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Abstract 

Background: Swaziland aims to eliminate malaria by 2020. However, imported cases from neighbouring endemic 
countries continue to sustain local parasite reservoirs and initiate transmission. As certain weather and climatic condi‑
tions may trigger or intensify malaria outbreaks, identification of areas prone to these conditions may aid decision‑
makers in deploying targeted malaria interventions more effectively.

Methods: Malaria case‑surveillance data for Swaziland were provided by Swaziland’s National Malaria Control Pro‑
gramme. Climate data were derived from local weather stations and remote sensing images. Climate parameters and 
malaria cases between 2001 and 2015 were then analysed using seasonal autoregressive integrated moving average 
models and distributed lag non‑linear models (DLNM).

Results: The incidence of malaria in Swaziland increased between 2005 and 2010, especially in the Lubombo and 
Hhohho regions. A time‑series analysis indicated that warmer temperatures and higher precipitation in the Lubombo 
and Hhohho administrative regions are conducive to malaria transmission. DLNM showed that the risk of malaria 
increased in Lubombo when the maximum temperature was above 30 °C or monthly precipitation was above 5 in. In 
Hhohho, the minimum temperature remaining above 15 °C or precipitation being greater than 10 in. might be associ‑
ated with malaria transmission.

Conclusions: This study provides a preliminary assessment of the impact of short‑term climate variations on malaria 
transmission in Swaziland. The geographic separation of imported and locally acquired malaria, as well as population 
behaviour, highlight the varying modes of transmission, part of which may be relevant to climate conditions. Thus, the 
impact of changing climate conditions should be noted as Swaziland moves toward malaria elimination.
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Background
Thanks to a long-term commitment and successfully 
deployed malaria control interventions, Swaziland is 
now aiming to eliminate malaria by 2020. If achieved, it 
would be the first country in sub-Saharan Africa to meet 
this ambitious goal [1–3]. Swaziland’s malaria burden is 
primarily caused by Plasmodium falciparum, which is 

predominately transmitted by the Anopheles arabiensis 
[4]. Swaziland’s combination of confirmatory diagno-
sis, prompt and efficacious treatment, targeted vector 
control, health promotion, and active surveillance has 
been critical in reducing the malaria burden to low lev-
els [1]. With low levels of local transmission, controlling 
the import of malaria from high-endemic neighbouring 
countries has become increasingly important [5, 6]. Thus, 
significant resources have been in place since 2010 to 
rapidly detect and treat all cases, as well as to investigate 
people they have been in close contact with, in order to 
limit additional transmission [5]. The National Malaria 
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Control Programme (NMCP) of Swaziland has been ini-
tiating active investigations to follow up all confirmed 
cases at the household level since 2010. Imported and 
locally acquired cases can be classified according to travel 
history, either outside or within Swaziland. Originally, a 
case was deemed imported if the patient reported hav-
ing traveled within the past 2  weeks, although this was 
later increased to 4 weeks in 2012 and to 8 weeks in 2013. 
Patients who did not report having traveled are deemed 
to have acquired malaria locally [7].

Since climatic conditions drive parasite and mosquito 
development, feeding frequency, and disease transmis-
sion, short-term climate variations (e.g., temperature, 
precipitation, and humidity) or irregular climatic phe-
nomena (e.g., El Niño Southern Oscillation) may also be 
important factors in malaria transmission and the suc-
cess of elimination programmes in previously unfore-
seen ways [8, 9]. Multiple studies have been conducted 
in malaria-endemic areas to investigate the associa-
tion between climatic variations and malaria epidem-
ics that might be associated with recent climate change 
[10–12]. For instance, regional climatic indices such as 
the Indian Ocean Dipole (IOD) or the El Niño Southern 
Oscillation (ENSO) have been linked to malaria trans-
mission in Kenya, Ethiopia, and South Africa [13–17]. 
However, the impact of climate conditions on malaria 
transmission in Swaziland is poorly documented. Using 
the random forest regression tree approach to generate 
malaria risk maps of Swaziland in 2011 based on various 
environmental variables, a study has shown that warmer 
temperatures, lower rainfall, lower elevation, and close 
proximity to water contribute to a higher risk of malaria 
during high- and low-transmission seasons [18]. How-
ever, the study only evaluated the environmental influ-
ences over a very short period of time. Furthermore, it is 
possible that certain areas in Swaziland are more vulner-
able than others to climate conditions that promote local 
transmission. Indeed, climatic conditions vary widely 
in Swaziland despite its relatively small size, and range 
from humid and temperate in the Highveld region to 
semi-arid and warm in the Lowveld region [1]. Hence, 
an analysis of climate conditions and their impact on 
transmission risk in Swaziland is necessary to reinforce 
long-term efforts to eliminate malaria and to support 
the establishment of a malaria early warning system in 
outbreak-prone Swaziland. The identification of areas 
or populations at risk of transmission due to climate 
variations could also enable the delivery of timely con-
trol interventions. Therefore, the specific aims of this 
study were to assess the impact of climatic variations on 
malaria transmission, and identify specific areas vulner-
able to climate conditions that promote transmission in 
Swaziland.

Methods
Malaria incidence
Malaria case and population data provided by the 
National Malaria Control Programme (NMCP) for 
1985–2015 show that annual malaria incidence sharply 
decreased after 1995 following the successful application 
of control measures (Additional file 1).

The key intervention strategy in Swaziland is integrated 
vector management (IVM), which combines both indoor 
residual spraying (IRS) and long-lasting insecticidal 
nets (LLIN) to interrupt malaria transmission [1, 19]. 
Artemisinin-based combination therapy (ACT) recom-
mended by the WHO is used for treating malaria patients 
because a high level of chloroquine resistance has been 
found in South Africa and Mozambique [20]. Mefloquine 
is recommended as a prophylaxis for people traveling to 
malaria-endemic areas [1]. Monthly incidence data for 
Swaziland’s four major administrative regions of Hhohho, 
Manzini, Lubombo, and Shiselweni are available after 
2000. Hence, the monthly incidence data in Swaziland 
from 2001 to 2015 were used to evaluate the influence of 
climate variations. The geographic clusters of imported 
and locally acquired cases between 2010 and 2015 are 
shown in Additional file 2 for reference.

Climate data
Meteorological data, including maximum and minimum 
temperature and precipitation, from 1985 to 2015 are 
available from 14 weather stations within Swaziland. How-
ever, not all stations collected complete data throughout 
the study period, so the climatic data were mainly obtained 
from one station that has as much data as possible in each 
of the four major administrative regions (Fig. 1). Monthly 
climatic variables were summarized from daily maximum 
temperature, daily minimum temperature, and daily pre-
cipitation (inches). To handle missing data, proxy envi-
ronmental parameters were derived from satellite remote 
sensing images using EASTWeb software [21]. Daytime 
and nighttime land surface temperatures (LST) were 
derived from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) MOD11A2 product, and precipitation 
was derived from Tropical Rainfall Measuring Mission 
(TRMM) microwave satellite images (3B42 Version 7 
product). Although land surface temperature and air tem-
perature are not the same measurements, these variables 
are strongly correlated [21, 22]. Pearson correlation coef-
ficients, ranging from 0.72 to 0.92, indicated a strong cor-
relation between weather station and remote sensing data 
(Additional file  3). Finally, linear regression models were 
constructed to interpolate missing values, and the pre-
dicted climatic parameter values were used in the analysis.

Regional climate phenomena were also considered 
in the analysis. The multivariate El Niño Southern 
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Oscillation Index (MEI), which is an integration of six 
atmospheric variables, was selected to evaluate the influ-
ence of irregular climate variations. Positive values 

indicate a warm phase (El Niño) and negative values indi-
cate a cold phase (La Niña) [23]. The MEI is available from 
the Earth System Research Laboratory, National Oceanic 

Fig. 1 Locations of weather stations in the four major administrative regions in Swaziland (the base map highlights the elevation differences in 
Swaziland: the Highveld is in the west and the Lowveld is in the east)
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and Atmospheric Administration (NOAA) (http://www.
esrl.noaa.gov). Malaria and climate data were processed in 
SAS 9.4 (SAS Institute Inc. Cary, NC, USA).

Time‑series analysis
Monthly malaria incidence and meteorological variables 
from 2001 to 2015 were analyzed using a seasonal autore-
gressive integrated moving average (SARIMA) model. 
In this analysis, time-series data with regular seasonality 
were decomposed into seasonal and non-seasonal com-
ponents. Differencing was applied to remove non-sta-
tionarity. The simplified notation for SARIMA is

where p indicates the non-seasonal autoregressive (AR) 
order, d is non-seasonal differencing, and q indicates the 
non-seasonal moving average (MA) order. P, D, and Q are 
the corresponding seasonal components. S indicates the 
period, which in this case is 12 months. The importance 
of climate variables was assessed by the Akaike Informa-
tion Criterion (AIC), where a smaller AIC indicates bet-
ter model performance [24].

Non-linear relationships between climate conditions 
and mosquito ecology have been reported previously [25–
27]. In areas where malaria risk was found to be associated 
with monthly climate variations in the time-series model, 
we used distributed lag non-linear models (DLNM) to 
investigate non-linear relationships between climate fac-
tors and malaria transmission. Multicollinearity in lagged 

ARIMA(p, d, q)× (P, D, Q)S

effects and non-linear relationships can be handled by 
using the bi-dimensional function [28–30]. The model is 
expressed as

under a quasi-Poisson assumption to overcome overd-
ispersion. Yt indicates the monthly number of malaria 
cases, while log(μt) is the expected monthly malaria inci-
dence, and Xt,h indicates climatic variables at month t and 
lag month h. H is the maximum lag (12), Pop is an offset 
to control for the underlying population, and α, βk, and εt 
are the intercept, coefficients of covariates, and error term 
respectively. To control for seasonality, year and smoothed 
month with degree of freedom (ρ = 6) were also included. 
The natural cubic smooth function was applied to maxi-
mum temperature, minimum temperature, precipitation, 
and the multivariate El Niño Southern Oscillation Index. 
SARIMA and DLNM analysis were carried out in R 3.2.5 
using the packages dlnm and forecast.

Results
Monthly malaria incidence in Swaziland between 2001 
and 2015 is shown in Fig. 2. Malaria transmission stayed 
below one per thousand population except for the period 

Yt = quasi Poisson (t = 1, 2, 3 . . . , n)

log (µt) = α +

H∑

h=1

βk(Xt,h)+ log (Pop)

+ s(month, ρ)+ year + εt

Fig. 2 Monthly malaria incidence in the four administrative regions in Swaziland, 2001–2015

http://www.esrl.noaa.gov
http://www.esrl.noaa.gov
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between 2005 and 2010. During this period, the increase 
in incidence was highest in the Lubombo administrative 
region, followed by the Hhohho, Shiselweni, and Manzini 
administrative regions.

Multiple climatic variables fitted by SARIMA models in 
each region are listed in Table 1. The analysis selected the 
best fitted model including parameters for autoregressive, 
moving average, and seasonal component of different 
order. The results indicate that temperature and rainfall 
were strongly seasonal, and were thus captured by the 
seasonal components (P, D, Q). However, the seasonality 
of malaria incidence was captured only in Lubombo and 
Manzini. The MEI did not show seasonality; it merely 
echoed its irregular characteristics.

To evaluate the importance of climate conditions in 
relation to malaria incidence, multivariate SARIMA 
models were constructed to integrate specific climate 
variables into malaria SARIMA models in each area 
(Table 2). For instance, the malaria (2,1,1) model (Table 1) 
was used in the Hhohho region, and other climatic vari-
ables were included in the model to evaluate climatic 
parameters that can better explain malaria transmission. 

The effect of climate variables on malaria transmission in 
different areas was assessed by AIC values, which would 
decrease if incorporating the climate variables improved 
the predictive power of the model of malaria transmis-
sion. In Lubombo and Hhohho, precipitation was asso-
ciated with malaria transmission risk (AIC difference: 
−4.17 in Hhohho and −5.75 in Lubombo) (Table  2). 
Maximum temperature was also an important param-
eter in Lubombo (AIC difference: −3.46). In Manzini 
and Shiselweni, climate parameters did not increase the 
predictive performance of the malaria models, and thus 
probably had less of an effect on malaria transmission.

The DLNM approach was used to scrutinize the rela-
tionships between climate conditions and malaria 
transmission in Lubombo and Hhohho (Figs.  3, 4). The 
results showed that malaria transmission risk increased 
in Hhohho when the maximum temperature was above 
25  °C or the minimum temperature was above 15  °C, 
with the effect of minimum temperature especially pro-
nounced at a 2-month lag. Monthly precipitation above 
10 in. also exhibited continuous effects, which predomi-
nated at the 6–10-month lag. In Lubombo, a maximum 

Table 1 Best-fitted seasonal autoregressive integrated moving average (SARIMA) of malaria prevalence and meteorolog-
ical parameters in four administrative areas in Swaziland

AR autoregressive, MA moving average, SAR seasonal autoregressive, SMA seasonal moving average

Variables SARIMA (p, d, q) (P, D, Q) s AR (1) AR (2) MA (1) SAR (1) SAR (2) SMA (1)

Hhohho

 Malaria (2, 1, 1) 0.610 −0.210 −0.830

 MEI (1, 1, 0) 0.331

 TMAX (1, 0, 0) (1, 0, 0)12 0.205 0.717

 TMIN (1, 0, 0) (2, 0, 2) 12 0.250 0.429 0.249

 PREC (1, 0, 0) (2, 0, 0) 12 0.209 0.078 0.079

Lubombo

 Malaria (1, 1, 1) (0, 0, 1) 12 0.514 −0.796 0.170

 MEI (1, 1, 0) 0.331

 TMAX (2, 0, 1) (2, 0, 0) 12 1.137 −0.360 −0.851 0.355 0.400

 TMIN (0, 0, 0) (2, 0, 0) 12 0.419 0.307

 PREC (2, 0, 1) (2, 0, 0) 12 1.031 −0.270 −0.822 0.299 0.273

Manzini

 Malaria (0, 1, 1) (1, 0, 1) 12 −0.682 0.885 −0.705

 MEI (1, 1, 0) 0.331

 TMAX (1, 0, 0) (2, 1, 0) 12 0.150 −0.601 −0.286

 TMIN (1, 0, 0) (2, 0, 0) 12 0.169 0.492 0.281

 PREC (1, 0, 0) (2, 0, 0) 12 0.223 0.275 0.419

Shiselweni

 Malaria (1, 1, 1) 0.342 −0.718

 MEI (1, 1, 0) 0.331

 TMAX (1, 0, 0) (2, 0, 0) 12 0.232 0.394 0.426

 TMIN (0, 0, 0) (2, 0, 0) 12 0.539 0.276

 PREC (1, 0, 0) (2, 0, 0) 12 0.172 0.304 0.274
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temperature above 30 °C increased malaria transmission 
risk predominantly 2 months later, as did higher rainfall 
(above around 5  in.) in the previous four to 6  months. 
The effect of the MEI was relatively weak and arbitrary in 
both areas (Figs. 3, 4). 

Discussion
This study is a preliminary analysis of the impact of cli-
mate variations on malaria transmission in Swaziland 
between 2001 and 2015. As the country approaches 
malaria elimination, efforts now focus on detecting all 
cases in Swaziland’s remaining receptive areas and pre-
venting onward local transmission [6, 31]. The success of 
malaria control in Swaziland is attributable mostly to the 
Lubombo Spatial Development Initiative (LSDI), which 
began in 1999 and ended in 2011 [6]. The Mozambique, 
South Africa, and Swaziland (MOSASWA) cross-border 

malaria elimination initiative launched in 2015 seeks to 
renew regional efforts to accelerate malaria elimination 
[3]. Climate conditions are an important factor in alter-
ing disease ecology and transmission probability, not only 
in Swaziland, but also in neighbouring countries such as 
Mozambique and South Africa.

This study indicated that climate conditions were more 
important in the Hhohho and Lubombo administra-
tive regions, implying that residents in these areas are at 
higher risk of infection when temperatures and precipita-
tion are suitable for malaria transmission. The increased 
incidence in Lubombo and Hhohho between 2005 and 
2010 might be associated with climate variations. Cor-
relations among climatic parameters, mosquito devel-
opment, and parasite life cycle (specifically extrinsic 
incubation period) have been noted elsewhere [32–34]. 
Dlamini et al. constructed multiple models that correlate 
mosquito larva abundance with 4 weeks lagged land sur-
face temperature [35]. The non-linear patterns of temper-
ature and precipitation relevant to malaria transmission 
have been discussed as well [36, 37].

The impact of regional climate phenomena on malaria 
transmission was also studied recently. Bouma et  al. 
showed that El Niño conditions might have contributed 
to the 2016–2017 malaria outbreaks in Ethiopia [16]. 
Hashizume et  al. also observed that the Indian Ocean 
Dipole (IOD) exhibits a 4-year cycle coherent with 
malaria seasons in the East African highlands [38]. Severe 
flooding due to extreme rainfall have also caused malaria 
outbreaks in the highland areas of western Uganda [39]. 
Although the multivariate El Niño Southern Oscilla-
tion Index (MEI) is not strongly associated with malaria 
transmission risk in Swaziland, public health authorities 
should nevertheless be vigilant of future climate changes 
and extreme local weather events that may affect ongoing 
malaria elimination strategies. For instance, vector con-
trol should continue along with case management, since 
the Anopheles spp. remains active in Swaziland.

Lubombo and Hhohho are two areas vulnerable to 
malaria transmission because of climate variations, 
and the two regions correspond to the cluster of locally 
acquired cases (Additional file  2). In contrast, most 
imported cases are clustered mainly near Manzini and 
are probably due to migration or domestic and cross-
border travel. These results indicate that climate condi-
tions might be a major driver of malaria transmission in 
the Lowveld ecological region in Swaziland. Accordingly, 
any climate-based malaria early warning system needs 
to be especially vigilant in the administrative regions of 
Hhohho and Lubombo. In addition, limited resources for 
disease/vector control should be deployed appropriately, 
noting that imported cases may trigger onward trans-
mission within Swaziland, and that imported and locally 

Table 2 Multivariate seasonal autoregressive integrated 
moving average (SARIMA) models of  malaria incidence 
in four administrative areas in Swaziland

a The lag is selected using a cross-correlation function
b The model with the lowest AIC value is indicated in italic type

SARIMA  modela Coefficients SE AIC AIC  
difference

Hhohho

 Malaria only 9.6 –

 Malaria + MEI (lag = 2) −0.067 0.049 11.67 2.07

 Malaria + TMAX (lag = 0) 0.0137 0.0152 10.97 1.37

 Malaria + TMIN (lag = 3) 0.0124 0.0089 12.58 2.98

 Malaria + precipitation 
(lag = 3)

0.02 0.0066 5.43b −4.17

Lubombo

 Malaria only 92.34 –

 Malaria + MEI (lag = 1) −0.2039 0.05 89.46 −2.88

 Malaria + TMAX (lag = 3) 0.0449 0.0775 88.88 −3.46

 Malaria + TMIN (lag = 1) 0.0135 0.0092 92.22 −0.12

 Malaria + precipitation 
(lag = 2)

0.0224 0.0007 86.59b −5.75

Manzini

 Malaria only −474.99b –

 Malaria + MEI (lag = 3) 0.0054 0.0085 −471.65 3.34

 Malaria + TMAX (lag = 3) 0.7475 0.3119 −471.83 3.16

 Malaria + TMIN (lag = 2) 0.0004 0.0024 −471.27 3.72

 Malaria + precipitation 
(lag = 1)

0.0054 0.0025 −471.12 3.87

Shiselweni

 Malaria only −396.8b –

 Malaria + MEI (lag = 7) 0.0156 0.0139 −375.52 21.28

 Malaria + TMAX (lag = 4) 0.009 0.004 −389.54 7.26

 Malaria + TMIN (lag = 2) 0.0039 0.0023 −393.72 3.08

 Malaria + precipitation 
(lag = 3)

0.006 0.0032 −390.88 5.92
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acquired cases interact based on “malariogenic potential”, 
as noted by Reiner et al. [7].

Malaria transmission is influenced by multiple risk fac-
tors, and the results should be interpreted with caution 
or validated further, as the study has several limitations. 
First, malaria incidence data in the four major adminis-
trative areas are only available on a monthly basis from 
2001 to 2015. Hence, it is impossible to investigate cli-
mate-vulnerable areas at a finer spatial or temporal reso-
lution. Second, non-climatic factors were not included. 
In particular, there was no fine-scale data available on 

intervention, vector ecology, or migration and human 
mobility, which are also important factors driving malaria 
transmission. As a result, only statistical associations 
were established, but not causal relationships, between 
climate parameters and malaria. Climate parameters only 
partially account for malaria transmission risk. Third, 
it was not possible to differentiate imported and locally 
acquired malaria cases during the study period (2001–
2015) because travel history has only been recorded since 
2010. Thus, it is difficult to identify and verify the true 
origin of infection. This is not a major issue in long-term 

Fig. 3 Contour plot of malaria incidence and a maximum temperature, b minimum temperature, c precipitation, and d multivariate El Niño South‑
ern Oscillation Index (MEI) in Hhohho, 2001–2015
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climatic models because climate variations affect not 
only Swaziland but also other neighbouring endemic 
countries. Fortunately, the NMCP has been actively fol-
lowing up both types of cases since 2010 and continues to 
collaborate with neighbouring countries to minimize the 
impact of possible misclassification. In addition, to differ-
entiate between local and imported cases, it is worth not-
ing that the accuracy of the rapid diagnostic test (RDT) 
could be poor in the low endemicity area among symp-
tomatic patients [40]. The training of microscopy skills 

should be continued to maintain the efficiency of case 
management.

Malaria transmission dynamics can be affected by mul-
tiple factors at environmental, community, and individual 
levels. To strengthen the malaria early warning system in 
Swaziland, the current analysis should be extended. First 
of all, climate changes and variations are not restricted 
to national borders, so an analysis based exclusively on 
Swaziland may be inadequate to detect regional phenom-
ena, especially since Swaziland is land-locked. Malaria 

Fig. 4 Contour plot of malaria incidence and a maximum temperature, b minimum temperature, c precipitation, and d multivariate El Niño South‑
ern Oscillation Index (MEI) in Lubombo, 2001–2015
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transmission will not stop at the border with Mozam-
bique or South Africa; thus, cross-border data sharing 
and analysis is critical. For example, a regional malaria 
early warning system may prove more useful, and could 
potentially be implemented through the MOSASWA ini-
tiative. Under such a system, an outbreak in Mozambique 
due to heavy rainfall might indicate an imminent spike in 
cases imported into Swaziland, even though there may 
not be unusual weather-related events in the latter.

Second, the climate effect could be buffered by differ-
ent levels of herd immunity, especially for an area with 
high transmission intensity [12]. Although the effect 
might not be significant in Swaziland because of its cur-
rently low transmission status, a future regional analysis, 
which will include different neighbouring countries in 
southern Africa, should consider the interaction between 
climate and immunity. For example, in areas where local 
transmission is more persistent, it will probably be desir-
able to consider the impact of herd immunity on trans-
mission, and its potential to also regulate transmission 
by limiting the recruitment of susceptible hosts [12, 41, 
42]. Mathematical approaches could be useful in devel-
oping a dynamic malaria model to forecast transmis-
sion risk under different transmission settings within the 
MOSASWA area.

Third, non-climate parameters should be integrated in 
the future analysis, such as land cover/use, vector control, 
or social networks [43]. Though Swaziland is relatively 
small, the interaction between climate and landscape-
level characteristics could be significant because of its 
diverse topography. With the continued financial support 
from and efforts by the NMCP, case management and 
vector control can be sustained in Swaziland. A mobile 
population has become the most critical challenge for 
malaria elimination [3]. Travel history information 
has been incorporated in the active investigation since 
2010 by the NMCP. Social-network or contact-tracing 
approaches could be considered to evaluate the chains of 
infection and reveal the origin of infection and onward 
transmission [5, 44, 45]. It can provide useful information 
to perform a more accurate targeted control as part of 
MOSASWA cross-border collaboration.

Conclusions
The impact of climate variations on malaria transmission 
was evaluated in Swaziland, showing that the Hhohho 
and Lubombo administrative regions were acutely vulner-
able to climatic conditions. While Swaziland is close to a 
malaria-free status, the development of an early warning 
system could enhance the efficacy of disease control and 
provide a sustainable future for malaria elimination.
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