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Abstract 

Background:  There is a need for comprehensive evaluations of the underlying local factors that contribute to 
residual malaria in sub-Saharan Africa. However, it is difficult to compare the wide array of demographic, socio-eco-
nomic, and environmental variables associated with malaria transmission using standard statistical approaches while 
accounting for seasonal differences and nonlinear relationships. This article uses a Bayesian model averaging (BMA) 
approach for identifying and comparing potential risk and protective factors associated with residual malaria.

Results:  The relative influence of a comprehensive set of demographic, socio-economic, environmental, and malaria 
intervention variables on malaria prevalence were modelled using BMA for variable selection. Data were collected 
in Bunkpurugu-Yunyoo, a rural district in northeast Ghana that experiences holoendemic seasonal malaria transmis-
sion, over six biannual surveys from 2010 to 2013. A total of 10,022 children between the ages 6 to 59 months were 
used in the analysis. Multiple models were developed to identify important risk and protective factors, accounting for 
seasonal patterns and nonlinear relationships. These models revealed pronounced nonlinear associations between 
malaria risk and distance from the nearest urban centre and health facility. Furthermore, the association between 
malaria risk and age and some ethnic groups was significantly different in the rainy and dry seasons. BMA outper-
formed other commonly used regression approaches in out-of-sample predictive ability using a season-to-season 
validation approach.

Conclusions:  This modelling framework offers an alternative approach to disease risk factor analysis that generates 
interpretable models, can reveal complex, nonlinear relationships, incorporates uncertainty in model selection, and 
produces accurate predictions. Certain modelling applications, such as designing targeted local interventions, require 
more sophisticated statistical methods which are capable of handling a wide range of relevant data while maintaining 
interpretability and predictive performance, and directly characterize uncertainty. To this end, BMA represents a valu-
able tool for constructing more informative models for understanding risk factors for malaria, as well as other vector-
borne and environmentally mediated diseases.
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Background
In spite of significant global reductions in malaria trans-
mission and prevalence over the past decade [1], many 
districts and municipalities across sub-Saharan Africa 
continue to experience high malaria burden [2, 3]. In 
several instances, residual malaria transmission has 
persisted despite widespread coverage of conventional 
malaria interventions, such as insecticide-treated bed 
netting (ITN) and indoor-residual spraying of insecti-
cides (IRS) [4, 5]. An important factor contributing to 
residual malaria transmission is a high degree of spatial 
heterogeneity [5]. Malaria prevalence can differ dramati-
cally [6], even over relatively short distances [7], which 
has the potential to undermine universal intervention 
guidelines [8]. Similarly, some subpopulations might have 
a substantially higher malaria risk than other groups. 
Identifying these hotspots and hot-pops is critical for 
developing targeted approaches to reduce malaria bur-
den and guide holoendemic areas towards malaria elimi-
nation [7, 9].

Local risk factors for malaria can be difficult to char-
acterize due to the wide range of variables that can be 
relevant to malaria epidemiology [10]. Studies on malaria 
risk factors have often focused on particular types or 
categories of variables, such as models based on envi-
ronmental data [11–13], or demographic and socio-eco-
nomic factors [14–17]. However, as information becomes 
more accessible and available at finer geographic and 
temporal resolutions, malaria risk models have sought to 
incorporate a greater variety of explanatory data [18–21]. 
Additionally, the importance of complex patterns, such 
as nonlinear relationships and seasonally-dependent 
shifts, has emerged as a significant component to model-
ling malaria risk [22, 23].

Incorporating a wider range of explanatory informa-
tion into disease risk factors models can be difficult when 
using traditional statistical approaches such as standard 
logistic regression. Having a large number of predictors 
or independent variables (i.e. potential risk factors) can 
lead to overfitting [24], which can decrease the accuracy 
of out-of-sample predictions and increase the probability 
of detecting spurious relationships, which in the context 
of disease risk factor analysis can undermine the applica-
bility towards guiding interventions. Additionally, tradi-
tional statistical models often make critical assumptions, 
such as linearity. These shortcomings have led to the 
application of sophisticated variable selection methods, 
which are able to incorporate more independent varia-
bles and model complex relationships without sacrificing 
forecasting accuracy by reducing dimensionality. Exam-
ples of variable selection methods that have been used 
for malaria-related data include stepwise regression [20], 
ridge regression [25], and Lasso regression [26, 27].

One limitation of these approaches for variable 
selection is they do not account for uncertainty in the 
selection process, which can produce overconfident 
predictions. Consider the following contextualized 
example provided by Hoetling et  al. [28]: a researcher 
has gathered a comprehensive data set on potential risk 
factors of malaria, and wants to construct a model in 
order to compare risk factors and make predictions. 
They use a variable selection procedure, which identi-
fies a specific model, M*, as having the best fit based 
on some information criterion, which is then used to 
compare risk factors, make predictions, and inform 
interventions. Suppose that there exists an alterna-
tive model, M**, which has nearly as good of fit but 
consists of a different set of covariates and produces 
different effect sizes and/or predictions. In this case, 
the researcher should have less certainty in M*. Hoet-
ing et  al. [28] demonstrates that this scenario where 
uncertainty in model selection is ignored is very com-
mon and unfortunately typical variable selection meth-
ods do not provide a mechanism for incorporating this 
uncertainty.

Bayesian model averaging (BMA) is an alternative 
approach to variable selection which fully accounts 
for uncertainty associated with the model selection 
process [29]. Previous studies outside of the field of 
disease control have demonstrated that BMA often out-
performs other methods of variable selection [30–32]. 
This technique has been adopted in many modelling 
applications [33], such as weather forecasting [34, 35], 
phylogenetics [36], and hyperspectral image analysis 
[32, 37]. While BMA is not new to modelling disease 
risk factors [38, 39], recent applications (i.e. in the past 
15  years) are uncommon, and to our knowledge BMA 
has yet to be used in the context of malaria or other 
arthropod-transmitted diseases. Given the wide vari-
ety of factors that contribute to malaria, the increased 
attention to complex patterns, and the increasing avail-
ability of data, BMA could represent a valuable statisti-
cal tool for enhancing risk factor models and designing 
targeted interventions.

In this study, BMA was used to identify the underly-
ing factors that shape the spatiotemporal patterns of 
malaria prevalence in a district located in the Guinea 
savannah zone of northern Ghana that experiences high 
seasonal malaria transmission [40, 41]. The article dem-
onstrates how BMA can be used to identify seasonal 
differences and nonlinear relationships in malaria risk 
factors, compare the performance of BMA to standard 
logistic and Lasso regression, and describe how BMA 
results can be useful for designing targeted malaria 
intervention strategies.
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Methods
Site description
Data were collected from the Bunkpurugu-Yunyoo dis-
trict, Northern Region, which is in the Guinea savannah 
zone of northeastern Ghana and experiences recurring 
high levels of seasonal malaria transmission (Fig.  1). 
Two highly efficient malaria vectors predominate in this 
area, namely Anopheles gambiae sensu stricto (s.s.) and 
Anopheles funestus [42]. During the study period cover-
age of long-lasting insecticide-treated bed net (LLINs) 
was greater than 75%, having benefitted from two mass 
distribution campaigns in 2010 and 2012. Furthermore, 
annual IRS campaigns were conducted in 2011 and 2012 
using alphacypermethrin 0.4% WP (ICON®10CS, Syn-
genta, Basel Switzerland), with a second application of 
IRS provided in the dry season in the eastern portion of 
the district.

The district is composed of rural communities sup-
ported by small-scale farming and herding, and two 
modest urban centers: Bunkpurugu (population: 7436) 
and Nakpanduri (population: 5783). The major ethno-lin-
guistic groups are the Bimoba (approximately 60%) and 
Konkomba (approximately 30%) with smaller populations 
of Mamprusi, Kusasis, Dagombas, Fulanis and others. 
The Bimoba tend to predominate in the higher ground of 
the north and east portions of the district, including the 
two urban areas, while the Konkomba are more prevalent 
in the lower lying area of the south and west, where they 
graze their cattle in the riverine plains. The Konkomba, 
who tend to be a geographically and economically 

marginalized group across northern Ghana, are recog-
nized as more culturally conservative and in general tend 
to be less educated [43].

Data collection
The individual-level longitudinal dataset was collected 
in the course of operations research on IRS, which was 
conducted by the University of Ghana with the support 
of the President’s Malaria Initiative [44, 45]. The current 
study, which was carried out at the University of Flor-
ida in collaboration the University of Ghana, consisted 
fundamentally of enhancing that original dataset with 
remote-sensed variables and conducting follow-on analy-
ses to address a different set of research objectives.

Children between the ages of 6 to 59 months were sur-
veyed in six biannual surveys, three during the rainy sea-
son (late October to November) and three during the dry 
season (late March to April), from 2010 to 2013. A new 
representative sample was selected for each survey using 
a multi-stage randomized cluster sampling technique. 
Probability proportional to size estimates were used to 
randomly select representative communities based on 
a Ghana Health Service roster of communities in the 
district. This sample covered approximately 20% of the 
under-five population in each survey, based on 2010 cen-
sus data. Individuals under 6 months old were removed 
from this analysis to eliminate the influence of maternal 
immunity. Each survey was conducted over a 3-week 
period. Malaria status was assessed via blood-film 
microscopy. The survey also captured data on relevant 

Fig. 1  Map of study district, Bunkpurugu-Yunyoo, in northern Ghana (red polygon show in insert map). Interpolations depict malaria prevalence 
in young children (ages 6–59 months) in Bunkpurugu-Yunyoo, Ghana during the rainy and dry seasons in the left and right maps, respectively. Six 
biannual surveys were collected from 2010 to 2013 and pooled by season. Black circles denote the sampled communities and yellow stars denote 
local urban centers. Interpolations were made using inverse-distance weighted function in ArcGIS 10.3



Page 4 of 14Millar et al. Malar J  (2018) 17:343 

demographic, socioeconomic, and malaria intervention 
variables (Table  1), using a modified Malaria Indicator 
Survey questionnaire. GPS coordinates were recorded for 
a central point in each community center. The original 
dataset was enhanced by collecting additional informa-
tion on environmental variables using GIS software (Arc-
Map 10.4) and freely available remote sensing sources 
(Table  2). Childhood malaria prevalence in this district 
exhibited a high degree of spatial heterogeneity over the 
study period, in both the rainy and dry seasons (Fig. 1).

Correlations between all potential risk factors were cal-
culated, and in cases of high correlations (R2 > 0.49), a sin-
gle representative covariate was selected (see Additional 
file 1). Selection of these covariates was based on the rele-
vance of each covariate to malaria epidemiology and inter-
vention strategies. The covariates dropped from all models 
were farming caretakers, indoor residual spraying (IRS) in 
past 7 months, average daytime land surface temperature, 
normalized difference vegetation index (NDVI), cumula-
tive rainfall, and historical precipitation trends. Because 
BMA requires each individual to have information for all 
covariates, all individuals with at least one covariate with 
missing data were dropped from the analysis. As a conse-
quence, all analyses were based on 10,029 children (84.0% 
of total dataset). These data were distributed across 80 
communities in the first survey and 71 communities in 

each of the subsequent surveys. The number of individuals 
in each survey ranged from 1341 to 1788.

Statistical methods
Base model
All malaria risk models were constructed using the same 
general Bayesian framework. Let yijt be the binary micros-
copy outcome (1 = positive, 0 = negative) for individual i 
in community j at time t. This variable was modelled using 
a Bayesian probit regression model, assuming that:

In other words, individual i in community j at time t is 
positive for malaria only if zijt is greater than zero. This is 
determined by:

where xijt
T is a vector of the intercept and potential risk 

factors, and β is a vector with the corresponding regres-
sion parameters. Finally, the priors were specified as:

yijt = 1 if zijt > 0

yijt = 0 otherwise

zijt ∼ N
(

xTijtβ , 1
)

β ∼ N
(

0, σ 2Σ

)

Table 1  Potential risk or protective covariates collected from surveys

a  Removed from models due to high correlations (R2 ≥ 0.49) with one or more other variables
b  Based on targets from Roll Back Malaria

Variable Details

Demographic and socio-economic

 Age From 6 to 59 months old

 Caretaker’s education Binary variable; either (1) for high school education and above or (0) otherwise

 Caretaker’s age In years

 Ethnicity Four groups; (1) Bimoba, (2) Konkomba, (3) Mamprusi, and (4) Other, based on language of caretaker

 Farming caretakera Binary variable; either caretaker occupation being farming (1) or otherwise (0)

 Gender Binary variable; either male (1) or female (0)

 Surface water source Binary variable; either (1) source of drinking water from exposed surface water or (0) otherwise

 Thatch roofing Binary variable; either housing structure had a thatched roof (1) or otherwise (0)

 Wealth quintile Constructed from multiple variables, using the methodology of the Ghana Demographic Health Survey 
(2008) [80]

Malaria intervention

 Health insurance—personal Binary variable; either personal access to health insurance (1) or not (0)

 Health insurance—community Binary variable; either (1) for ≥ 80%b community coverage of sampled population or (0) otherwise

 IRS in past 7 monthsa Binary variable; either individual household having been treated with IRS in past 7 months (1) or not (0)

 IRS in past year Binary variable; either individual household having been treated with IRS in past year (1) or not (0)

 Indoor residual spraying (IRS)—community 
coverage

Binary variable; either (1) for ≥ 80%b community coverage or (0) otherwise

 Insecticide treated nets (ITN)—personal Binary variable; either (1) if net was used in previous night or (0) otherwise

 ITN—community coverage Binary variable; either (1) for ≥ 80b % community coverage or (0) otherwise

 Personal medication use Binary variable; either (1) used in the past 2 weeks or (0) otherwise
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where the matrix Σ in the prior for β is a diagonal matrix 
with diag(Σ) =

[

100 1 . . . 1
]

 . Similar Bayesian regres-
sion frameworks have been used in disease risk factors 
analyses, including for HIV and tuberculosis [46, 47], as 
well as malaria [48].

Complex models: seasonal differences and nonlinear 
associations
In addition to the general risk factor regression, extended 
versions of the base model were created by including 
additional derived covariates in order to describe com-
plex patterns. First, a model was constructed to evaluate 
whether the effect of risk factors differed between the dry 
and rainy seasons. For example, distance to the nearest 
health facility may be a strong risk factor in the rainy sea-
son but may be an irrelevant covariate during the dry sea-
son. This was modelled by including additional elements 
in the design vector xTijt representing the interaction of 
each covariate with the binary variable representing the 
rainy season. This model allows the parameter estimates 
for each covariate to vary by season. Risk or protective 
factors that vary substantially with season may suggest 
that different malaria intervention strategies could be 
required for each season.

Finally, this framework was used to describe potential 
nonlinear patterns in two relevant continuous variables, 
distance to nearest urban centre and distance to nearest 

σ ∼ Unif (0, 100)
health facility, through the use of linear splines. These 
variables were selected based on outcomes from the base 
model and their applicability towards design interven-
tions. The creation of linear splines consists of first a set 
of m values within the domain of the covariate x, referred 
to as knots k1, . . . , km . For which knot, a “new” derived 
covariate xd is created in the following way:

resulting in m additional derived variables for each 
splined covariate. Knot values were selected at the 20, 40, 
60 and 80% quantiles of the observed variables. Including 
these splines allows the effect of these variables to shift at 
the knot values, which can reveal nonlinear associations 
in the specified risk factors. Seasonal interaction terms 
were also included in this model, which allowed these 
nonlinear patterns to also differ in each season.

Bayesian model averaging
Each of the models discussed above can be fitted using 
a Markov chain Monte Carlo (MCMC) algorithm. Vari-
able selection was incorporated into this MCMC algo-
rithm by implementing a reversible jump MCMC [49]. 
The MCMC is initialized with a model containing a sub-
set of the possible covariates. At each iteration of the 
MCMC a new candidate model is proposed using a ran-
domly selected move; either a birth (addition of a new 

xd =

{

0, x < kd
x − kd , x ≥ kd

Table 2  Potential risk or protective covariates collected from remote sensing and GIS-based sources

a  Removed from models due to high correlations (R2 ≥ 0.49) with one or more other variables

Variable Source/satellite Details

Distance to health facility GIS-derived Euclidean distance from active health facility at time of 
survey (based on survey location)

Distance to main roads GIS-derived [81] Euclidean distance from major roads

Distance to urban centers GIS-derived Euclidean distance from center with population ≥ 5000 
individuals

Distance to water bodies GIS-derived [82] Euclidean distance from rivers and standing water bodies

Elevation CGIAR SRTM [83] Meters above sea level

Land surface temperature—daya NASA (Terra) MOD13A3 (Aqua) MYD13A3 [84] Average monthly daytime temperature (in degrees 
Celsius) 30 days prior to a survey

Land surface temperature—night NASA (Terra) MOD13A3 and (Aqua) MYD13A3 [84] Average monthly nighttime temperature (in degrees 
Celsius) 30 days prior to a survey

Normalized difference vegetative indexa NASA (Terra) MOD13A3 and (Aqua) MYD13A3 [85] The maximum monthly index 30 days prior to a survey

Population density WorldPop [86] Population density per 100 m grid, log-transformed

Population density (≤ 5 y.o.)a WorldPop [86] Population under 5 years of age density per 100 m grid, 
log-transformed

Rainfall (historical)a WorldClim [87] Average of the cumulative sum of precipitation from 3 to 
1 month prior to the survey date from past 50 years

Rainfall (current)a FEWSNET [88] Average of the cumulative sum of precipitation from 3 to 
1 month prior to survey

Slope GIS-derived (from elevation)
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covariate), death (removal of an included covariate), or 
swap (switching an included covariate with an excluded 
covariate). The candidate model is then either accepted 
or rejected based on the marginal log-likelihood. Inform-
ative covariates (and combination of covariates) will have 
a tendency to increase the marginal likelihood, and there-
fore tend to be retained in the selection process, while 
less informative covariates are more likely to be excluded.

The marginal probability associated with a particular 
model Mq, defined by the subset of covariates q, can be 
calculated in closed form after integrating out the associ-
ated regression parameters βq . This is given by:

where pq is the number of covariates in subset q, 
T
−1
q =

{

XT
q Xq +

1

σ 2�
−1
q

}

 and µq = TqX
T
q z.

The prior for each model were then set to 

p
(

Mq

)

∝

(

P
pq

)−1

(P + 1)−1 , where P is the overall 

number of covariates. In this expression, 
(

P
pq

)

 counts all 

the possible combinations of pq elements out of P and 1
P+1

 
is a discrete uniform distribution for all possible number 
of covariates 0, …, P.

As mentioned above, the algorithm explores model 
space by randomly proposing the birth of a new covariate 
or the death or swap of an existing covariate. These pro-
posed moves are then accepted or rejected using a stand-
ard Metropolis–Hastings acceptance ratio given by:

where R is typically equal to 1 and Mq∗ and Mq are the 
proposed and current models, respectively.

This approach was used to fit a customized Gibbs 
sampler (see Additional file 1) using R software (v3.3.1) 
[50]. Each model was run for 10,000 iterations with the 
first 1000 iterations dropped to account for the burn-
in period. Convergence on the parameter estimates 
was confirmed using trace plots. Similar to traditional 

p
(

Mq|z, σ
2
)

∝

∫

N
(

z|Xqβq , I
)

N

(

βq|0, σ
2�

)

dβq
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(

σ 2
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pq+1

2
exp
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−
1

2
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q T

−1
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Bayesian regression, the regression coefficient (β) for 
each covariate is estimated based on posterior draws 
and considered statistically significant if the 95% cred-
ible interval did not contain zero. Note that this is the 
“model averaging” component of BMA, as individual 
posterior samples are based on different parameter 
spaces. This allows for the uncertainty associated with 
variable selection to be incorporated into parameter 
estimation. More in-depth descriptions of this model 
and how it is fit are provided by Zhao et  al. [32] and 
Denison [51].

Out‑of‑sample predictions
As illustrated in the preceding sections, allowance for 
greater model flexibility can be achieved through the 
additional of several derived covariates and their associ-
ated parameters. Specifically, the base model contained 
29 covariates, adding interaction terms increased the 
number of covariates to 56, and adding linear splines 
expanded the model to include a total of 73 covariates. 
Increasing the number of parameters in a model can lead 
to overfitting, making variable selection an increasingly 
important task. To assess the out-of-sample performance 
of BMA, we performed predictions by training the model 
on data from a particular year and estimating malaria sta-
tus for a future year. Due to high seasonality in malaria 
risk in the district, only same-season predictions were 
considered (i.e. rainy season predictions were based on 
a rainy season training dataset). These predictions were 
compared to standard logistic regression, as well as least 
absolute shrinkage and selection operator (Lasso) regres-
sion. Lasso is an alternative method for variable selection 
which has been shown to improve out-of-sample predic-
tions [52]. To demonstrate how these models performed 
relative to the number of covariates, season-to-season 
predictions for the base model and the extended model 
which contained seasonal interactions and spline terms 
were performed. Out-of-sample predictive skill was eval-

uated based on the sum of the log likelihood, where the 
model with the largest log likelihood sum was considered 
to have the best predictive ability.

Results
Descriptive analysis
There was a slight decreasing trend in malaria preva-
lence over the course study, however the distribution 
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of seasonal community prevalence remained relatively 
consistent over the course of the study (see Additional 
file  1). Mean community prevalence (and interquartile 
ranges) in the three rainy season surveys were 0.57 (0.39–
0.75), 0.52 (0.33–0.73), and 0.46 (0.27–0.61), whereas 
in the three dry season surveys these values were 0.35 
(0.15–0.50), 0.31 (0.14–0.47), and 0.23 (0.10–0.33). The 
parasitaemia rate remained high during the final rainy 
season despite high coverage of ITNs and 2 years of IRS, 
highlighting the importance of devising complementary 
malaria control strategies based on the local risk factors.

Risk factor outcomes
Base model
The basic risk factor model with BMA variable selection 
detected that many expected, classic patterns of malaria 

risk factors are present amongst the early childhood 
populations in Bunkpurugu-Yunyoo (Fig. 2). The strong-
est risk factor associated with malaria infection was rainy 
season (mean regression coefficient equal to 0.647 with 
a credible interval (CI) of 0.565–0.728), as evident in 
the prevalence maps (Fig.  1). Age was also a significant 
risk factor (0.296, CI 0.268–0.324), as would be expected 
among young children (i.e. less than 5  years old) in an 
area of stable, holoendemic malaria. Among the distance 
measures, distance to nearest health facility (0.094, CI 
0.056–0.131) and urban centers (0.183, CI 0.137–0.229) 
were significant risk factors, whereas distance to near-
est road (0.014, CI 0.00–0.060) and water body (− 0.013, 
CI − 0.052 to 0.00) had little to no effect. The Konkomba 
communities experienced significantly higher malaria 
risk (0.233, CI 0.137–0.323), relative to the Bimoba, and 

Fig. 2  Mean slope estimates (circles) and 95% credible intervals (horizontal grey bars) from probit regression parameters. Variables whose credible 
intervals do not include zero are considered significant (labelled in bold). Risk factors (positive slopes) and protective factors (negative slopes) are 
shown in red and blue, respectively



Page 8 of 14Millar et al. Malar J  (2018) 17:343 

generally had a high mean prevalence overall. Note that 
this represents the risk associated with ethnicity are 
adjusting for other covariates in the model, such as edu-
cation, wealth, and elevation. Statistically significant pro-
tective factors were access to health insurance (− 0.463, 
CI − 0.530 to − 0.391) and mother’s education (− 0.220, 
CI − 0.300 to − 0.141). Elevation was a significant fac-
tor, however given the relatively narrow range in eleva-
tions (135–449 meters above sea level) this is likely a 
consequence of the two urban centers being in higher 
elevation, not because of high-altitude effects on local 
climate. IRS in the past year was also a significant protec-
tive factor (− 0.154, CI − 0.254 to − 0.050). The categori-
cal variables for wealth quintiles did not have statistically 
significant effects individually, however as a group these 
variables indicated that the lower wealth quintile groups 
(below median and well below median) were positively 
associated with malaria prevalence.

Seasonal differences
Modelling malaria risk with seasonal interaction terms 
(see Additional file  1 for regression coefficients) sug-
gested most risk factors did not exhibit prominent dif-
ferences between the rainy and the dry seasons, with 
a few notable exceptions. Age was an important risk 
factor for malaria in both seasons, however the slope 
estimate for this parameter was significantly lower in 
the rainy season than in the dry season, as illustrated 
in Fig.  3. These patterns suggest that while all ages 

experience higher malaria burden in the rainy season, 
children in the upper end of the observed age range 
(50–59  months old) experienced nearly the same pre-
dicted prevalence in the dry season as they did in the 
rainy season (Fig. 3). Another important finding refers 
to ethnicity. All ethnic groups experienced increased 
malaria burden in the rainy season, however predicted 
mean prevalence based on seasonal-ethnicity interac-
tion terms indicate that the increase in malaria preva-
lence during the rainy season was more intense for 
the Konkomba communities than for the other ethnic 
groups (Fig. 3). For example, the odds-ratio associated 
with the effect of Konkomba ethnicity compared to 
Bimoba ethnicity increased from 1.27 in the dry season 
to 1.60 in the rainy season. By comparison, the odds-
ratio associated with the effect of Mamprusi ethnicity 
compared to Bimoba ethnicity were 1.09 and 1.15 in the 
dry and rainy seasons, respectively. Other marginal dif-
ferences included health insurance, which was less sig-
nificant of a protective factor in the rainy season, and 
personal medication use, which was a moderate risk 
factor in the dry season but had relatively no influence 
in the rainy season (see Additional file 1).

Nonlinear associations
The final model containing linear spline covariates 
revealed interesting nonlinear associations between 
malaria prevalence and distance to nearest urban centre, 
and distance to nearest health facility (Fig.  4). Distance 

Fig. 3  Modelled patterns in malaria risk factors based on Bayesian probit regression containing seasonal interaction terms. The left panel depicts 
mean slope estimate (lines) and 95% credible intervals (polygons) for the predicted malaria prevalence based on age in the rainy and dry seasons. 
The right panel depicts the mean (points) and 95% credible intervals (vertical bars) for the predicted malaria prevalence based on ethnic group in 
the rainy and dry seasons
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to nearest urban centre was positively associated with 
malaria infection in a roughly linear pattern until about 
12–14  kilometres (km), after which malaria risk began 
to plateau. Similarly, the implied malaria risk was greater 
for communities that were further away from the near-
est health facilities, however there was a less steep rela-
tionship after approximately 2–4  km. These nonlinear 
patterns in malaria risk and proximity to urban centres 
and health facilities were consistent in the rainy and dry 
seasons.

Out‑of‑sample predictions
Based on the sum of the log-likelihood, BMA and Lasso 
regression both outperformed standard logistic regres-
sion for all predictions (Table  3). Both approaches 
improved the out-of-sample predications compared to 
standard logistic regression by shrinking the regres-
sion coefficient estimates towards zero (Fig.  5). A nota-
ble difference between these approaches is that BMA 
allows for near-zero parameter estimates, whereas Lasso 
will force marginal factors to zero. For the base set of 
covariates, BMA and Lasso had similar likelihood val-
ues, however BMA had higher likelihood values for all 
predictions based on the extended set of covariates, 
which included seasonal interactions and linear splines. 
In particular, note that the out-of-sample predictive skill 
of BMA increased slightly for the extended model rela-
tive to the base model whereas the predictive skill of the 
logistic regression model and the Lasso often (or always) 
decreased when comparing these models. These results 

suggest that BMA is noticeably more resistant to overfit-
ting than Lasso or logistic regression as the number of 
parameters is substantially increased.

Fig. 4  Implied patterns in malaria prevalence and distance to urban center (left) and distance to health facility (right) based on Bayesian 
probit regression model containing linear splines and seasonal interactions. Results for the rainy and dry seasons are shown in blue and yellow, 
respectively. The open circles depict where slopes are allowed to change (i.e., knot locations), selected at 20% quantiles of the observed data

Table 3  Predictive comparisons of  models based 
on the sum of the log-likelihood

BMA Bayesian model average
a  p refers to the number of covariates in the model
b  Indicates the model with the best fit

Training Testing Sum of log-likelihood

Logistic Lasso BMA

Base model (p = 29)a

 Rainy 2010 Rainy 2011 − 1072.27 − 1049.24 − 1028.24b

 Rainy 2011 Rainy 2012 − 1055.39 − 1037.49 − 1032.57b

 Rainy 2010 Rainy 2012 − 1153.62 − 1110.05 − 1057.07b

 Dry 2011 Dry 2012 − 969.88 − 919.45b − 921.54

 Dry 2012 Dry 2013 − 915.95 − 897.03b − 903.60

 Dry 2011 Dry 2013 − 967.83 − 920.28 − 915.81b

Average − 1022.49 − 988.92 − 976.47

Model with interactions and splines (p = 73)a

 Rainy 2010 Rainy 2011 − 1079.63 − 1042.02 − 1027.85b

 Rainy 2011 Rainy 2012 − 1066.56 − 1035.44 − 1030.75b

 Rainy 2010 Rainy 2012 − 1156.76 − 1092.52 − 1050.55b

 Dry 2011 Dry 2012 − 1065.27 − 1029.66 − 921.05b

 Dry 2012 Dry 2013 − 922.40 − 902.79 − 902.32b

 Dry 2011 Dry 2013 − 1079.34 − 1059.24 − 917.82b

Average − 1061.66 − 1026.95 − 975.06
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Discussion
Methodological findings
These findings lend strong support for the usefulness 
of Bayesian model averaging (BMA) as a statistical tool 
for detecting complex patterns in malaria risk factors. 
In order to promote reproducibility of these methods 
and findings, the code used to run this analysis has been 
provided in Additional file  1 and have placed the data 
and R scripts in a public repository (see “Availability of 
data and materials” section), and note that packages for 
similar model selection and averaging approaches using 
OpenBUGS and R are available [53, 54]. Moreover, BMA 
in this context demonstrated similar advantages over 
standard variable selection procedures found in simula-
tion studies [30–32], and studies in other ecological con-
texts [32–37, 55], including epidemiological risk analysis 
[38, 39]. Unlike standard logistic and Lasso regression, 
increasing model complexity by including several addi-
tional covariates did not reduce the out-of-sample pre-
dictive performance when using BMA. Importantly, 
constructing confidence intervals for Lasso regression 
coefficients continues to be an ongoing area of research 
[56–58], whereas characterizing uncertainty via cred-
ible intervals in the Bayesian framework is straightfor-
ward. Credible intervals are also often a better approach 
for comparing the strength of associations when com-
pared to other traditional metrics, such as p-values [59]. 
Reversible jump MCMC tends to be computational effi-
cient and effective, and by integrating out the regression 
coefficients this Gibbs sampler avoided issues associated 

with poor mixing of chains that often plague these other 
variable selection approaches [32, 53]. Machine learn-
ing techniques, such as artificial neural networks and 
support vector machines, can also detect nonlinear and 
other relationships and often have better predictive 
performance than standard logistic regression, but it 
is typically difficult to make direct inferences about the 
role of individual covariates using these techniques [60]. 
BMA may be useful for specific applications to model-
ling malaria risk factors where both interpretability and 
predictive ability are important (such as designing locally 
targeted interventions).

The trade-off between interpretability and predictive 
skill, spatial and temporal scope, data accessibility, and 
computational limitations are important factors to con-
sider when choosing a variable selection procedure. For 
example, Weiss et al. [23] describes an exhaustive analy-
sis of variable selection for identifying environmental fac-
tors associated with Plasmodium falciparum prevalence 
across sub-Saharan Africa, containing over 50 million 
covariates. They then used a series of selection phases 
based on Akaike information criteria (AIC) to reduce the 
number of covariates. This procedure was able to distill a 
parameter space that would be computational impossible 
to explore using BMA, however it lacks interpretability 
and does not account for uncertainty in the selection pro-
cess. These tradeoffs may not be significant for prediction 
applications, but are critical for the analysis in this study 
to appropriately generate inference on the significance of 
different predictor variables.

Fig. 5  Regression parameter estimates using BMA (black), logistic regression (red), and Lasso regression (gray) models containing interactions terms 
and spline covariates (73 independent variables). Parameter estimates were ordered according to the logistic regression results to better illustrate 
the shrinkage of coefficients associated with the BMA and Lasso algorithms
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Inferences on malaria risk factors and control strategies
Another area for further analysis is utilizing the model 
interpretability characteristics of this framework for 
informing management applications. The BMA-based 
analysis described well-established patterns in malaria 
aetiology across sub-Saharan Africa, including the strong 
seasonal patterns in malaria transmission [40, 41] and 
age-related prevalence patterns [61]. Protective factors 
identified in our models, including access to health insur-
ance and mother’s education, have also been described as 
important factors in similar settings [62, 63]. In addition 
to validating these data and the methodology, these find-
ings may provide insight for guiding local intervention 
and control strategies. For instance, the protective effect 
of personal health insurance coverage, which was detect-
able in one of Ghana’s more remote corners, underscores 
the value of Ghana’s pioneering effort to institute and 
scale up a national health insurance scheme since 2006 
[64].

The capacity to increase model complexity without 
sacrificing predictive performance is an important mod-
elling characteristic, particularly when inference is used 
to inform management strategies [65]. The inclusion of 
seasonal interaction terms revealed seasonal differences 
in age- and ethnicity-related risk that may be useful for 
designing seasonal chemoprophylaxis interventions, 
which can be extremely effective method for reduc-
ing cost and maximizing impact depending on the local 
malaria dynamics [66–69]. The linear spline covariates 
allowed the model to describe the nonlinear protective 
buffer provided by the modest urban centers. The link 
between urbanicity and malaria transmission has been 
extensively discussed in the literature [70–73], but under-
standing the relative impact modest urban centers can 
have on health outcomes in rural regions can be challeng-
ing [74], particularly at small spatial scales. The revealed 
nonlinear relationship between malaria risk and distance 
to urban centers suggested that the risk associated with 
living far from the urban center eventually reaches a pla-
teau around 12  km in Bunkpurugu-Yunyoo. This is an 
interesting finding considering that the increased hous-
ing density, reduced non-polluted water resources, and 
other urban characteristics resolved about 2–3 km from 
the centers of the towns, based on field observation and 
satellite imagery. In addition, IRS coverage was universal 
across the district and ITN use was the same or higher 
at the more remote locations. This implies that ecological 
and entomological factors are less likely to be driving this 
phenomenon, suggesting that socio-economic factors 
may be important.

Furthermore, this framework may be useful for project-
ing the impact of future management efforts. For exam-
ple, the association between malaria risk and distance 

to nearest health facility became less pronounced after 
about 2–4 km. Comparable rate stabilization patterns at 
similar distances have been described in health facilities 
in rural regions of Kenya [75]. Distance to nearest health 
facility is known to be an important factor in treatment-
seeking behaviour and health outcomes [76–78]. Access 
to healthcare is a guiding management principle in 
Ghana, as demonstrated by the expansion of access to 
health insurance and revitalization of the Community-
Based Health Planning and Services (CHPS) programme. 
Future work with these data will build upon these find-
ings to describe the impact of CHPS facilities on early 
childhood malaria in Bunkpurungu-Yunyoo, as well as 
project the potential impact of new CHPS facilities and 
optimize their locations.

Bayesian model selection approaches, like BMA, are 
likely to find its greatest value in forecasting applications, 
in which model interpretability, predictive performance, 
and uncertainty characterization are equally valued. 
Bayesian frameworks often require a deeper understand-
ing in statistical theory and programming, can be com-
putationally intensive, and may lack accessible tools/
software, but offer many advantages for modelling epi-
demiological data, including high flexibility and intuitive 
expressions of inference and uncertainty [79]. Based on 
background literature review, this appears to be the first 
instance of using BMA for variable selection to model 
malaria risk factors. This methodology offers a flexible 
framework with many advantages over other methods for 
modelling disease risk factors.

Limitations
From a methodological perspective, the outcomes from 
this study provide promising support for BMA as a use-
ful statistical tool for modelling highly dimensional data 
on malaria risk factors, however there are notable limi-
tations. The analysis uses a single data set, and therefore 
further efforts are needed to corroborate these find-
ings. It may be that at certain dimensionalities BMA 
less effective than the other methods tested in this arti-
cle, and therefore this analyses should be applied to 
other data sets, particularly at different spatio-temporal 
scales. Other comparison criteria (such as area under the 
receiver operating curve) or other tests (such as cross-
validation) could also be used to compare predictive per-
formance. From an epidemiological perspective, while 
this study incorporates many potential risks for malaria 
there are additional variables that are not included. Most 
notably these data do not include vector-related vari-
ables. The data are also limited by the periodicity of sam-
pling time (seasonal), rather than a continuous sampling 
approach.
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Conclusion
The BMA approach for variable selection produced easily 
interpretable models, which incorporate selection uncer-
tainty and outperformed standard logistic and Lasso 
regressions in out-of-sample predictions. The risk factor 
models for malaria prevalence  in young children from a 
holoendemic district in northern Ghana experiencing 
residual transmission revealed complex patterns of dis-
ease drivers, including nonlinear relationships between 
malaria status and distance from the nearest urban cen-
tre and health facility, as well as seasonal differences in 
risk associated with age and ethnicity. Models quickly 
become increasingly more complex with additional 
explanatory variables (and their associated parameters) 
to increase flexibility, underscoring the need for reli-
able methods for model selection. Bayesian approaches 
for variable selection, such as BMA, for identifying and 
describing risk factor have potential for expanding the 
understanding of local drivers of disease, leading to more 
efficient targeting and prioritization of existing interven-
tions, and informing new interventions, for malaria and 
other vector-borne diseases.

Additional file

Additional file 1. Contains descriptive statistics on covariates, code for 
running the Gibbs sampler, and additional model outputs.
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