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Abstract 

Background: Spatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate 
priority areas to reorient intervention approaches and investments in malaria endemic countries. Here, the analysis of 
36 years data on Plasmodium falciparum prevalence is used to understand the past and chart a future for malaria con-
trol in Kenya by confidently highlighting areas within important policy relevant thresholds to allow either the revision 
of malaria strategies to those that support pre-elimination or those that require additional control efforts.

Methods: Plasmodium falciparum parasite prevalence (PfPR) surveys undertaken in Kenya between 1980 and 2015 
were assembled. A spatio-temporal geostatistical model was fitted to predict annual malaria risk for children aged 
2–10 years (PfPR2–10) at 1 × 1 km spatial resolution from 1990 to 2015. Changing PfPR2–10 was compared against plau-
sible explanatory variables. The fitted model was used to categorize areas with varying degrees of prediction probabil-
ity for two important policy thresholds PfPR2–10 < 1% (non-exceedance probability) or ≥ 30% (exceedance probability).

Results: 5020 surveys at 3701 communities were assembled. Nationally, there was an 88% reduction in the mean 
modelled PfPR2–10 from 21.2% (ICR: 13.8–32.1%) in 1990 to 2.6% (ICR: 1.8–3.9%) in 2015. The most significant decline 
began in 2003. Declining prevalence was not equal across the country and did not directly coincide with scaled vec-
tor control coverage or changing therapeutics. Over the period 2013–2015, of Kenya’s 47 counties, 23 had an average 
PfPR2–10 of < 1%; four counties remained ≥ 30%. Using a metric of 80% probability, 8.5% of Kenya’s 2015 population 
live in areas with PfPR2–10 ≥ 30%; while 61% live in areas where PfPR2–10 is < 1%.

Conclusions: Kenya has made substantial progress in reducing the prevalence of malaria over the last 26 years. Areas 
today confidently and consistently with < 1% prevalence require a revised approach to control and a possible consid-
eration of strategies that support pre-elimination. Conversely, there remains several intractable areas where current 
levels and approaches to control might be inadequate. The modelling approaches presented here allow the Ministry 
of Health opportunities to consider data-driven model certainty in defining their future spatial targeting of resources.
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Background
Variations in the intensity of malaria transmission in 
countries requires tailoring of interventions appropri-
ate to the corresponding level of transmission. The 
World Health Organization Global technical strategy for 
malaria 2016–2030 [1] requires National Malaria Con-
trol Programmes (NMCPs) to stratify their sub-national 
malaria burden based on the analysis of past and contem-
porary malaria data, risk factors and the environment. 
Cartographies of malaria risk obtained through novel 
and robust approaches are, therefore, required to assess 
the impact of control and identify areas where targeted 
malaria control strategies require adaptation to maximize 
future impact [2].

Malaria risk mapping in Kenya is not new. Maps of 
malaria risk were developed as early as the 1950s based 
on the length of the presumed malaria season [3]. In 
the 1970s, topography, climate, and approximations of 
spleen rates in children were used to classify Kenya into 
different endemic zones [4]. Twenty years later climate 
and empirical Plasmodium falciparum survey data were 
used to provide an updated cartography [5, 6]. The first 
attempt to apply the principles of model based geostatis-
tics (MBG) to malaria prevalence survey data from Kenya 
between 1975 and 2009, at 2095 unique locations was 
undertaken to provide a risk map for the year 2009 [7]. 
This map was used to define Kenya’s unmet needs for vec-
tor control [8], future strategic planning [9] and funding 
[10] from 2010. This proved to be a milestone example 
of how applications of MBG can influence health policy 
planning and value for money allocation of resources to 
areas most in need.

However, harnessing the full value of information 
on malaria prevalence in time and space to provide an 
understanding of the fine temporal and spatial resolu-
tion changes in malaria risk at national or sub-national 
scales and provision of probability metrics for important 
programmatic policy relevant thresholds has not been 
attempted. Such approaches are often limited by a pau-
city of input data over time; Kenya however, is a country 

with a rich history of malaria surveys and provides a 
unique opportunity to explore patterns of malaria ende-
micity since 1990. Spatio-temporal methods were applied 
to understand the changing landscape of malaria trans-
mission in Kenya since 1990 and used the statistical cer-
tainty in these models to provide insights into the future 
investments in control during an era of maximizing value 
for money.

For the first time in Kenya, a MBG framework was used 
to provide statistical certainty to identify areas that repre-
sent policy relevant thresholds, allowing the government 
to make informed choices on a more efficient future con-
trol strategy.

Methods
Kenya context
The Republic of Kenya covers 591,971 km2 and lies on the 
equator across the great East African Rift Valley, extend-
ing from Lake Victoria to Lake Turkana and further 
south-east to the Indian Ocean (Fig. 1). The country has 
a diverse ecosystem and climate ranging from seasonal 
tropical coastal systems along the Indian Ocean to arid 
desert areas in the North and North-East, perennially hot 
and humid conditions around Lake Victoria and high-
land and mountain ranges including Mount Kenya (5199 
MASL). This diversity in landscape, and the 40,487 km2 
of national parks and conservation areas, govern the dis-
tribution of human settlement [11] (Fig.  1). In August 
2010, Kenya adopted a new constitution, which decen-
tralized policy setting and financing, including health, to 
47 county governments (Fig. 1), with broad policy direc-
tions maintained at a federal level [12]. This decentralized 
system was formally introduced following the national 
election in March 2013 [13].

Assembly of Plasmodium falciparum prevalence surveys
A detailed description of the assembly of a database 
of malaria surveys carried between January 1980 and 
December 2015 in Kenya is presented elsewhere [7, 15]. 
These included systematic reviews of published data 

(See figure on next page.)
Fig. 1 Kenya’s counties and populated malaria risk margins: 47 counties shown as dark lines with the extents of major rivers and lakes (light blue); 
areas unable to support Plasmodium falciparum transmission (dark grey) and low population density (light grey). Turkana (1), West Pokot (2), Trans 
Nzoia (3), Bungoma (4), Busia (5), Kakamega (6), Siaya (7), Kisumu (8), Homa Bay (9), Migori (10), Kisii (11), Narok (12), Bomet (13), Nyamira (14), 
Kericho (15), Vihiga (16), Nandi (17), Uasin Gishu (18), Elgeyo Marakwet (19), Baringo (20), Nakuru (21), Nyandarua (22), Laikipia (23), Nyeri (24), 
Murang’a (25), Kiambu (26), Nairobi (27), Kajiado (28), Makueni (29), Machakos (30), Embu (31), Kirinyaga (32), Tharaka Nithi (33), Meru (34), 
Samburu (35), Isiolo (36), Marsabit (37), Mandera (38), Wajir (39), Garissa (40), Lamu (41), Tana River (42), Kitui (43), Taita Taveta (44), Kwale (45), Kilifi 
(46), Mombasa (47). To establish the likely margins of malaria transmission, a temperature suitability index (TSI) has been used based on the monthly 
average land surface temperatures, the average survival of Anopheles mosquitoes and the length of sporogony that must be completed within 
the lifetime of one Anopheline generation, where 0 represents the inability to support transmission (dark grey) [14]. Kenya’s population is unevenly 
distributed within its national borders, with large areas of its land mass characterized by unpopulated areas represented by large conservation areas 
and deserts. Areas where population density is less than 1 person per  km2 (light grey) [11] (Fig. 1)  were excluded from subsequent malaria risk 
extraction
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using free text keyword searches “malaria” and “Kenya”; 
searches of national ministry of health archives in Nairobi 
and other major centres; reviews of post-graduate theses 
at three major universities; school-based surveys under-
taken to support the NMCP 2009–2011 [16]; national 

household sample surveys for nutrition or malaria in 
1994, 1999, 2007, 2009/2010 and 2015; and personal 
communications with the extensive malaria research 
community in Kenya. The generosity of the local research 
community in sharing unpublished data makes Kenya’s 
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malaria prevalence survey repository one of the richest in 
sub-Saharan Africa [15] (see “Acknowledgments”).

For each survey, details were extracted on the start and 
end of survey dates (month and year), age ranges (lowest 
and highest), sample size, numbers reported positive for 
P. falciparum infection, methods used to detect the infec-
tion and every location detail provided in the original 
source including the name, administrative unit, and coor-
dinates, where available. Data were classified as points if 
they were individual villages, communities, schools or a 
collection of communities and covered an area of at most 
5  km2. Areas covering > 5  km2 were classified as wide-
areas. Global positioning systems (GPS) cluster coordi-
nates collected during sample household surveys were 
used to re-aggregate household survey data, to increase 
the sampling precision by combining clusters of small 
sample sizes, while maintaining the 5 km2 criteria.

To provide a precise longitude and latitude where coor-
dinates were not available, a variety of methods were used 
including reported GPS coordinates, other national digi-
tal gazetteers of populated places (cities, towns, villages), 
schools and health facilities [17–19]. All coordinates were 
checked using Google Earth (Google, 2009) to ensure that 
the geolocated points, were within the respective administra-
tive boundaries of their originating source, were located on 
populated areas and/or settlements and not on water bodies.

Geostatistical analysis
A geostatistical modelling framework [20–22] was used 
to map P. falciparum prevalence across Kenya between 
1990 and 2015. More specifically, let S(x, t) denote the 
random effects used to account for unmeasured spa-
tio-temporal risk factors for malaria and let Z(x, t) be 
unstructured random effects accounting for the unex-
plained variation within communities. Conditionally 
on S(x, t) and Z(x, t), the counts of positive tests for P. 
falciparum were assumed to follow mutually independ-
ent binomial distributions with number of trials N, cor-
responding to number of sampled individuals, and 
probability of a positive outcome p(x, t) at location x 
(3701) and year t (1990–2015) given by

where mAand MA are the minimum and maximum age 
among the sampled individuals at a location x. In carry-
ing the spatio-temporal predictions, mAand MA were 
set to 2 and 10 to standardize to a single age range of 
2–10  years (PfPR2–10) conventionally used for malaria 
risk mapping [23, 24].

The spatio-temporal random effects S(x, t) were mod-
elled as a stationary and isotropic Gaussian process with 
spatio-temporal correlation function given by

log

{

p(x, t)

1−p(x, t)

}

= α + βmA+ γMA+ S(x, t)+ Z(x, t)

where φ and ψ are scale parameters which regulate the 
rate of decay of the spatial and temporal correlation for 
increasing distance and time separation, respectively; 
||x − x′|| is the distance in space between the loca-
tions of two communities, one at x and the other at x′; 
finally, |t − t′| is the time separation in years between two 
surveys.

The model parameters were estimated using Monte 
Carlo maximum likelihood implemented in the Prev-
Map package [25] in the R software environment (version 
3.4.1). Estimates and corresponding standard errors for 
PfPR2–10 were obtained from the fitted model over a 1 by 
1 km regular grid covering the whole of Kenya, for every 
year between 1990 and 2015, exported and mapped using 
ArcMap 10.5 (ESRI Inc., Redlands, CA, USA). Predic-
tions to each of the 312 months since January 1990 have 
not been attempted as there was insufficient monthly-
gridded data to allow for such analysis.

Model validation
The fitted spatio-temporal correlation function was vali-
dated using the following variogram-based algorithm 
using R software environment (version 3.4.1): (Step 1) 
simulate 1000 data-sets under the fitted model; (Step 2) 
for each simulated data-set, compute a variogram using 
the residuals from a non-spatial logit-linear model (i.e. by 
setting S(x, t)= 0 for all x and t); (Step 3) compute the 95% 
confidence interval using the resulting 1000 variograms 
at a predefined set of spatial distances and time separa-
tions; (Step 4) compute the variogram using the residu-
als from a non-spatial logit-linear model as done in step 
2 but using the original data and if this falls within 95% 
envelope from (Step 3), then, the adopted spatio-tempo-
ral correlation was compatible with the community para-
site survey data.

Cross-validation was also undertaken by holding out 
a 10% random sample of the survey data points selected 
between 1990 and 2015 to assess the predictive perfor-
mance of the model. The following were computed: the 
correlation between observed and predicted PfPR2–10 
values, bias (mean error) representing the mean differ-
ence between the observed and predicted values, and 
the mean absolute error (MAE) representing the aver-
age magnitude of the errors of the absolute differences 
between the predictions and actual the observations [26].

Plausibility analysis of trends
Malaria prevention and disease management milestones 
since 1990 in Kenya were defined by the literature, pre-
vious reviews [27–30] and major climate anomalies 
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[31–33]. In totality, the combination of these factors 
might explain the changes in parasite prevalence and 
formed the basis of a plausibility framework [15, 34] to 
understand the national, annualized cycles of changing 
PfPR2–10 between 1990 and 2015.

Malaria policy relevant criteria for sub‑national resource 
allocation and future priorities
Given the importance of county level government 
resource allocation for malaria, mean annual county level 
estimates of PfPR2–10 were calculated by averaging the 
1 × 1 km predictions among populated areas per county 
for the three most recent years of survey data, 2013–
2015. Areas that were represented as temperature unsuit-
able for P. falciparum transmission were assigned values 
of 0% PfPR2–10 [14].

Certainty of model predictions forms an important 
metric for NMCPs by justifying decisions on sustained, 
or changing control intervention policy. MBG allows 
for the quantification of uncertainty, which might arise 
from inadequate survey input data (suggesting further 
sampling needs) and inherent variability in small area 
prediction. Classifying areas into different endemic lev-
els purely based on predicted PfPR2–10 may lead to policy 
decisions that do not allow for the certainty of the PfPR2–

10 predictions [21]. Future decisions related to the choice 
malaria control should be based on the probability (likeli-
hood) of an area having PfPR2–10 below or above certain 
policy relevant thresholds. The choice of these thresholds 
should be guided by reduction targets set by the global 
community, malaria epidemiology, and local goals for the 
country of interest.

There are no formal international guidelines to coun-
tries on how thresholds of malaria risk might inform a 
stratified intervention response. Here, two policy rel-
evance thresholds have been selected that might serve 
as valuable criteria within the Kenyan context. Areas 
with sustained low malaria prevalence where preva-
lence lies below 1% (non-exceedance probability-NEP) 
as an indication of pre-elimination [35], that is a transi-
tion phase which entails reorientation of malaria control 
programmes between sustained control and elimination 
stages [36]. Additionally, areas where prevalence is above 
30% (exceedance probability-EP) were categorized. These 
mid mesoendemic areas [23] are likely to continue to yield 
the highest malaria burdens in the country [37] and for 
which intensive and sustained vector control is required.

The fitted spatio-temporal model was used to compute 
the probability that an area has PfPR2–10 < 1% (NEP), and 
probability that an area has a PfPR2–10 ≥ 30% (EP) across 
the study period and summarized for the three most recent 
consecutive years (2013–2015), formally expressed as

where l is the prevalence threshold. A NEP close to 100% 
indicates that PfPR2–10 is highly likely to be below the 
threshold l; if close to 0%, PfPR2–10, is highly likely to be 
above the threshold l; if close to 50%, PfPR2–10, is equally 
likely to be above or below the threshold l, hence cor-
responding to a high level of uncertainty. Areas likely to 
have a prevalence of ≥ 30% were defined by setting l at 
30% in the preceding equation and calculating EP as

Results
Spatial–temporal mean PfPR2–10 predictions 1990–2015
The final survey data was represented by 5020 surveys 
within 5 km2 at 3701 unique locations covering malaria 
parasite examinations of over 578,281 blood samples, 
between 1980 and 2015 (see Additional files 1, 2 and 3). 
These were used in the spatio-temporal model to gener-
ate the 1 × 1  km grids of mean posterior predictions of 
PfPR2–10 1990–2015 (Fig.  2) and summed across popu-
lated areas able to support malaria transmission for 
each year (Fig.  3). The results of testing the validity of 
the adopted spatio-temporal structure, showed that the 
empirical semi-variogram was within the 95% tolerance 
intervals (Additional file  4), thus the malaria parasite 
prevalence data does not show evidence against the fit-
ted spatio-temporal geostatistical model. For each year 
and 1 × 1 km grid, the predicted standard errors are pro-
vided in Additional file 5. The predictive performance of 
the model, based on a sample of 502 validation surveys 
showed a high correlation between observed and pre-
dicted values of 0.86, a MAE of 7.7% and a bias of only 
0.4% (Additional file  6). The model parameters are pre-
sented in Additional file 7: Table S1. 

The diversity of PfPR2–10 predictions across the coun-
try is evident from 1990 to 2015 (Fig. 2), reflecting the 
heterogeneity of transmission typical of Kenya, with 
high transmission associated with areas surrounding 
Lake Victoria and the Indian Ocean coastline. The high-
est predicted values of PfPR2–10 were recorded in 2003 
(92.5%) in Butula, Siaya county and Kinango, Kwale 
county; and the lowest values outside of areas unable to 
support transmission located in Tarbaja, Wajir county 
in 2011 (0.01%) (Fig. 2).

Using 1990 as a baseline, the national mean PfPR2–

10 reduced by 87.7% over a period of 26  years from 
21.2% (Interquartile credibility range 2.5–97.5% (ICR): 
13.8–32.1%) in 1990 to 2.6% (ICR 1.8–3.9%) in 2015 
(Fig. 3). During the period 1990 and 1998, the national 
mean PfPR2–10 remained largely constant (21.2%; ICR 
13.8–32.1% to 21.9%; ICR 14.1–32.1%), declining 

NEP = Prob
(

Pf PR2−10(x, t) < l|Data
)

EP = (1-NEP)
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slightly between 1998 and 1999, then continued at 
this level until 2003. The largest decline (81%) in the 
national mean PfPR2–10 occurred between 2003 (17.1%; 
ICR 11.7–24.9%) and 2007 (3.2%; ICR 2.1–5.1%) and 
remained generally low thereafter. PfPR2–10 slightly rose 
slowly from 2011 to 2014, following which it declined 
again in 2015 reaching the lowest national mean PfPR2–

10 of 2.6% (ICR 1.8–3.9%) recorded during the 26-year 
period of observation (Fig. 3).

The two periods of high national mean PfPR2–10 (1990–
2003) coincided with poor population coverage of vector 
control [27], failing chloroquine (CQ) efficacy, subse-
quent replacement with the long half-life, single dose 
sulfadoxine-pyrimethamine (SP) and its rapid increase in 
treatment failure rates [28, 29, 38, 39]. Interestingly, the 
period of greatest decline in PfPR2–10 occurred during a 
period of continued use of SP, relatively poor population 
coverage of insecticide treated bed nets delivered on a 
subsidized cost-recovery basis [27] and before significant 

expansion of indoor residual house-spraying (IRS) in 
selected counties [30]. In 2006, the decision to replace 
SP with artemisinin based combination therapy (ACT), 
made in 2004, started being implemented [29], during 
the same year the first mass-distribution campaigns of 
free long-lasting insecticide-treated nets (LLIN) began 
and significantly increased coverage [27] and IRS began 
in 12 counties [30] (Fig.  3). Improved coverage of vec-
tor control and effective treatments for uncomplicated 
malaria continued through to 2015, however IRS was 
suspended in 2013, which may have resulted in the rise 
in PfPR2–10 during 2014, but does not alone explain the 
subsequent decline in 2015 and the slight rise in PfPR2–10 
prior to IRS suspension (Fig. 3). Kenya has been charac-
terized by periods of drought since 1990, however these 
have become more frequent since 2008 [32, 33] (Fig. 3). 
The El Niño rains which led to serious epidemics nation-
wide in 1997/1998 [31] occurred during periods of esca-
lating CQ resistance and were associated with the highest 

Fig. 2 Annual predicted posterior mean community Plasmodium falciparum parasite rate standardized to the age group 2–10 years (PfPR2–10) at 
1 × 1 km spatial resolution from 1990 to 2015 ranging from zero (dark blue) to 93% in 2003 (dark red) in Kenya. The corresponding standard errors 
are provided in the Additional file 5
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period levels of PfPR2–10 during the 1990s and early 2000s 
(Fig. 3).

The declining PfPR2–10 since 2003 was not equal eve-
rywhere (Fig.  2). Areas around Lake Victoria and the 
southern Indian Ocean coastline, whilst shrinking in spa-
tial extents of high PfPR2–10 since 1990 remained high 
through to 2015 (Fig.  2). Conversely, areas where start-
ing transmission intensity during the 1990s was lowest 
(PfPR2–10: 9–14%), in the semi-arid North Eastern and 
central regions, have declined dramatically, to very low 
levels (< 1%) after 2006 (Fig. 2).

Mapping areas of low and high transmission using policy 
relevant thresholds
The current averaged risks of malaria in Kenya, 2013–
2015 are represented by county in Fig.  4. Twenty-
three (23) counties had mean predicted PfPR2–10 of 

< 1% covering Central (Kiambu, Kirinyaga, Muranga, 
Nyandarua and Nyeri) and North Eastern (Garissa, Man-
dera and Wajir) regions wholly and partially in Eastern 
(Embu, Isiolo, Kitui, Machakos, Makueni, Meru and 
Tharaka Nithi), Rift Valley (Bomet, Elgeyo Marakwet, 
Kajiado, Laikipia, Nakuru, Samburu and Uasin Gishu) 
and Coastal (Lamu) region encompassing 44.3% (20.1 
million) of Kenya’s 2015 population (Fig. 4).

In the 1990s, counties around the shores of Lake Vic-
toria and the South Coast along the Indian Ocean had 
PfPR2–10 values greater than 50% (hyper-holoendemic). 
Over the 26  years, reductions in prevalence were 
observed in these areas and by 2013–2015 no counties 
were classified as hyper-holoendemic. However, declin-
ing PfPR2–10 was less marked over the 26 years of obser-
vation in these counties compared to countries, which 
started at lower transmission intensity. Four counties 

Fig. 3 The national annual mean (black line), 2.5–97.5% (light green boundaries) interquartile credibility range (ICR) and 25–75% ICR (dark green 
boundaries) of the posterior PfPR2–10 predictions in Kenya from 1990 to 2015. Unsuitable areas for malaria transmission and those with very low 
population were excluded in the computation of mean PfPR2–10 and ICR. Major malaria timelines are shown in bottom panel. Blue boxes represent 
changing first line anti-malarial treatment and diagnostic policies using malaria rapid diagnostic tests (mRDT). Green boxes represent changing 
approaches to the delivery of insecticide-treated nets (ITN) through to the provision of free-of-charge of long-lasting insecticide-treated nets (LLIN) 
during mass campaigns in 2006, 2008, 2011/12, 2014 and 2015 alongside sustained routine delivery to infants and pregnant mothers at clinics. 
Indoor Residual Spraying (IRS), ( yellow boxes), has been targeted to different counties since 2006 starting in focal areas of 12 counties, by 2010/11 
expanding to 16 epidemic prone and 4 endemic counties, and stopped in 2013. Peach colored boxes represent periods of drought while red 
represents excessive El Niño rainfall, all classified as national disasters
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(Migori, Homa Bay, Siaya and Busia) had an averaged 
mean PfPR2–10 of ≥ 30% between 2013 and 2015 (Fig. 4).

The probability of the PfPR2–10 predictions in meet-
ing prevalence thresholds that are relevant for pol-
icy were generated for < 1% (NEPs) and ≥ 30% (EP) 
(Fig.  5). The maximal extents where prevalence is 
< 1% with ≥ 90% probability, stretches across Central, 

Eastern through to North-Eastern regions of Kenya 
between 2013 and 2015, with a slight increase in the 
outer margins at a less stringent probability of 80% 
(Fig. 5). Areas in the counties of Kilifi, Kwale, Migori, 
Homa Bay, Kisumu, Siaya, Kakamega, Vihiga, and 
Busia were likely to have a prevalence ≥ 30% at > 80% 
or > 90% probability levels (Fig. 5).

Fig. 4 Annual county level average mean PfPR2–10 values in populated areas 2013–2015 classified as < 1%, 1–4%, 5–9%, 10–29%, ≥ 30%



Page 9 of 13Macharia et al. Malar J  (2018) 17:340 

Discussion
The work presented here is an extension of the 2009 
map [7], incorporating more data, using a different 
model structure and predicting over 26  years (Fig.  2). 
The analysis considers a temporal presentation of how 
malaria transmission has changed over 26  years against 

the changing landscape of disease management, vector 
control and climate anomalies, allowing reflection on the 
impact of these associated covariates of PfPR2–10 (Fig. 3). 
Finally, the precision in the contemporary, 2013–2015, 
model outputs was considered as a vital component of 
future decision-making (Fig. 5).

Fig. 5 Composite of 3 years 2013, 2014 and 2015 showing areas where predicted PfPR2–10 is less (non-exceedance probability) than 1% which 
were > 80% confidently predicted (light green and dark green) or > 90% confidently predicted (dark green); and areas where PfPR2–10 is greater 
(exceedance probability) than 30% which were > 80% confidently predicted (light red and dark red) or > 90% confidently predicted (dark red). Areas 
which do not support malaria transmission are shown in grey (see Fig. 1); all other areas where transmission can occur is shown in white
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Kenya has made substantial progress in reducing infec-
tion prevalence (Figs.  2 and 3), the precise contribution 
of intervention versus climate are hard to disentangle. 
In addition, it remains difficult to distinguish whether 
a decrease or increase in prevalence was directly or 
indirectly related to an intervention being deployed or 
removed. Clearly, reductions were observed before the 
implementation of optimized treatment and vector con-
trol in 2006. The timing of this initial decline has been 
demonstrated at a smaller spatial scale along the Kenyan 
coast [40] and at a continental scale [15]. It remains uncer-
tain as to what contributed to this initial decline in PfPR2–

10 post 2003, however reductions were accelerated and 
sustained after 2006, which shows continued reductions 
in national infection rates (Fig. 3), and continued shrink-
ing of the high-intensity areas (Fig. 2). This occurred dur-
ing a period when sustained efforts to ensure continued 
replacement of LLINs as part of mass campaigns and 
routine delivery to pregnant women and infants were 
high, and treatment regimens for uncomplicated malaria 
switched to ACT (Fig. 3). The slight rise in 2014 cannot be 
entirely explained by the stopping of IRS in 20 counties in 
2013, since the rise had already started in 2011. This was 
also observed on the Kenyan coast [40] where IRS has not 
been implemented and nationally returned to levels simi-
lar to those during IRS campaigns in 2015.

The heterogeneous nature of P. falciparum transmis-
sion in Kenya continues to be reflected in present-day 
(2013–2015) descriptions of risk nationwide. A large 
swathe of the country is occupied by areas predicted to 
have a PfPR2–10 less than 1% with a probability of at least 
80%, covering approximately 68% (297,497  km2) of the 
populated areas and 61% (27.8 million people) of Kenya’s 
2015 population. At a higher probability (≥ 90%) at least 
half (51%) of Kenya’s populated areas, occupied by 53% 
of Kenya’s population has a prevalence of less than 1%. 
In such populations where the infection prevalence over 
the period 2013–2015 is < 1%, should be an indication 
for possible migration to a pre-elimination phase by the 
NMCP [35]. In these areas the coverage of good quality 
laboratory and clinical services, reporting and, surveil-
lance should be reinforced. Strengthening of surveillance 
systems will allow quick detection of infections and 
prompt treatment with effective anti-malarials to prevent 
onward transmission within this band of low transmis-
sion [36].

The unexpected PfPR2–10 observed in Nairobi (1.1%), 
might be due to a combination of locally acquired and 
imported malaria [41]. A population-based infectious 
disease surveillance over a 5-year period (2007–2011) in 
Nairobi (Kibera slums) reported that about two-thirds 
of patients with malaria had traveled to high malari-
ous areas of Western Kenya [42]. It seems reasonable to 

assume that Nairobi continues to be exceptionally low 
prevalence, and where transmission occurs likely limited 
to the peripheral areas, for example, at a probability of 
90%, 68% of county was likely to have a prevalence < 1% 
while at a probability of 80% the entire county was likely 
to have < 1% PfPR2–10 2013–2015 (Fig. 5).

There continues to be areas of Kenya, which over the 
last 26  years appear to be intractable to current cover-
age levels, and approaches to vector control. Areas that 
on average continue to support PfPR2–10 levels of trans-
mission ≥ 30% are located around Lake Victoria, inland 
toward the highlands and along the southern coast of the 
Indian Ocean (Fig. 2). While smaller in their geographic 
extent (8515 km2), compared to low transmission, these 
areas encompass 3.9 million people, 8.5% of Kenya’s 2015 
population. The counties affected by this elevated level 
of PfPR2–10 transmission are Kilifi, Kwale, Migori, Homa 
Bay, Kisumu, Siaya, Kakamega, Vihiga, and Busia (Figs. 2 
and 4), however, none of the counties are entirely cov-
ered by the 80% exceedance probability that it completely 
belongs to this endemicity class (Fig. 5). It would, there-
fore, seem reasonable to expand vector control since the 
current coverages are still low and below NMCP targets, 
and introduce other possible innovative approaches to 
parasite control in these nine counties and might include 
the use intermittent preventive treatment of infants [43] 
and/or the use of RTS, S vaccine [44].

Spatio-temporal geostatistical models of sparse malaria 
input data have used multiple, dynamic [45] or long-term 
averaged covariates [46] in the prediction of malaria risk. 
However, caution is urged in the use of multiple covari-
ates in malaria risk mapping. The inclusion of covariates 
(climate, land use, social economic status and interven-
tion) to assist predictions at locations without data pre-
sume: clearly defined and uniform biological relationship 
with prevalence; the veracity of the averaged or tem-
porally varying covariate data is often not tested; and 
including covariates related to intervention coverage 
precludes any further analysis of the impact of interven-
tion on infection prevalence. The present Kenya analysis 
avoids the use of covariates because, unlike many other 
countries, there is a large volume of empirical input data, 
and the empirical prevalence data are a product of all the 
possible covariate influences of climate and intervention 
coverage, allowing a plausibility analysis of the role of cli-
mate and intervention, thus avoiding circularity. Caution 
should be extended beyond Kenya, countries without 
empirical data on prevalence should not be modelled on 
the basis of presumed covariate associations with malaria 
or prediction made in data rich countries to years beyond 
the last available empirical data.

The novelty of non-exceedance probabilities will 
allow the NMCP in Kenya, and other malaria endemic 
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countries, to implement control measures that are con-
gruent to malaria risk. This may involve re-orientation of 
resources allowing optimal utilization of funds in a time 
of competing health agendas and limited resources. The 
global momentum is to stratify national malaria con-
trol because a blanket cover of intervention is no longer 
appropriate in increasingly heterogenous settings [1]. The 
work presented here highlights the statistical value of 
NEPs and EPs as a tool for future policy formation.

Conclusion
Kenya has made substantial progress in reducing P. fal-
ciparum infection prevalence over time. The declines in 
transmission intensity were heterogeneous in nature over 
the 26  years. However, the reductions were witnessed 
before the implementation of optimized treatment and 
vector control. Areas confidently classified to have preva-
lence < 1% calls for a possible migration to control strate-
gies suited for a pre-elimination phase. Conversely, in the 
areas which over the last 26 years seem to be intractable 
to current levels of vector control coverage will require 
expansion of vector control and use of other innovative 
approaches to control both the parasite and vector.
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