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Abstract 

Background: Given the scarcity of resources in developing countries, malaria treatment requires new strategies that 
target specific populations, time periods and geographical areas. While the spatial pattern of malaria transmission is 
known to vary depending on local conditions, its temporal evolution has yet to be evaluated. The aim of this study 
was to determine the spatio‑temporal dynamic of malaria in the central region of Burkina Faso, taking into account 
meteorological factors.

Methods: Drawing on national databases, 101 health areas were studied from 2011 to 2015, together with weekly 
meteorological data (temperature, number of rain events, rainfall, humidity, wind speed). Meteorological factors were 
investigated using a principal component analysis (PCA) to reduce dimensions and avoid collinearities. The Box–Jen‑
kins ARIMA model was used to test the stationarity of the time series. The impact of meteorological factors on malaria 
incidence was measured with a general additive model. A change‑point analysis was performed to detect malaria 
transmission periods. For each transmission period, malaria incidence was mapped and hotspots were identified 
using spatial cluster detection.

Results: Malaria incidence never went below 13.7 cases/10,000 person‑weeks. The first and second PCA components 
(constituted by rain/humidity and temperatures, respectively) were correlated with malaria incidence with a lag of 
2 weeks. The impact of temperature was significantly non‑linear: malaria incidence increased with temperature but 
declined sharply with high temperature. A significant positive linear trend was found for the entire time period. Three 
transmission periods were detected: low (16.8–29.9 cases/10,000 person‑weeks), high (51.7–84.8 cases/10,000 person‑
weeks), and intermediate (26.7–32.2 cases/10,000 person‑weeks). The location of clusters identified as high risk varied 
little across transmission periods.

Conclusion: This study highlighted the spatial variability and relative temporal stability of malaria incidence around 
the capital Ouagadougou, in the central region of Burkina Faso. Despite increasing efforts in fighting the disease, 
malaria incidence remained high and increased over the period of study. Hotspots, particularly those detected for low 
transmission periods, should be investigated further to uncover the local environmental and behavioural factors of 
transmission, and hence to allow for the development of better targeted control strategies.
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Background
In 2015, malaria was the first cause of outpatient con-
sultations (48.0%), hospitalizations (22.6%) and death 
(23.9%) in Burkina Faso [1]; it was also the main cause 
of illness among children (80%) [2]. Given the scarcity of 
resources in the country, malaria treatment requires new 
strategies that target specific populations, time periods 
and geographical areas. The World Health Organization 
(WHO) recommends implementing 2 sets of comple-
mentary interventions [3]: (i) universal strategies based 
on vector control, such as universal distribution of long-
lasting insecticide-treated nets (LLINs) and universal 
access to rapid diagnosis and treatment in health facili-
ties (pillar 1 of the 2015 WHO malaria report); and, (ii) 
locally tailored strategies that target vulnerable popula-
tions (e.g., chemoprevention in pregnant women and 
children under 5 years), and ones that target spatio-tem-
poral malaria hotspots (with a specific focus on parasites 
and vectors) (pillars 2 and 3 of the report). For their part, 
Yukich et al. recommend active case detection and preva-
lence surveillance at very precise levels of transmission 
[4]. A number of studies have highlighted the importance 
of targeting high incidence areas and/or asymptomatic 
carriers to reduce malaria transmission [5–7]. Others 
have argued that insofar as spatial heterogeneity gradu-
ally increases with the decrease in transmission intensity, 
intervention programmes should be implemented during 
low transmission periods [8].

In Burkina Faso, the current national policy is based on 
universal access to rapid diagnostic test (RDT) and arte-
misinin-based combination therapy (ACT), and on uni-
versal distribution of LLINs [9]. Similar to the situation in 
other West African countries where malaria transmission 
is seasonal [10], a strategy targeting children during high 
transmission periods was implemented in July 2016 in 50 
out of 70 health districts (covering a total of 10,874,840 
inhabitants) [11]. Each year, this seasonal malaria chem-
oprevention (SMC) programme covers children aged 
3–59  months from July to October [2]. Despite such 
efforts, the incidence of malaria remains high throughout 
Burkina Faso. In view of this, malaria treatment requires 
new, targeted strategies that are based on spatio-tempo-
ral assessments of malaria transmission [4].

In Ouagadougou, the capital of Burkina Faso, a previ-
ous cross-sectional study (2004) investigating 8 out of 30 
neighbourhoods showed that malaria incidence among 
children (6–12 years) was heterogeneous and associated 
with lower economic or education levels, distance from 
hydrological areas, irregularly built-up areas, and lack of 
LLIN use [12]. However, the dynamic of malaria trans-
mission in the entire central region, including the capi-
tal city and the adjacent rural areas has to be explored. 
In the context of seasonal control strategies, high and 

low transmission periods need to be properly defined, 
and the relationships between meteorological factors and 
onsets of the yearly epidemic need to be better under-
stood, as this will make it possible to anticipate the trans-
mission of the disease.

Lastly, while the spatial pattern of malaria transmis-
sion is known to vary depending on local conditions, its 
temporal evolution has yet to be evaluated. Studies have 
shown that even at a very local scale, Anopheles density 
and malaria incidence are heterogeneous and associated 
with spatial and temporal hotspots [8, 13, 14]. Conse-
quently, hotspots should be thoroughly investigated to 
allow for the development of targeted control strategies 
[8, 15–17].

The aim of this study was to determine the spatio-tem-
poral dynamic of malaria in the central region of Burkina 
Faso, taking into account meteorological factors.

Methods
The central region of Burkina Faso has a surface area 
of 2869 sq km, and includes the capital Ouagadougou 
(urban area) along with 6 semi-urban or rural provincial 
departments. In 2015, the population of the region was 
2,637,303, representing 14.86% of the national popula-
tion, and its annual growth rate was 4.2% [1]. The region 
is divided into 101 health areas (HAs) distributed in 5 
health districts (Fig. 1).

The global positioning system (GPS) coordinates of 
each HA were extracted from the national health map 
[18] and confirmed by field investigations. Estimated 
population per HA was extracted from the yearly national 
action plan for each health district, based on the last cen-
sus (2006) and the projection (until 2016) released by the 
Institut National de la Statistique et de la Démographie 
(INSD).

In Burkina Faso, data on malaria incidence can be 
obtained from 2 sources. The first is the national epi-
demiological surveillance system, known as the Télé-
gramme Lettre Officiel Hebdomadaire (TLOH). In this 
system, HAs are required to provide weekly reports on 
11 diseases (including malaria) to their respective health 
districts; reported cases are then gathered and controlled 
by the health districts before being sent to the Ministry of 
Health. The second is a national database known as ‘BD-
Malaria’, which focuses on malaria and is mainly aimed at 
facilitating the management of RDT and ACT. This data-
base publishes monthly reports on the number of malaria 
cases, RDT use, treatment stocks (ACT), and the number 
of LLINs distributed to pregnant women. It relies on the 
monthly reports provided by all health facilities of Bur-
kina Faso.

In this study, malaria cases were extracted from the 
TLOH database (weekly) and the BD-Malaria database 
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(monthly) for a 5-year period (2011/1/3–2015/12/27) and 
for each HA. The 2 databases were compared to validate/
correct the weekly number of cases.

Weekly meteorological data were obtained from one 
meteorological station (Station de l’Aéroport Interna-
tional de Ouagadougou) of the Direction Nationale de 
la Météorologie for the same study period. The meteoro-
logical variables included were: weekly rainfall (mm), the 
number of rain events per week, weekly averages of mini-
mum and maximum daily temperature (°C), weekly aver-
ages of minimum and maximum daily relative humidity 
(%), and weekly averages of daily wind speed (km/h).

To begin, meteorological factors were identified 
using a principal component analysis (PCA) to reduce 
dimensions and avoid collinearities. The stationarity of 
the malaria time series and that of the combined mete-
orological time series derived from the main compo-
nents were determined with the Box–Jenkins ARIMA 
modelling procedure (seasonal auto-regressive inte-
grated moving average) [19–21]. The lags between 

the stationary time series of malaria and the station-
ary time series of each meteorological factor were 
measured using cross-correlation functions. Second, 
the impact of the different meteorological factors on 
malaria incidence was assessed using a general addi-
tive model (GAM). The latter included meteorological 
components (presenting a significant cross-correlation 
after the time series was shifted by the time lag), sea-
sonality and trends. A negative binomial distribution 
was used to account for over-dispersion, and the log-
transformed population count was used as an offset 
to estimate standardized incidence ratios [22]. Fur-
thermore, spline smoothing was performed to capture 
the non-linear relationship between malaria incidence 
and combined meteorological factors. Third, a change-
point analysis was conducted to detect high, low and 
intermediate transmission periods (respectively, HTP, 
LTP and ITP). The change-point analysis in mean and 
variance was performed using the pruned exact linear 
time algorithm (PELT) [23].

Fig. 1 Health area limits and locations of health facilities. Black lines correspond to the limits of the HAs (Thiessen polygons). Each green triangle 
represents the location of each health facility. The top green rectangle is a zoom of the central urban area (Ouagadougou)
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For each transmission period derived from the change-
point analysis, malaria incidence was mapped, and 
hotspots were identified using Kulldorff’s spatial scan 
statistic. The latter approach seeks to group the various 
neighbouring spatial units into potential clusters by mov-
ing a scanning window across the geographical region of 
interest. The algorithm uses circular windows centred at 
each HA. Potential clusters are defined for a radius rang-
ing from 1 to 50% of the population [24].

The incidences were mapped at the health area scale. 
Currently, each health facility is associated with an 
administrative HA defined by the Ministry of Health. 
The field investigation showed that these administra-
tive boundaries were not relevant as inhabitants mainly 
accessed the closest health facility, and not the health 
facility administratively associated to their home. Using 
the GPS of each health facility, the areas based on 
the Thiessen polygon approach were estimated. This 
approach allowed to propose a theoretical area associ-
ated with each health facility. Between each point cre-
ated, corresponding to each health facility, a bisector was 
drawn to delimit the HA of two adjacent health facilities. 

Each polygon represented the area around each health 
facility. The variation in the HA size was explained by the 
density of health facilities, greater in central urban area 
than in rural/remote ones.

Spatial cluster analysis was performed using Satscan 
software version 9.4 (Information Management Services 
Inc, Silver Spring, Maryland, USA). All other statistical 
analyses were performed using R v3.3.0 (The R Founda-
tion for Statistical Computing, Vienna, Austria) (pack-
ages {mgcv}{caschrono}{FactoMineR}{forecast}). QGIS 
software (version 2.12.2, Open Source Geospatial Foun-
dation, Boston, USA) was used to provide maps. Figures 
were formatted with Paint.net software (v4.0.13, Warren 
Paint & Color Co., Nashville, USA).

Results
Overview of the time series
From 2011 to 2015, the malaria incidence time series 
revealed an association between classical seasonality 
and dry/rainy annual periodicity (Fig.  2). The highest 
incidences were observed between June and November. 
Beyond the classical seasonal pattern, a small rebound 

Fig. 2 Weekly meteorological factors and malaria incidence from 2011 to 2015. Upper left y‑axis represents malaria incidence (1000 person‑weeks, 
red curve); lower left y‑axis represents rainfall (mm, blue bar chart), maximum and minimum humidity (%, respectively continuous and dashed 
green curves); upper right y‑axis represents maximum and minimum temperature (°C, respectively continuous and dashed black curves). The white/
grey background (upper panel) represents the different transmission periods (white for intermediate, light grey for low, and dark grey for high)
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was observed just after each annual epidemic. Yet despite 
the implementation of national control policies during 
this period, no decreasing trend was observed. Moreover, 
malaria incidence never went below 13.7 cases/10,000 
person-weeks whatever the HA.

Meteorological data and malaria incidence analysis
Combination of the meteorological factors allowed to 
identify 3 main components (derived from the PCA, 
representing 90.17% of the inertia). The first compo-
nent (53.6% of the inertia) was constituted by rain (rain-
fall amount and number of rain events) and humidity 
(maximum and minimum weekly averages). Minimal and 
maximal temperatures (weekly averages) were combined 
into the second component (22.16% of the inertia). The 
weekly average wind speed formed the third component 
(14.41% of the inertia), see Additional file 1.

After stationarity, the first meteorological component 
(rainfall, rain events, humidity) was positively and sig-
nificantly correlated with malaria incidence with a lag 
of 2  weeks (correlation coefficient: 0.18). The second 

meteorological component (minimum and maximum 
temperatures) was negatively and significantly correlated 
with malaria incidence with a lag of 2 weeks (correlation 
coefficient: − 0.13). The third component (wind speed) 
was not significantly correlated with malaria incidence.

The multivariate analysis (GAM modelling) assessed 
the relationship between malaria incidence and the dif-
ferent meteorological components (taking into account 
the time lag between them), explaining 75% of the devia-
tion. It found a quasi-linear relationship with the first 
meteorological component (rainfall, rain events, humid-
ity), indicating a significant increase in malaria incidence 
(p < 0.001; Fig. 3a). The impact of the second meteorolog-
ical component (minimum and maximum temperatures) 
was significantly non-linear: malaria incidence increased 
with temperature but declined sharply with high tem-
perature, indicating a negative impact of high tempera-
ture on malaria (p < 0.001; Fig. 3b). A significant positive 
linear trend (p < 0.001) was also found for the entire time 
period, indicating an overall increase in malaria inci-
dence in the region (Fig. 3c).

Fig. 3 Relationship between malaria incidence and the first meteorological factor (rainfall, rain events, humidity), the second meteorological 
component (maximum and minimum temperatures), and time. The continuous black curves represent adaptive smooth relationships of malaria 
incidence according to the first meteorological component (a), the second meteorological component (b), and time (c), with a CI of 95% (dashed 
black curves)
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Spatial hotspot distribution
The change point analysis performed on the malaria inci-
dence time series allowed to identify 3 transmission peri-
ods: low, high, and intermediate (Table 1, Fig. 2).

Malaria incidence for LTPs ranged from 16.8 to 29.9 
cases/10,000 person-weeks. LTPs generally began in 
February or March and lasted from 15 to 35  weeks; 
they overlapped with the dry and hot season for about 
3–4 months, until the beginning of the rainy season. Note 
that the LTP of 2014–2015 was different from the other 
LTPs, with an observed mean rainfall of 9.43 mm/week.

Malaria incidence for HTPs ranged from 51.7 to 84.8 
cases/10,000 person-weeks. HTPs began around the end 
of June or beginning of July, just after the start of the rainy 
season, and lasted until the middle or end of November. 
The duration of HTPs ranged from 20 to 22 weeks, and 
observed rainfall ranged from 25.85 to 45.27 mm.

ITPs started just after HTPs, and were distinguished 
from LTPs by significantly higher malaria incidence, 
which ranged from 26.7 to 32.2 cases/10,000 person-
weeks. The duration of ITPs ranged from 4 to 16 weeks. 
ITPs overlapped with the dry and cold season (Decem-
ber, January, February), for which almost no rain was 
recorded (i.e., observed mean rainfall ranged from 0 to 
0.23  mm/week). Note that no ITP was detected for the 
year 2014–2015 (see Additional file 2).

Low transmission periods
Fifteen significant hotspots including 52 HAs were 
detected for the combined LTPs, which presented an 
overall incidence rate of 22.7 cases/10,000 person-weeks. 
The highest-risk hotspot (Fig.  4, n°1) had a risk ratio 

(RR) of 8.04 (p < 0.0001) and was composed of one HA 
(Zeguedesse). This HA was located in a rural area (in the 
southern and central part of the region), and had an inci-
dence rate of 180.8 cases/10,000 person-weeks for a pop-
ulation of 2969 inhabitants. The largest hotspot (Fig.  4, 
n°9) was located in a mixed urban/rural area in the west-
ern part of the region. It was composed of 18 HAs, and 
had a RR of 1.58 (p < 0.0001) and an incidence rate of 34.2 
cases/10,000 person-weeks.

The rural environment accounted for the highest num-
ber of HAs (25); these were located in 6 hotspots present-
ing an incidence rate of 39.1 cases/10,000 person-weeks 
(147,013 inhabitants). The urban environment accounted 
for 20 HAs; these were located in 11 hotspots present-
ing an incidence rate of 35.3 cases/10,000 person-weeks 
(557,582 inhabitants) (see Additional file 3).

High transmission periods
Eight significant hotspots, including 61 HAs, were 
detected for the combined HTPs, which presented an 
overall incidence rate of 75.3 cases/10,000 person-weeks. 
The highest-risk hotspot (Fig.  5, n°1) had a RR of 2.86 
(p < 0.0001) and was composed of 9 HAs (see Additional 
file 3). It was located in the northern part of the region, 
and had an incidence rate of 206.9 cases/10,000 person-
weeks for a population of 53,216 inhabitants. The largest 
hotspot (Fig. 5, n°3) was located in a mixed urban/rural 
area in the southwestern and slightly central part of the 
region. It was composed of 25 HAs, and had a RR of 2.17 
(p < 0.0001) and an incidence rate of 146.5 cases/10,000 
person-weeks with a population of 224,778 inhabitants.

Table 1 Malaria incidence and rainfall according to duration, start and end dates for the 3 transmission periods by year

Years Level of transmission Duration 
(weeks)

Start date (day/
month/year)

End date (day/
month/year)

Malaria incidence 
per 1000 person-weeks

Rainfall 
(mm/
week)

2011 Intermediate 4 03/01/11 30/01/11 2.86 0

Low 21 31/01/11 26/06/11 1.89 8.13

High 22 27/06/11 27/11/11 5.17 29.76

2011–2012 Intermediate 6 28/11/11 08/01/12 2.67 0

Low 26 09/01/12 08/07/12 1.87 7.92

High 20 09/07/12 25/11/12 7.88 45.27

2012–2013 Intermediate 16 26/11/12 17/03/13 2.8 0.02

Low 17 18/03/13 14/07/13 1.68 17.48

High 20 15/07/13 01/12/13 7.83 34.99

2013–2014 Intermediate 15 02/12/13 16/03/14 3.22 0.23

Low 15 17/03/14 29/06/14 2.39 13.51

High 21 30/06/14 23/11/14 8.29 32.52

2014–2015 Low 35 24/11/14 26/07/15 2.99 9.43

High 22 27/07/15 27/12/15 8.48 25.85
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The rural environment accounted for the highest num-
ber HAs (40); these were located in 4 hotspots present-
ing an incidence rate of 132.8 cases/10,000 person-weeks 
(381,421 inhabitants). The urban environment accounted 
for 15 HAs; these were located in 6 hotspots present-
ing an incidence rate of 141 cases/10,000 person-weeks 
(413,713 inhabitants) (see Additional file 3). Note that the 
HA of Zeguedesse, located in hotspot n°3, had the high-
est incidence rate with 852.4 cases/10,000 person-weeks.

Intermediate transmission periods
Thirteen significant hotspots including 51 HAs were 
detected for the combined ITPs, which presented an 
overall incidence rate of 291 cases/10,000 person-
weeks. The highest risk hotspot (Fig.  6, n°1) had a RR 
of 8.28 (p < 0.0001) and was composed of a single HA 
(Zeguedesse). This hotspot had an incidence rate of 238.9 
cases/10,000 person-weeks for a population of 2969 
inhabitants. The largest hotspot (Fig. 6, n°8) was located 
in a mixed urban/rural area in the western part of the 
region. It was composed of 18 HAs, and had a RR of 1.72 

(p < 0.0001) and an incidence rate of 47.3 cases/10,000 
person-weeks (196,730 inhabitants).

The rural environment accounted for the highest num-
ber of HAs (27); these were located in 7 hotspots present-
ing an incidence rate of 55 cases/10,000 person-weeks 
(38,684 inhabitants). The urban environment accounted 
for 20 HAs; these were located in 9 hotspots present-
ing an incidence rate of 48.6 cases/10,000 person-weeks 
(107,430 inhabitants) (see Additional file 3).

Discussion
This study highlighted the spatial variability and relative 
temporal stability of malaria incidence around the capi-
tal Ouagadougou, in the central region of Burkina Faso. 
Despite increasing efforts in fighting the disease, malaria 
incidence remained high and increased over the study 
period. The positive quasi-linear relationship between 
the first meteorological component (rainfall, rain events, 
humidity) and malaria was similar to that observed 
elsewhere.

Fig. 4 Spatial pattern of incidence per health area and spatial hotspots for low transmission periods. The choropleth map presents the incidence 
rate (/1000 person‑weeks) for the combined LTPs over the 5 years. The red circles represent the high‑risk clusters. The attached Table presents the 
RRs for each hotspot along with the number of HAs
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Studies have shown that small puddles of stagnant 
water exposed to the sun during the rainy season and 
the beginning of the dry/cold season are favourable to 
larvae development and mosquito survival in urban set-
tings [25–28]. In this study, no negative impact of strong 
rains (which can destroy breeding sites) was found [29]. 
Moreover, the lag of 2  weeks between the first mete-
orological component (rainfall, rain events, humidity) 
and malaria incidence was shorter than that reported in 
other countries assessing rainfall only (a lag of 3 months 
was reported in Mali [30], and lags of 2–3 months were 
reported in Ethiopia and East African highlands [28, 31]). 
This may be due to the presence of permanent water 
bodies in the region (with 5 dams) and permanent agri-
culture areas that contribute to a constant presence of 
vectors at these locations. This may explain the rapid 
onset of malaria incidence at the beginning of the rainy 
season. Furthermore, publications assessing the relation-
ship between vegetation and malaria showed similar lags 
[32–35]. This result could also be due to the analysis at 
the weekly scale (and not at the monthly scale) and by 

the use of combinations of meteorological factor (using 
PCA).

The impact of temperature on malaria incidence has 
also been highlighted in several studies [36, 37]. In the 
context of Ethiopia [38], Peterson et al. identified a posi-
tive impact of minimum temperature on malaria inci-
dence after a lag of 4 weeks. Entomological studies have 
stressed the negative impact of high temperature, which 
increases Anopheles death rate [39–41]. Indeed, tempera-
ture influences the duration of larvae development, the 
incubation period of parasites and mosquito survival [27, 
37, 42]. Accordingly, the results showed both a positive 
impact of decreasing temperatures and a negative impact 
of increasing temperatures on malaria incidence.

While previous studies have found a decreasing impact 
of wind speed on mosquito survival [43–45], no sig-
nificant relationship between wind speed and malaria 
incidence was observed. This results may be due to the 
higher incidence rate and relatively low wind speeds 
observed. In fact, during the harmattan period (mainly 
November to March) [46], high wind speed is associated 

Fig. 5 Spatial pattern of incidence per health area and spatial hotspots for high transmission periods. The choropleth map presents the incidence 
rate (/1000 person‑weeks) for the combined HTPs over the 5 years. The red circles represent the high‑risk clusters. The attached Table presents the 
RRs for each hotspot along with the number of HAs
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with drought and high temperatures, making it difficult 
to study the impact of wind speed independently from 
temperature and drought.

While the impact of meteorological factors on malaria 
incidence has been the focus of numerous studies, 
malaria is also caused by other factors, notably parasitae-
mia and human behaviour. Indeed, humans are the only 
reservoir of parasites, which means that sub-microscopic 
and asymptomatic carriage should be investigated for a 
better understanding of the dynamic of transmission [30, 
36, 47]. Nevertheless, meteorological variables can be 
used to estimate and forecast malaria incidence, thereby 
providing public health decision-makers with a useful 
tool [48].

Most published studies (e.g. [12, 49]) describe 2 peri-
ods of malaria transmission. By contrast, 3 transmission 
periods were identified, which did not perfectly cor-
respond to the climatic seasons of Burkina Faso (hot–
dry, rainy, cold–dry seasons). HTPs lasted from June to 
December, whereas the rainy season usually lasts from 

April to October. This lag should be kept in mind when 
implementing pre-traveller prevention strategies or pro-
grammes of SMC and intermittent treatment and pre-
vention during pregnancy.

The definition of hotspots by using the Satscan method 
allowed to detect high-risk areas. This method has been 
developed to detect spatial or space–time clusters of 
cases, for different distributions [50–52], and for different 
cluster shapes [53]. This scanning approach makes it pos-
sible to overcome the problem of the proximity matrix 
and the distance weighting function. Based on the like-
lihood ratio test and a Monte Carlo approach, it allows 
taking into account the problem of the multiplicity of 
tests (unlike other scan methods) [24]. But the hotspots 
definition is relative to the overall incidence and not to 
particular high-risk places. Even if the method is not 
constrained by the scanning window shape, the circular 
or elliptic-shaped scanning window available within the 
software may impact the results in case of non-circular 
clusters or edge effects [54]. This approach tends then 

Fig. 6 Spatial pattern of incidence per health area and spatial hotspots for intermediate transmission periods. The choropleth map presents the 
incidence rate (/1000 person‑weeks) for the combined ITPs over the 5 years. The red circles represent the high‑risk clusters. The attached Table 
presents the RRs for each hotspot along with the number of HAs
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to detect clusters that are too broad (lack of specificity), 
by absorbing nearby spatial units [24, 56]. Furthermore, 
the Satscan performances decrease for low baseline inci-
dences, low sizes of the at-risk population and for low 
relative risks [55, 57].

Some hotspot locations varied little across the different 
transmission periods, indicating a relatively stable spa-
tio-temporal pattern. Only the associated relative risks 
changed across transmission periods, though this was 
probably due to the method used to estimate these risks.

The specific HA of Zeguedesse (corresponding to hot-
spot n°1 of the LTPs and to hotspot n°1 of the ITPs) was 
at higher risk of malaria throughout the 5-year period. 
This may be partly explained by population growth. 
Indeed, the construction of a new hospital centre (Cen-
tre Hospitalier Universitaire Blaise Compaoré) in 2010 
led to the destruction of the villages of Bassemyam and 
Dayoubsi (114 ha) and to the re-housing of the popula-
tion in Zeguedesse. The population growth that ensued 
may have prompted an increase in transmission inten-
sity, and hence in the number of reported cases. How-
ever, given that no population census has been conducted 
since 2010, it may be that the population of Zeguedesse 
was underestimated, thereby leading to overestimated 
incidences.

When the transmission periods were compared, 3 
zones of particular interest were found. The first zone 
was located in the southwestern part of the region, and 
included almost all rural areas of the Boulmiougou 
health district. Hotspots n°1 and 9 of the LTPs (Fig.  4) 
were included in hotspot n°3 of the HTPs (Fig.  4), with 
risk ratios (RRs) increasing from 1.58 and 8.04, respec-
tively, for the LTPs to 2.17 for the HTPs. This zone also 
corresponded to hotspots n°1 and 8 of the ITPs, which 
presented RRs of 8.28 and 1.72, respectively. Second, a 
high-risk area was detected in the northern part of the 
region, with RRs of 2.01, 2.86 and 1.92 for the LTPs, 
HTPs, and ITPs, respectively (Figs. 4, 5, 6), correspond-
ing to hotspots n°6, 1, and 5. Third, a stable high-risk area 
was found in the southeastern part of the region, with 
RRs of 1.74, 1.74, and 1.75 for the LTPs, HTPs, and ITPs, 
respectively (Figs. 4, 5, 6), corresponding to hotspots n°8, 
5, and 7. In this zone, the location of hotspots n°4 and 2 
was the same for the LTPs and the ITPs (Figs. 4, 6).

These 3 zones of interest are located in a similar envi-
ronment. Indeed, there are 3 dams in the north of the 
capital, one dam in the southwest (near Boulmiougou), 
and one dam in the southeast (near Koubri). Further-
more, the eastern part of the region is characterized by 
the presence of the Nakambe forest. This specific envi-
ronment may be associated with a higher risk of malaria 
because it is favourable to the development of Anopheles 
breeding sites [58–61].

Conclusions
Despite increasing efforts to fight the disease, the inci-
dence of malaria increased between 2011 and 2015 in 
the central region of Burkina Faso. For each year of the 
study, 3 periods of malaria transmission were identi-
fied: all 3 periods were associated with relatively stable 
hotspots located in a similar environment (dams). The 
hotspots detected during the LTPs had a higher inci-
dence of malaria. Future studies should investigate these 
hotspots to uncover the local environmental and behav-
ioural factors of transmission, as this would allow for the 
development of better-targeted control strategies. For 
this purpose, a real-time monitoring system should be 
implemented based on the existing national monitoring 
system.
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