference sequence Sal-1 
strain (PlasmoDB: PVX117880) using CLC Sequence 
Viewer 7.

Expression, purification and confirmation of the PvRON2 
protein in Escherichia coli
A PvRON2 gene fragment encoding amino acid residues 
1828–2080 was obtained from the genomic DNA of the 
P. vivax Sal I strain. This fragment was codon optimized 
for E. coli and subsequently cloned into the pGEX 4T-1 
vector (synthetized by GenScript USA Inc. Piscataway, 
New Jersey). For recombinant GST-PvRON2 protein 
expression, the pGEX4T-1_pvron2 plasmid was trans-
formed into competent STAR BL21(DE3) E. coli cells by 
heat shock [25]. Then, the bacteria cultures were grown 
according to the manufacturer’s instructions. Briefly, 
100 mL of overnight culture was transferred into 3 L of 
LB containing ampicillin (100  µg/mL) and incubated at 
37 °C with shaking. When the culture reached an OD600 
of 0.6, protein expression was induced by the addition 
of 0.8  mM IPTG for 4  h at 37  °C. The culture was pel-
leted by centrifugation (6000×g, 10 min), resuspended in 
25 mL of lysis buffer (10 mM Tris HCl pH 8.0, 150 mM 
NaCl, 1 mM EDTA) in the presence of 1× Complete Pro-
tease Inhibitor Cocktail (Roche, Mannheim, Germany) 
and incubated for 1  h on ice. The sample was then dis-
rupted using an M-110 L Pneumatic High Shear Fluid 
Processor (Microfluidcs). Next, cell fragments were pel-
leted by 30 min of centrifugation at 10,000×g. Finally, the 
supernatant was collected and analysed using SDS-PAGE 
and Western Blot to confirm protein expression.

Measurement of antibody reactivity to rPvRON2
Naturally, acquired IgG and IgM antibodies against rPv-
RON2 were measured in the plasma samples by direct 
enzyme-linked immunosorbent assay (ELISA). Plasma 
samples from infected (n = 93) and non-infected (n = 97) 
individuals from Itaituba, and infected individuals from 
Manaus (n = 124) were evaluated for the presence of IgG 
antibodies to rPvRON2. The same groups were evalu-
ated for the presence of IgM antibodies to rPvRON2, as 
follows: infected individuals from Itaituba (n = 56), non-
infected individuals from Itaituba (n = 97), and infected 
individuals from Manaus (n = 68). Samples from non-
infected individuals from a non-endemic region were 
used as negative controls (n = 21).

High-protein binding 96-well ELISA plates were coated 
with 50 μL of rPvRON2 at 5  μg/mL in 0.05  M carbon-
ate-bicarbonate, pH 9.6, overnight at 4 °C. Then, plasma 
samples (100 µL) diluted 1:100 were added to each well 
and incubated for 1  h at room temperature. For the 
detection of bound antibodies, the samples were incu-
bated with a 1:2000 dilution of peroxidase-conjugated 

goat anti-human IgG or IgM (Sigma). The optical density 
(OD) was measured at 490  nm using CLARIOstar data 
analysis.

To avoid a bias in the results caused by the possible 
reactivity of the GST tag during protein expression, the 
excess band size was measured on the SDS PAGE gel 
using ImageJ. To calculate the protein surplus, plates 
were coated with GST. The values obtained in each 
sample reaction to GST were subtracted from the value 
obtained in the reaction against PvRON2.

All plates tested were normalized using the values of 
the anti-GST controls (4 well per plate). The cutoff value 
was calculated as the mean plus three standard devia-
tions of the negative control. The reactivity indices (RIs) 
were obtained from the ratio of the absorbance values of 
each sample and the cutoff value. The prevalence of IgG 
and IgM against the rPvRON2 antigen was considered 
positive if the (RI) values were higher than 1.0.

The detection of IgG subclasses was performed as men-
tioned above, except that IgG1 (HRP), IgG2 (HRP), IgG3 
(HRP) and IgG4 (HRP) specific secondary monoclonal 
mouse anti-human antibodies (abcam) diluted 1:2000 
were used. The results were expressed as the RI ± SEM 
(standard error of the mean).

Measuring cytokine levels
The plasma levels of the cytokines IL-6, IL-10, IFN-γ 
and TNF were quantified by flow cytometry using the 
BD IL-6, IL-10, IFN-γ, TNF Human Flex Set (BD Bio-
science Pharmingen, San Diego, Ca, USA) following the 
instructions provided by the manufacturer. Data analy-
ses were performed using the FACSDiva software (BD 
Biosciences, San Jose, CA, USA). The cytokine concen-
trations in each sample were determined based upon 
standard curves. The plasma cytokine concentrations for 
each sample were extrapolated from the standard curves, 
and the data were expressed as ρg/mL.

Correlation coefficients and network analysis
As the antibody levels were not normally distributed, 
nonparametric tests were used. Spearman’s correlation 
was applied to assess the association between antibody 
levels with the following parameters: age, parasitaemia, 
platelets, RBC, haematocrit, haemoglobin, IL-6, IL-2, 
IL-10, IL-4, TNF and IFN-γ. Correlation networks were 
generated by the analysis of relationships among each 
mediator measured in the plasma samples. The sys-
temic levels of each mediator were input in the R soft-
ware (v. 3.4.3). Initially, pairwise Spearman’s correlation 
coefficients were calculated using the R programming 
language. Along with the Spearman rank-order correla-
tion coefficient, the p value to test for non-correlation 
was evaluated using p ≤ 0.05 as a cutoff. Moreover, 
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based on the Spearman correlation coefficient, the 
same software was applied to identify links (edges) of 
interaction between the mediators (nodes). The cor-
relation strength is represented by edge transparency 
and width; positive correlations are represented by 
red edges, and negatives correlations are represented 
by blue edges. Following this approach, each mediator 
was selected as a target, and the R software was used to 
perform a search within the other mediators for those 
that were associated with the target, in terms of corre-
lation strength. As a result, the features related to the 
selected target were linked. This process was repeated 
for each mediator, and the result was the inferred net-
work among the input values. To analyse the structure 
of the networks; the graphics of the network analysis 
were customized using Cytoscape software (v 3.5.1). 
The prefuse force-directed layout was applied, which, 
in the equilibrium states for the system of forces, rep-
resents the correlation strength, the edges with uniform 
length, and nodes that are not connected by an edge 
tend to be drawn further apart.

Statistical analysis
Fisher’s test was applied to compare the prevalence of 
positive responses, and differences between medians and 
cytokine levels were assessed with the Mann–Whitney 
U-test using GraphPad Prism. A p-value of p < 0.05 was 
considered significant.

Results
PvRON2 is a conserved antigen
A total of 36 pvron2 sequences corresponding to the 
amino acid residues 1828–2080, based on the P. vivax 
reference sequence Sal-1 (PlasmoDB PVX_117880), 
were generated from gDNA samples of P. vivax-infected 
individuals from Manaus, Mâncio Lima and Acrelândia 
in the Amazon region (Fig.  1). The Brazilian sequences 
were then compared with 103 other sequences from eight 
countries that were previously deposited in GenBank and 
PlasmoDB (Additional file 3).

Sequence analysis revealed that pvron25482-6240nt is 
highly conserved among P. vivax isolates worldwide. 
Only two synonymous nucleotide substitutions were 
found among 118 sequences. One of these substitu-
tions was observed at position 76 nt and was detected in 
47 isolates from six out of the nine countries analysed. 
Another substitution was found at position 228 nt in 
one sequence from Peru (Additional file  3B). Non-syn-
onymous substitutions were not detected in any of the 
analysed sequences, indicating that pvron2 in a highly-
conserved protein (Additional file 3A).

Demographic profiles of individuals from Itaituba
In this study, a total of 93 infected and 97 non-infected 
individuals from Itaituba were analysed. A higher fre-
quency of infected individuals was observed among 
males (80.6%) compared with females (19.4%). The 
median age of infected individuals was 32  years old, 
which was significantly lower than that of uninfected 
individuals (43 years old). In the non-infected group, the 
majority of individuals reported suffering more previ-
ous episodes of malaria compared to the infected group 
of patients. Malaria infection significantly affected the 
prevalence of anaemia (24.7% vs 9.3% for the infected 
and non-infected groups, respectively) and thrombocyto-
paenia (79.6% vs 19.6 for the infected and non-infected 
groups, respectively) (Table 1).

Naturally acquired antibody response towards rPvRON2
Recombinant PvRON2 was successfully expressed in E. 
coli STAR cells as a GST fusion protein. The purity and 
quality of the recombinant protein were verified by SDS-
PAGE, which revealed a single band of approximately 
56 kDa. The generated recombinant protein (rPvRON2) 
was recognized by the plasma from P. vivax-infected 
patients, confirming its immunoreactivity (Additional 
file 4).

Table 1  Epidemiological parameters of  the  subjects 
exposed to malaria in the gold mining region (Itaituba)

Anaemia was considered positive when haemoglobin levels were under 13 g/dL 
for men or under 12 g/dL for women

Thrombocytopaenia was defined as a platelet count of less than 150 × 103 per 
µL

* p-values were calculated from the Chi-squared test for qualitative variables or 
the Mann–Whitney test for non-parametric continuous variables

Characteristics Infected (93) Non-infected (97) p*

Gender, male (%) 80.6 62.4 0.001

Age, median years (range) 32 43 < 0.0001

Past malaria infections

 ≥ 4 41.6 74.2 < 0.0001

 < 4 58.4 25.8

Haemoglobin (g/dL) 14.0 14.3

Anaemia (%) 24.7 9.3 0.008

Platelets (cells/mm3) 104,000 190,000

Thrombocytopaenic (%) 79.6 19.6 < 0.0001

Cytokines (pg/mL)

 INF-γ 2.04 0 0.0002

 IL-6 24.38 3.02 < 0.0001

 IL-10 81.95 0.22 < 0.0001

 IL-2 0 0 0.09

 IL-4 0 0 0.63

 TNF-α 3.09 0.86 0.03
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To evaluate PvRON2 as a vaccine candidate, the 
immune response towards this antigen was assessed. A 
total of 190 individuals from Itaituba (93 infected and 
97 non-infected) were evaluated for the presence of a 
naturally acquired IgG antibody response to rPvRON2, 
and 153 individuals (56 infected, 97 non-infected) were 
evaluated for an IgM response. In addition, 124 and 68 
infected patients from Manaus were also analysed for 
IgG and IgM responses, respectively, to evaluate possible 
regional differences among infected patients.

IgG antibodies naturally acquired were prevalent in 
19% (18/93) of the samples from infected individuals 
from Itaituba. The reactivity indices of anti-PvRON2 
IgG antibodies were similar between infected patients 
from Itaituba and Manaus. While the individuals from 
Itaituba presented a prevalence of 19%, individuals from 
Manaus showed a prevalence of 27% (34/124) (Fig.  2a). 
Finally, the highest level of IgG response was found in 
the non-infected individuals from Itaituba (Fig. 2b), with 
a prevalence of 33% (32/97). The presence of naturally 
acquired antibodies towards rPvRON2 in plasma samples 
from Itaituba in individuals who had been infected with 
malaria in the past but exhibited no parasitaemia at the 
moment of blood harvest was significantly higher com-
pared with infected individuals (p = 0.047), suggesting a 
possible maintenance of the PvRON2-specific antibody 
response.

Some of the individuals with a positive reactivity index, 
both from Manaus and Itaituba (n = 59), were isotyped to 
detect IgG subclasses (IgG, IgG2, IgG3, IgG4). The results 
revealed that 22.03% of individuals exhibited anti-IgG1, 
10.16% exhibited anti-IgG2, 13.55% exhibited anti-IgG3 
and only 1.69% exhibited anti-IgG4 antibodies (Fig. 3).

Fig. 2  Human IgG and IgM antibody responses to rPvRON2. Reactivity indices of a IgG per person against rPvRON2 in infected individuals from 
Itaituba (n = 93) and infected individuals from Manaus (n = 124), b IgG response from infected individuals from Itaituba (n = 93) and non-infected 
individuals who had malaria in the past (n = 97), c IgM response from infected individuals (n = 56) and non-infected individuals (n = 97) from 
Itaituba, measured by ELISA. The differences in the total number of individuals evaluated for each protein are due to samples running out of plasma. 
Error bars indicate the mean with standard deviation. p values are indicated in the figure. ns not significant. Significant differences were calculated 
by Fisher’s test

Fig. 3  Frequency of IgG subclasses. Prevalence of IgG1, IgG2, 
IgG3 and IgG4 antibodies against PvRON2 in IgG-positive malaria 
individuals (n = 59). The differences in the total number of individuals 
evaluated corresponded to samples that lacked plasma. *p < 0.005 
**p < 0.0001. The Fisher’s test was used to analyse differences 
between each IgG subclass response
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The prevalence of IgM antibodies was lower compared 
to IgG, as follows: 12.5% (7/56) for patients from Itaituba 
and 8% (8/97) for non-infected individuals from Itaituba 
(Fig. 2c). In samples from Manaus, only 4% (3/68) of indi-
viduals were positive for an IgM antibody response to 
rPvRON2.

Cytokine levels and network analysis
To evaluate a possible correlation between the levels 
of cytokines and several parameters, the plasma lev-
els of TNF, IFN-γ, IL-2, IL-4 IL-6 and IL-10 in all indi-
viduals from Itaituba were measured (Table  1). The 

cytokine levels were found to be positively associated 
with age, parasitaemia, platelets, RBC, haematocrit and 
haemoglobin; one significantly negative correlation 
was detected between rPvRON2 reactivity index (RI) 
and IL-2 (p < 0.05; r = −  0.58) in infected individuals 
(Fig.  4a, b). No significant correlations were observed 
between the rPvRON2 reactivity index and the plasma 
levels of TNF, IFN-γ, IL-6, or IL-10 when analysed in 
both the non-infected and infected groups. In addition, 
a positive significant correlation between RI and age 
was observed in non-infected individuals (Fig. 4c, d).

Fig. 4  Multivariate correlation coefficients and networks in infected and non-infected individuals from Itaituba. Spearman’s correlation was applied 
to assess the association between the PvRON2 reactivity index with age, parasitaemia, platelets, RBC, hematocrit, hemoglobin, IL-6, IL-2, IL-10, 
IL-4, TNF-α and IFN-γ, and correlation networks were generated by the analysis of the relationship among each mediator measured in the plasma 
samples in a, b the infected group and c, d the non-infected group. Each connecting line (edge) represents a significant interaction (p < 0.05) 
detected by the network analysis using the R software. Correlation strength is represented by the tile or edge color transparency and width. Positive 
correlations are represented with red tiles/edges, and negatives correlations are represented with by blue tiles/edges
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When cytokine levels were compared between indi-
viduals with a positive RI and a negative RI, a significant 
difference for both IL-2 (p = 0.019) and IL-10 (p = 0.006) 
was observed; individuals with anti-PvRON2 antibod-
ies had lower levels of IL-2 and IL-10 when compared to 
individuals with a negative reactivity index (Fig. 5).

Discussion
Many currently identified vaccine candidates present a 
high degree of polymorphism [26–28]. Selective pressure 
exerted by the host immune system, leads to the estab-
lishment of allele variants in the parasite population, 
reflected on the level of polymorphism rate [29]. One of 
the greatest challenges in the development of effective 
vaccines which are capable of generating an efficient anti-
gen-specific immune response is the high level of poly-
morphic sequences. Genetic variability has been assessed 
in many important P. vivax vaccine candidates, such as 
CSP [30, 31], DBP [32, 33], MSP-1 [33, 34], MSP-3 alpha 
[35], MSP-4 [36], MSP-5 [37], MSP-7 [38], MSP-9 [39], 
RAP-1 [40], RAP-2 [40], Pvs48/45 [41], PvGCS1 [42], 
TRAP [43], and PvCelTOS [44].

Proteins involved in the MJ complex formation have 
also been characterized. PvAMA1 has been analysed 
and characterized in multiple studies on field isolates 
from different endemic area [29, 33, 45, 46]. PvAMA1 is 
a highly polymorphic antigen [29, 45, 46]. The complete 
AMA1 gene contains an ectodomain with three distinct 
subdomains (DI, DII and DIII) separated by disulfide 
bonds between the cysteine residues [47]. DI exhibits a 
higher mutation ratio and level of diversifying selection 
in P. falciparum [48, 49], whereas most of the polymor-
phic sites of AMA1 occur in domains I and II in P. vivax 
isolates  [46, 50, 51].

PfRON2 and PvRON2 interact with a hydrophobic 
groove in AMA1 [52, 53]. It has been recently reported 
that PvRON2-RI (957–1288 AA) [52–54] and PvRON2-
RII (1850–2085 AA) [54] bind to PvAMA1 DI [52, 54] 
with high affinity [54], and in both P. falciparum and P. 
vivax species it was observed that the residue Tyr251, 
which was reported to be essential for RON2 binding [7, 
55], is conserved [46, 55].

Among the RON proteins belonging to the invasion 
complex, PvRON4 and PvRON2 have been character-
ized regarding polymorphisms [56–58]. PvRON4 is con-
served, with a low number of SNPs. However, there exist 
many haplotypes, due to the presence of tandem repeats 
in the N-terminal region. However, the central and C-ter-
minal regions are highly conserved, likely because they 
are under functional constraint [58].

Certain pvron2 sequences described exhibit a high level 
of conservation in specific regions [56, 57]. Here, a frag-
ment corresponding to 5482–6240 nt, which encodes 

PvRON21828-2080AA was analysed. This region was 
chosen based on the following two characteristics: its 
functional importance to the MJ formation during inva-
sion, given that this region is partially located in the RII 
region of PvRON2, and its antigenicity, which was pre-
dicted using the IEDB Analysis Resource.

Polymorphisms in PvRON21828–2080 were identified in 
samples collected from individuals infected with malaria 
from three different regions of the Brazilian Amazon, and 
these samples were compared with isolates from other 
countries. The alignment of 36 nucleotide sequences 
from the Brazilian isolates revealed only one SNP, 
and when these sequences were compared with other 
sequences deposited in PlasmoDB and GenBank, two 
SNPs were identified with no amino acid changes. The 
high degree of conservation of this sequence is likely due 
to the functional role of the interaction between AMA1 
and RON2 during the MJ formation [6, 7].

In addition to evaluating the genetic variation of anti-
gens, analysis of the natural immune response is essen-
tial for vaccine development. Given the importance of 
PvRON2 during the invasion process, which makes this 
protein a potential target of the immune system, in this 
study was analysed the prevalence of antibodies from 
infected individuals from two different endemic areas 
in the Brazilian Amazon region (Itaituba, Pará State and 
Manaus, Amazonas State).

Samples from Itaituba were collected from mining 
regions with a high migration rate of workers who were 
often previously exposed to the malaria vector. Massive 
human influx and deforestation have greatly impacted 
the ecosystem, which has promoted a greater prolifera-
tion of mosquitoes, boosting the number of malaria cases 
[59–61]. In contrast, in the Manaus region, malaria trans-
mission is characterized by the migration of people from 
rural to urban/peri-urban areas [61]. However, when 
the natural acquired humoral response was evaluated, 
there were no significant differences in the prevalence 
of PvRON2 IgG antibodies between the samples from 
the two regions. Furthermore, the analysis of IgG sub-
classes in a portion of the sample group (n = 59), includ-
ing samples from both regions, revealed a significantly 
higher prevalence of IgG1 and IgG3. These antibodies 
are predominant in naturally acquired immune responses 
against other Plasmodium antigens in malaria endemic 
regions [62–64].

Subsequently, infected patients from Itaituba were 
compared with a group of non-infected individu-
als from the same region. Interestingly, this analy-
sis revealed that non-infected individuals had a 
significantly higher IgG response, indicating a long-
lasting immune response against the PvRON2 anti-
gen. Because no precise information was available, it 
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Fig. 5  Cytokine Levels and the immune response to rPvRON2. Plasma samples from Itaituba were divided in two groups, with positive (RI > 1; 
n = 41) and negative (RI < 1; n = 103) reactivity indices against PvRON2. The levels of the cytokines: a IL-2, b IL-10, c IL-6, d IL-4, e INF-γ, f TNF-α were 
evaluated by flow cytometry. Bars indicate the median. p values are indicated in the figure Significant differences were calculated by the Mann–
Whitney test. ns not significant
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was not possible to correlate the reactivity index to the 
number of previous malaria exposures.

In non-infected individuals, a positive correlation 
between RI and age was observed. This type of asso-
ciation has been described for several Plasmodium 
antigens [65–68], suggesting age dependence and a 
possible maturation of the immune system over time. 
A lower prevalence of IgM compared to IgG was 
observed in all groups. Non-infected individuals had 
an even lower prevalence compared with the infected 
individuals from Itaituba, although this difference was 
not significant. Low reactivity was expected, as IgM is 
generally produced during the first weeks after antigen 
recognition and decreases over time after the first acti-
vation, whereas IgG responses can increase following 
subsequent exposures to the antigen, often due to the 
humoral immunological memory [69].

The only published work evaluating PvRON2 anti-
genicity analysed the natural acquired immune 
response against four in silico-predicted B-cell 
epitopes of PvRON2, none of which is located in the 
RI or RII functional regions. Although there was an 
immune response against these epitopes, the response 
was low [70].

Higher levels of IL-10 are positively associated 
with high parasitaemia [71, 72]. In the present study, 
individuals who exhibited a positive reactivity index 
against PvRON2 exhibited lower plasma levels of 
IL-10. However, this group consisted primarily of non-
infected individuals who were previously infected with 
malaria (without parasitaemia). Thus, it is possible 
that low levels of this cytokine are associated with the 
low parasitaemia in this group and not directly associ-
ated with reactivity against PvRON2.

RON2 is a potential vaccine candidate, as blocking 
the interaction between AMA1 and RON2 inhibits 
erythrocyte invasion [6, 7]. Several studies have aimed 
to verify the efficacy of AMA1 as a vaccine candidate 
[11, 73–75]. However, PfAMA1 vaccines did not pro-
vide significant protection against malaria in clini-
cal trials [75, 76]. Meanwhile, rats immunized with a 
PfAMA1-RON2L complex, produced qualitatively bet-
ter P. falciparum inhibitory antibodies upon invasion 
of RBCs compared with IgG elicited by the formula-
tion containing only PfAMA1 [77]. Vaccination with 
this complex provided significantly higher protection 
in mice [77] and Aotus monkeys [78] compared with a 
formulation with PfAMA1 alone. In addition, a study 
with another fragment of the PfRON2 sequence (84aa–
968aa) demonstrated that IgG antibodies against this 
sequence are associated with clinical protection [79].

Conclusions
Taken together, the findings in this study demonstrate 
that PvRON21828–2080 is conserved and, moreover, 
there is a possible persistence of the immune response 
against this antigen. The data presented here suggest 
that PvRON21828–2080 may be a potential candidate to 
overcome the antigenic diversity limitations in vaccine 
design in future studies.
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