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Abstract 

Background:  Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung 
cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA 
HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown.

Methods:  HOXA11-AS was knocked down in the NSCLC A549 cell line and a high throughput microarray assay was 
applied to detect changes in the gene profiles of the A549 cells. Bioinformatics analyses (gene ontology (GO), path‑
way, Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses) were performed to investigate the 
potential pathways and networks of the differentially expressed genes. The molecular signatures database (MSigDB) 
was used to display the expression profiles of these differentially expressed genes. Furthermore, the relationships 
between the HOXA11-AS, de-regulated genes and clinical NSCLC parameters were verified by using NSCLC patient 
information from The Cancer Genome Atlas (TCGA) database. In addition, the relationship between HOXA11-AS 
expression and clinical diagnostic value was analyzed by receiver operating characteristic (ROC) curve.

Results:  Among the differentially expressed genes, 277 and 80 genes were upregulated and downregulated in 
NSCLC, respectively (fold change ≥2.0, P < 0.05 and false discovery rate (FDR) < 0.05). According to the degree of the 
fold change, six upregulated and three downregulated genes were selected for further investigation. Only four genes 
(RSPO3, ADAMTS8, DMBT1, and DOCK8) were reported to be related with the development or progression of NSCLC 
based on a PubMed search. Among all possible pathways, three pathways (the PI3K-Akt, TGF-beta and Hippo signal‑
ing pathways) were the most likely to be involved in NSCLC development and progression. Furthermore, we found 
that HOXA11-AS was highly expressed in both lung adenocarcinoma and squamous cell carcinoma based on TCGA 
database. The ROC curve showed that the area under curve (AUC) of HOXA11-AS was 0.727 (95% CI 0.663–0.790) for 
lung adenocarcinoma and 0.933 (95% CI 0.906–0.960) for squamous cell carcinoma patients. Additionally, the original 
data from TCGA verified that ADAMTS8, DMBT1 and DOCK8 were downregulated in both lung adenocarcinoma and 
squamous cell carcinoma, whereas RSPO3 expression was upregulated in lung adenocarcinoma and downregulated 
in lung squamous cell carcinoma. For the other five genes (STMN2, SPINK6, TUSC3, LOC100128054, and C8orf22), we 
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Background
Lung cancer is the most common cancer worldwide and 
the first leading cause of cancer death [1, 2]. More than 
1.8 million lung cancer patients are diagnosed each year, 
accounting for approximately 13% of newly diagnosed 
cancer cases [3]. Lung cancer can be divided into two 
categories based on the histological type [small cell lung 
cancer (SCLC) and non-small cell lung cancer (NSCLC)]. 
NSCLC accounts for 80–85% of new lung cancers. 
NSCLC can be divided into different subgroups, such 
as adenocarcinoma, squamous cell carcinoma, adenos-
quamous carcinoma, undifferentiated carcinoma and 
large cell carcinoma. More than 70% of NSCLC cases are 
advanced disease and the 5-year survival rate for NSCLC 
is only 16% [4]. Hence, research into the etiology and 
mechanism is of great significance for the diagnosis and 
treatment of lung cancer.

Long non-coding RNAs (lncRNAs) represent RNAs 
more than 200 nucleotides in length that lack a protein-
coding capacity. Many lncRNAs have been reported to 
be associated with transcriptional regulation, disease 
development or epigenetic gene regulation [5–7]. Addi-
tionally, lncRNAs are involved in numerous biological 
functions, such as tumorigenesis, immune responses, cell 
differentiation and other biological processes [8–11]. To 
date, many lncRNAs have been reported to play impor-
tant roles in NSCLC, such as lncRNA-TATDN1, PVT1 
and MALAT1, which may influence the NSCLC cell pro-
liferation, invasion and metastasis, respectively [12–14]. 
However, the biological and molecular mechanisms 
underlying the actions of HOXA11-AS in NSCLC have 
not been fully explored.

HOXA11-AS (also known as HOXA11S, HOXA-AS5, 
HOXA11AS, HOXA11-AS1, and NCRNA00076) is 
located on 7p15.2 (NCBI Gene ID: 221883). HOXA11-
AS is a member of the homeobox (HOX) family of genes 
with a length of 3885  nt. To date, only 2 studies have 
reported a relationship between HOXA11-AS and can-
cer. Richards et al. [15] demonstrated that HOXA11-AS 

inhibited the oncogenic phenotype of epithelial ovarian 
cancer by analyzing genome-wide association study data 
and performing a series of functional experiments. Wang 
et al. [16] confirmed that HOXA11-AS was a cell cycle-
associated lncRNA and could serve as a biomarker of 
glioma progression using a high-throughput microarray 
and gene set enrichment analysis. However, the expres-
sion and function of HOXA11-AS in NSCLC tissues is 
unknown. We designed this study to explore expres-
sion profile changes after HOXA11-AS knock-down and 
the possible molecular mechanisms of HOXA11-AS in 
NSCLC development and progression. A flow chart of 
this study was shown in Fig. 1.

Methods
Knock‑down of HOXA11‑AS in the NSCLC cell A549 
and transfection with HOXA11‑AS‑siRNA
The human NSCLC A549 cell line was purchased from 
the Type Culture Collection of the Chinese Academy 
of Sciences (Shanghai, China). NSCLC A549 cells were 
cultivated with 10% heat-inactivated fetal bovine serum 
(Invitrogen Corp, Grand Island, NY, USA) in a humidi-
fied 5% CO2 atmosphere with 2  mM glutamine and 
gentamicin at 37  °C. Three DcR3-specific siRNAs were 
synthesized by GenePharma (Shanghai, China) and 
merged into one siRNA pool (Table 1). The NSCLC A549 
cell line was transfected with the HOXA11-AS-siRNA. 
The CombiMAG magnetofection reagent (OZ BIO-
SCIENCES, Marseille, France) was used for the transfec-
tion according to the manufacturer’s instructions.

Microarray analysis and computational analysis
The sample analysis and microarray hybridization were 
performed by Kangchen Bio-tech (Shanghai, China). 
Briefly, RNA was purified and extracted from 1  mg of 
total RNA after removing the rRNA (mRNA-ONLY 
Eukaryotic mRNA Isolation Kit, Epicentre Biotechnolo-
gies, Madison, USA). Then, each sample was transcribed 
and amplified into fluorescent cRNA using a random 

found that STMN2, TUSC3 and C8orf22 were upregulated in squamous cell carcinoma and that STMN2 and USC3 
were upregulated in lung adenocarcinoma. Furthermore, we compared the correlation between HOXA11-AS and 
de-regulated genes in NSCLC based on TCGA. The results showed that the HOXA11-AS expression was negatively 
correlated with DOCK8 in squamous cell carcinoma (r = −0.124, P = 0.048) and lung adenocarcinoma (r = −0.176, 
P = 0.005). In addition, RSPO3, ADAMTS8 and DOCK8 were related to overall survival and disease-free survival (all 
P < 0.05) of lung adenocarcinoma patients in TCGA.

Conclusions:  Our results showed that the gene profiles were significantly changed after HOXA11-AS knock-down 
in NSCLC cells. We speculated that HOXA11-AS may play an important role in NSCLC development and progression 
by regulating the expression of various pathways and genes, especially DOCK8 and TGF-beta pathway. However, the 
exact mechanism should be verified by functional experiments.

Keywords:  HOXA11-AS, NSCLC, Microarray assay, GO, KEGG, Pathway
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priming method. The cRNAs were labeled and hybridized 
onto the Human MRNA Array v3.0 (8 × 60 K, Arraystar, 
Rockville, MD, USA). After washing the slides, the arrays 
were scanned with the Agilent Scanner G2505C. The 
Agilent Feature Extraction software (version 11.0.1.1) 
was used to analyze the acquired array images. Quan-
tile normalization and subsequent data processing were 
implemented by the GeneSpring GX v11.5.1 software 
package (Agilent Technologies). Differentially expressed 
genes were identified based on fold change filtering (fold 
change ≥2.0 or ≤0.5), a paired t test (p < 0.05) and mul-
tiple hypothesis testing (FDR  <  0.05). The P values and 
FDR were calculated with Microsoft Excel and MATLAB, 
respectively. Differentially expressed genes between the 
RNAi and control samples were identified with an abso-
lute fold change  >2 as the cut-off. The molecular signa-
tures database (MSigDB, http://www.broadinstitute.org/
msigdb) was applied to visualize the expression profiles 
of these differentially expressed genes (Figs. 2, 3).

GO analysis and pathway analysis
To better understand the potential roles of the differen-
tially expressed genes, gene ontology (GO) analysis and 
pathway analysis were performed as previously described 
[17]. In this process, we included the following three inde-
pendent categories derived from the GO Consortium 
website (http://www.geneontology.org): biological pro-
cess (BP), cellular component (CC) and molecular func-
tion (MF) [17]. The enrichment of the upregulated and 
downregulated coding genes was analyzed by uploading 
the datasets to the database for annotation, visualization 
and integrated discovery (DAVID, http://david.abcc.ncif-
crf.gov/). The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (http://www.genome.jp/kegg/) was used 
to analyze the biological pathways where there was an 
obvious enrichment of differentially expressed genes [18].

Additional analysis of 9 de‑regulated genes in NSCLC 
from TCGA
TCGA is a collection of exome sequencing, DNA meth-
ylation, SNP array, miRNA-seq, and RNA-seq data 
[19]. TCGA can be used to analyze complicated clini-
cal profiles and cancer genomics [20, 21]. In this study, 
original expression data for HOXA11-AS and the 9 
genes de-regulated in lung adenocarcinoma and squa-
mous cell carcinoma were extracted from TCGA and 
analyzed. Additionally, original data for cancerous or 

Fig. 1  A flow chart of this study was shown

Table 1  The HOXA11-AS-siRNA sequences

ID Target sequence GC %

HOXA11-AS-RNAi(32154-2) CTACCATCCCTGAGCCTTA 52.63

HOXA11-AS-RNAi(32155-1) TGACATCCGAGGAGACTTC 52.63

HOXA11-AS-RNAi(32156-1) CGTAATCGCCGGTGTAACT 52.63

http://www.broadinstitute.org/msigdb
http://www.broadinstitute.org/msigdb
http://www.geneontology.org
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://www.genome.jp/kegg/
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non-cancerous lung tissues were downloaded and ana-
lyzed. Also, the relationship between HOXA11-AS 
expression and clinical diagnostic value was analyzed by 
receiver operating characteristic (ROC) curve. Besides, 

we extracted the co-genes of HOXA11-AS from TCGA 
through R Project for Statistical Computing (https://
www.r-project.org/). Genes with a FDR < 0.05 was con-
sidered for co-expressed relationship.

Fig. 2  Hierarchical clustering (heat map) of transcript expression for the 280 upregulated genes with the most differential expression between 
tumors

https://www.r-project.org/
https://www.r-project.org/
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Statistical analysis
SPSS 20.0 was applied for the statistical analysis. The 
Mann–Whitney U test was used to compare the expres-
sion of the four de-regulated genes in terms of different 
clinical features (age, gender, TNM stage, tumor size, dis-
tant metastasis and lymph node metastasis). P < 0.05 was 
considered statistically significant (two-sides).

Results
Gene expression profiles regulated by the HOXA11‑AS 
lncRNA
A high throughput microarray assay was applied to 
detect differential expression profiles between HOXA11-
AS and HOXA11-AS RNAi in three paired A549 cell cul-
tures. Thirteen thousand three hundred and twenty-three 
upregulated genes and 14,384 downregulated genes were 
differentially expressed in the HOXA11-AS-control and 
HOXA11-AS-RNAi groups. A summary of these differ-
entially expressed genes is presented in Fig.  4. The fold 
changes (HOXA11-AS-control vs HOXA11-AS-RNAi) 
and P values were calculated using the normalized 
expression values. Using microarray analysis, 357 genes 
were identified as significantly differentially expressed in 
NSCLC compared with the RNAi control samples (fold 
change ≥  2.0, P  <  0.05 and FDR  <  0.05). Among them, 
277 genes were upregulated in all three NSCLC groups 
and 80 genes were downregulated. Furthermore, the 
number of aberrantly expressed genes varied with the 
different fold changes (Table  2). Among them, 16 genes 
were upregulated by more than sixfold in the HOXA11-
AS compared to the HOXA11-AS RNAi samples and 

3 genes were downregulated by more than fourfold. 6 
of the 15 upregulated genes were upregulated by more 
than tenfold (Table 2). The top 6 upregulated and top 3 
downregulated genes are shown in Table 3. Among these 
9 aberrantly expressed genes, the expression of RSPO3 
(NM_032784, fold change = 41.610487, P = 8.0502E−09) 
was dramatically upregulated and the expression of 
LOC100128054 (NR_033969, fold change =  4.6652225, 
P  =  4.45517E−05) was significantly downregulated. 
When we searched PubMed (http://www.ncbi.nlm.nih.
gov/pubmed) to identify reported functions for these 
differentially expressed genes, we found that only 4 
genes (RSPO3, ADAMTS8, DMBT1, and DOCK8) were 
reported to be associated with NSCLC. RSPO3 was 
reported to promote tumor aggressiveness in Keap1-defi-
cient lung adenocarcinomas [22]. ADAMTS8 was related 
to promoter hyper methylation in early-stage NSCLCs 
[23, 24]. DMBT1 was a candidate tumor suppressor gene; 
DMBT1 expression is often lost in lung cancer, indicating 
that DMBT1 inactivation may have a significant influence 
on lung tumorigenesis [25]. DOCK8 was suggested to be 
involved in the development and/or progression of lung 
cancer [26]. Thus, these genes may play essential roles in 
the occurrence and development of NSCLC.

GO and pathway analysis
The GO analysis identified biological processes, molecu-
lar functions and cellular components in which the dif-
ferentially expressed genes may be involved. The top five 
most enriched GO terms are shown in Table 4. The GO 
analysis results clarified the most significant functional 

Fig. 3  Hierarchical clustering (heat map) of transcript expression for the 80 downregulated genes with the most differential expression between 
tumors

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
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groups, such as single-organism process, cellular 
response to stimulus, biological regulation, and cellular 
component organization (Figs.  5, 6). To better under-
stand the relevant functions of these genes, a function 

network was constructed based on the GO analysis 
(Figs. 7, 8). We constructed only the BP ontology for the 
downregulated genes because only 80 genes were identi-
fied (Fig. 8).

The KEGG analysis showed that the aberrantly 
expressed genes might be related to different pathways. 
A total of 21 upregulated pathways and only 1 down-
regulated pathway were available through the pathway 
analysis. The most important enriched pathway terms 
are shown in Table  5 (Pupregulated  <  0.01). Three path-
ways (PI3K-Akt signaling pathway, TGF-beta signaling 
pathway and Hippo signaling pathway) were previously 
reported to be involved in NSCLC development and 
progression. As reported, the PI3K-Akt signaling path-
way was related to NSCLC cell proliferation, apoptosis 
and autophagy [27–29]. The TGF-beta signaling path-
way could be associated with the NSCLC cell DNA 
damage response, radiation sensitivity, viability and inva-
sion capacity [30, 31]. The Hippo signaling pathway was 
involved in NSCLC cell migration and invasion [32].

A gene network of these 357 genes was constructed 
in the present study (Fig.  9). The relationships between 
HOXA11-AS and the differentially expressed genes were 
easily observed from this network analysis.

Supplementary information from the TCGA
In order to explore the relationship between HOXA11-
AS expression and NSCLC, we performed a clinical study 
with the original data in TCGA. We found that HOXA11-
AS was upregulated in both lung adenocarcinoma and 

Fig. 4  Gene clip after HOXA11-AS knock-down in NSCLC. a Volcano plot; b box-scatter plot

Table 2  Number of  aberrantly expressed genes in  the 
microarray

Fold change 
2–4

Fold change 
4–6

Fold 
change > 6

Total

Upregulated 238 23 16 277

Downregu‑
lated

77 3 80

Table 3  The top 6 upregulated and  top 3 downregulated 
genes

Genbank accession Gene symbol Fold change P

Upregulated genes

 NM_032784 RSPO3 41.610487 8.05E−09

 NM_007037 ADAMTS8 21.38143 8.074E−06

 NM_007029 STMN2 20.713397 3.617E−05

 NM_007329 DMBT1 12.747211 7.941E−07

 NM_205841 SPINK6 10.662449 8.553E−08

 NM_178234 TUSC3 10.584962 1.619E−05

Downregulated genes

 NR_033969 LOC100128054 4.6652225 4.455E−05

 NM_203447 DOCK8 4.4005987 7.142E−06

 NM_001007176 C8orf22 4.0156588 0.000753
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squamous cell carcinoma compared to non-cancer-
ous lung tissues (both P  <  0.0001, Fig.  10a, b). And the 
ROC curve revealed that the area under curve (AUC) of 
HOXA11-AS was 0.727 (95% CI 0.663–0.790) for lung 
adenocarcinoma patients and 0.933 (95% CI 0.906–0.960) 
for squamous cell carcinoma patients (both P < 0.0001), 
which could gain high diagnostic value of HOXA11-AS 
level in NSCLC (Fig. 10c, d).

To elucidate the relationships between the 9 de-regu-
lated genes and NSCLC, we searched the original data 
from 514 adenocarcinoma cases and 501 squamous 
cell carcinoma cases in TCGA. We also compared gene 
expression between adenocarcinoma, squamous cell car-
cinoma and non-cancerous lung tissues. We found that 
RSPO3, ADAMTS8, DMBT1 and DOCK8 were all down-
regulated in squamous cell carcinoma tissues compared 

to non-cancerous lung tissues, whereas STMN2, TUSC3 
and C8orf22 were upregulated in squamous cell carci-
noma (all P  <  0.001, Fig.  11). Additionally, ADAMTS8, 
DMBT1 and DOCK8 were down-regulated in adenocar-
cinoma and STMN2 and TUSC3 were up-regulated in 
lung adenocarcinoma (all P < 0.01, Fig. 12). RSPO3 was 
overexpressed in adenocarcinoma but not squamous cell 
carcinoma (P = 0.023).

Furthermore, we compared the correlation between 
HOXA11-AS and de-regulated genes in NSCLC based 
on TCGA. The results showed that the HOXA11-AS 
expression was negatively correlated with DOCK8 in 
squamous cell carcinoma (r = −0.124, P =  0.048) and 
lung adenocarcinoma (r = −0.176, P = 0.005). No obvi-
ously correlation was found between HOXA11-AS and 
other de-regulated genes (Table 6). Besides, the co-genes 

Table 4  Top 5 enriched GO terms (BP, CC, and MF) from the microarray data

GO.ID Term Ontology Enrichment score P

Upregulated genes

 GO:0071294 Cellular response to zinc ion BP 8.557911479 2.76751E−09

 GO:0044707 Single-multicellular organism process BP 8.514757717 3.05663E−09

 GO:0048731 System development BP 8.400063137 3.98049E−09

 GO:0032501 Multicellular organismal process BP 8.203661346 6.2566E−09

 GO:0048856 Anatomical structure development BP 8.143712557 7.1827E−09

 GO:0005578 Proteinaceous extracellular matrix CC 8.300801864 5.00263E−09

 GO:0031012 Extracellular matrix CC 8.221562341 6.00396E−09

 GO:0005604 Basement membrane CC 6.791104942 1.61769E−07

 GO:0044420 Extracellular matrix part CC 5.570158827 2.69055E−06

 GO:0005576 Extracellular region CC 5.516943306 3.04128E−06

 GO:0005102 Receptor binding MF 8.517557576 3.03698E−09

 GO:0008083 Growth factor activity MF 7.9661485 1.08106E−08

 GO:0005178 Integrin binding MF 4.513665828 3.06432E−05

 GO:0030414 Peptidase inhibitor activity MF 4.359313435 4.37206E−05

 GO:0061134 Peptidase regulator activity MF 4.350560953 4.46107E−05

Downregulated genes

 GO:0001707 Mesoderm formation BP 4.07566169 8.40114E−05

 GO:0048332 Mesoderm morphogenesis BP 4.002278949 9.94766E−05

 GO:0016331 Morphogenesis of embryonic epithelium BP 3.806552741 0.000156116

 GO:0048729 Tissue morphogenesis BP 3.403951508 0.000394501

 GO:0002064 Epithelial cell development BP 3.374049298 0.000422621

 GO:0060076 Excitatory synapse CC 4.66716144 2.15198E−05

 GO:0034364 High-density lipoprotein particle CC 2.577293133 0.002646713

 GO:0048786 Presynaptic active zone CC 2.543382451 0.002861657

 GO:0034358 Plasma lipoprotein particle CC 2.241145559 0.005739241

 GO:0032994 Protein-lipid complex CC 2.196499993 0.006360628

 GO:0008201 Heparin binding MF 3.006284448 0.000985634

 GO:0005539 Glycosaminoglycan binding MF 2.534599082 0.002920121

 GO:0004867 Serine-type endopeptidase inhibitor activity MF 2.466282926 0.003417567

 GO:1901681 Sulfur compound binding MF 2.39941613 0.003986427

 GO:0004866 Endopeptidase inhibitor activity MF 1.829660366 0.014802656
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Fig. 5  Distribution of gene ontology (GO) terms for the upregulated genes in NSCLC. The pie plot showing the gene ontology classification for 
the upregulated genes in NSCLC. The graph does not contain all upregulated genes because the majority do not have assigned GOs. a Biological 
process (BP). b Cellular component (CC). c Molecular function (MF)
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Fig. 6  Distribution of gene ontology (GO) terms for the downregulated genes in NSCLC. The pie plot showing the gene ontology classification 
for the downregulated genes in NSCLC. The graph does not contain all downregulated genes because the majority do not have assigned GOs. a 
Biological process (BP). b Cellular component (CC). c Molecular function (MF)



Page 10 of 20Zhang et al. Cancer Cell Int  (2016) 16:89 

Fig. 7  A function network of gene ontology (GO) terms for the upregulated genes in NSCLC. a Biological process (BP). b Cellular component (CC). c 
Molecular function (MF)
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Fig. 8  A function network (BP) of Gene Ontology (GO) terms for the downregulated genes in NSCLC. BP biological process
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of HOXA11-AS in TCGA was extracted through R Pro-
ject for Statistical Computing. We found that RSPO3, 
ADAMTS8, DMBT1, DOCK8, STMN2, SPINK6 and 
TUSC3 were the co-genes of HOXA11-AS in lung ade-
nocarcinoma whereas RSPO3, ADAMTS8, DMBT1, 
DOCK8, STMN2, SPINK6, TUSC3 and C8orf22 were the 
co-genes of HOXA11-AS in squamous cell carcinoma.

In addition, we also investigated the relationship 
between the expression levels of the de-regulated genes 
and clinicopathological parameters or patient sur-
vival. Only ADAMTS8 was related to the TNM stage 
(t =  0.041, P =  0.032) in squamous cell carcinoma. In 
lung adenocarcinoma tissues, RSPO3 was obviously 
more highly expressed in the advanced stages (III and IV) 
than the early stages (I–II, t = −2.462, P = 0.015). When 
lymph node metastasis was analyzed, higher RSPO3 
expression was found in cases with lymph node metas-
tasis than in cases without (t = −2.346, P = 0.020). We 
also found that higher ADAMTS8 expression was more 
common in females (t = −2.924, P =  0.004) and cases 
with distant metastasis (P = 0.045). Higher DMBT1 and 
DOCK8 expression was also more common in females 
than males (all P < 0.05). DOCK8 was significantly more 
highly expressed in the advanced stages (III and IV, 
t = 3.482, P = 0.001) and cases with lymph node metas-
tasis (t  =  2.087, P  =  0.037). Additionally, TUSC3 was 
related to age (P =  0.037). The upregulated expression 
of RSPO3, ADAMTS8 and DOCK8 was associated with 
the overall survival (all P < 0.05) and disease-free survival 
of adenocarcinoma patients (all P < 0.05, Fig. 13), which 
indicated that RSPO3, ADAMTS8 and DOCK8 might 
influence the prognosis of adenocarcinoma. Based on the 
aforementioned results, we speculated that HOXA11-AS 
may play an important role in NSCLC development and 

progression by regulating the expression of various path-
ways and genes, especially DOCK8 and TGF-beta path-
way. However, the exact mechanism should be verified by 
functional experiments.

Discussion
Lung cancer is the most common malignancy in humans 
and accounts for approximately 13% of newly diagnosed 
cancer cases per year [1–3]. NSCLC accounts for 80–85% 
of all lung cancers. Over the past decades, the possi-
ble molecular mechanism underlying NSCLC has been 
extensively explored. However, the particular pathogen-
esis of NSCLC is still vague. Growing evidence indicates 
that lncRNAs may play important roles in regulating gene 
expression in NSCLCs. For example, lncRNA-TATDN1 
is associated with NSCLC invasion and metastasis by 
influencing E-cadherin, HER2, β-catenin and Ezrin 
expression [12], lncRNA-PVT1 promotes NSCLC cell 
proliferation by epigenetically regulating LATS2 expres-
sion [13] and lncRNA-MALAT1 influences tumor inva-
sion in NSCLC by regulating DNA methylation [14]. 
In this study, we explored the possible biological and 
molecular mechanisms of HOXA11-AS in NSCLC. A 
microarray assay, various bioinformatics analyses (GO, 
pathway, KEGG, and network analyses) and the original 
data in TCGA were used to study differentially expressed 
genes and their relationships with NSCLC. After ana-
lyzing the original data from TCGA database, we found 
that HOXA11-AS was upregulated in both lung adeno-
carcinoma and squamous cell carcinoma. Also, ROC 
curve showed that HOXA11-AS expression might have 
an important value in diagnosis of lung cancer. Moreo-
ver, we searched Oncomine (https://www.oncomine.
org/resource/login.html) and gene expression omnibus 

Table 5  The most important enriched pathway terms from the microarray data

Pupregulated < 0.01

Pathway ID Definition Enrichment_Score P

Upregulated genes

 hsa04978 Mineral absorption—Homo sapiens (human) 4.539769 2.88557E−05

 hsa04610 Complement and coagulation cascades—Homo sapiens (human) 3.791003 0.000161807

 hsa05200 Pathways in cancer—Homo sapiens (human) 3.329344 0.000468443

 hsa05020 Prion diseases—Homo sapiens (human) 3.073759 0.000843803

 hsa05144 Malaria—Homo sapiens (human) 2.569023 0.002697597

 hsa05217 Basal cell carcinoma—Homo sapiens (human) 2.385839 0.00411302

 hsa05323 Rheumatoid arthritis—Homo sapiens (human) 2.34211 0.004548726

 hsa04060 Cytokine-cytokine receptor interaction—Homo sapiens (human) 2.310768 0.004889133

 hsa05202 Transcriptional misregulation in cancer—Homo sapiens (human) 2.264309 0.005441153

 hsa04151 PI3K-Akt signaling pathway—Homo sapiens (human) 2.098056 0.007978919

Downregulated genes

 hsa04350 TGF-beta signaling pathway—Homo sapiens (human) 1.561561 0.02744347

https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
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(GEO; http://www.ncbi.nlm.nih.gov/geo/) database, but 
no positively relationship was found. In addition, through 
the above-mentioned bioinformatics analyses, 4 genes 
(RSPO3, ADAMTS8, DMBT1, and DOCK8) and 3 path-
ways (PI3K-Akt signaling pathway, TGF-beta signaling 
pathway and Hippo signaling pathway) were identified as 
related to NSCLC. The original data from TCGA verified 
that ADAMTS8, DMBT1 and DOCK8 were down-regu-
lated in adenocarcinoma and squamous cell carcinoma, 
whereas RSPO3 was overexpressed in adenocarcinoma 

and down-regulated in squamous cell carcinoma. Fur-
thermore, RSPO3, ADAMTS8 and DOCK8 were also 
related to the overall survival and disease-free survival 
of lung adenocarcinoma patients in the TCGA data. 
Besides, we found that the HOXA11-AS expression was 
negatively correlated with DOCK8 both in squamous 
cell carcinoma and lung adenocarcinoma. Therefore, we 
hypothesized that HOXA11-AS might play an essential 
role in NSCLC development and progression by regu-
lating DOCK8 expression through TGF-beta pathway. 

Fig. 9  Network analysis between HOXA11-AS and the differentially expressed genes. Yellow indicates activation and green indicates inhibition

http://www.ncbi.nlm.nih.gov/geo/
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However, the real mechanism should be verified by func-
tional experiments.

During the process of researching the relationship 
between these 4 de-regulated genes and 3 pathways, we 
found that DOCK8 and the TGF-beta signaling pathway 
played significant roles in the metastasis of lung adeno-
carcinoma [33]. Yu et al. [33] used RNA and protein anal-
ysis, Rac1 activity, imaging, cellular assays, public data 
set analysis and xenograft mouse models to show that 
DOCK4 played an important role in mediating TGF-beta-
driven lung adenocarcinoma cell extravasation and metas-
tasis. Thus, DOCK4 may act as a key component of the 

TGF-beta pathway. Additionally, we found that DOCK8 
and the Hippo signaling pathway could play a role in neu-
roblastoma relapse [34]. DOCK8 mutations and YAP acti-
vation were reported to be associated with neuroblastoma 
relapse in one study. YAP is a member of the Hippo sign-
aling pathway [35]; however, whether the expression of 
DOCK8 plays a role in NSCLC through the Hippo signal-
ing pathway is unknown. DOCK8 (also known as MRD2, 
ZIR8 and HEL-205) is located on 9p24.3 (NCBI Gene ID: 
81704). DOCK family proteins have been confirmed to 
play roles in the regulation of cell morphology, adhesion, 
migration and growth [36–39]. DOCK8 was reported to 

Fig. 10  Differential expression and ROC curve of HOXA11-AS in lung adenocarcinoma and squamous cell carcinoma based on The Cancer Genome 
Atlas (TCGA) database. a Differential expression of HOXA11-AS in lung adenocarcinoma. b Differential expression of HOXA11-AS in squamous cell 
carcinoma. c ROC curve of HOXA11-AS in lung adenocarcinoma. d ROC curve of HOXA11-AS in squamous cell carcinoma
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Fig. 11  Differential expression of genes between squamous cell carcinoma and normal lung tissues based on The Cancer Genome Atlas (TCGA) 
database. a RSPO3; b ADAMTS8; c DMBT1; d DOCK8; e SPINK6; f TUSC3; g C8orf22
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Fig. 12  Differential expression of RSPO3, ADAMTS8, DMBT1 and DOCK8 between lung adenocarcinoma and normal lung tissues based on The 
Cancer Genome Atlas (TCGA) database. a RSPO3; b ADAMTS8; c DMBT1; d DOCK8; e SPINK6; f TUSC3
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expressed in different cancers, such as hepatocellular car-
cinoma and some epithelial cancers [40, 41]. However, to 
date only 2 papers have reported roles for DOCK8 in lung 
cancer. Kang et  al. [42] analyzed 22 lung squamous cell 
carcinoma cases and found that the loss of chromosome 
9 p was specific for lung squamous cell carcinoma; thus, 
the DOCK8 gene might be a potential target for thera-
peutic measures against lung squamous cell carcinoma. 
Takahashi et  al. [26] found that genetic and epigenetic 
inactivation of DOCK8 was related to the development 
and/or progression of lung cancer using an array-CGH 
analysis. The original data from TCGA verified that higher 
DOCK8 expression was related to gender, TNM stage, 
lymph node metastasis and survival, which indicated 
that DOCK8 might play a significant role in NSCLC. We 
found that the TGF-beta signaling pathway was related 
to radiation sensitivity, extravasation, metastasis and 
apoptosis [30, 33, 43]. Additionally, the deregulation of 
the Hippo signaling pathway induced tumors in model 
organisms and occurred in different human carcinomas, 
including lung, ovarian, colorectal and liver cancers [44]. 
The Hippo signaling pathway controls organ size by regu-
lating the cell cycle, proliferation, and apoptosis [45, 46]. 
However, numerous in vivo and in vitro experiments need 
to be performed to verify whether HOXA11-AS plays a 

role in NSCLC development and progression by regulat-
ing DOCK8 expression through the TGF-beta or Hippo 
signaling pathway.

Other differentially expressed genes and pathways 
were investigated. Several studies have reported the 
functions of these genes and pathways. Gong et al. [22] 
found that RSPO3 was aberrantly overexpressed in 
half of Keap1-deficient lung adenocarcinomas and that 
RSPO3 overexpression resulted in much poorer sur-
vival. In vitro experiments verified that RSPO3 overex-
pression was related to cell proliferation and migration. 
The findings of these authors suggest that RSPO3 over-
expression may potentially act as a driving mecha-
nism behind the aggressiveness of Keap1-deficient 
lung adenocarcinomas. Dunn et  al. [24] performed a 
microarray analysis combined with comparative multi-
plex RT-PCR, immunohistochemical studies and DNA 
methylation analysis and found that ADAMTS8 was 
down-regulated in primary NSCLC. ADAMTS8 down-
regulation was related to promoter hypermethylation, 
which might be associated with NSCLC development. 
Mollenhauer et  al. [47] explored DMBT1 expression 
in normal and lung cancer tissues using reverse-tran-
scription PCR and immunohistochemical studies and 
found DMBT1 down-regulation in the lung cancer cell 
lines. However, this finding was controversial because 
up-regulated expression was detected in the tumor-
flanking epithelium and upon respiratory inflamma-
tion. The authors found that a switch took place during 
lung carcinogenesis. Finally, they hypothesized that the 
sequential changes in DMBT1 expression in different 
locations reflected a time course that might indicate a 
possible mechanism in epithelial cancer. In addition, we 
also further researched the relationships between the 
other 5 de-regulated genes (STMN2, SPINK6, TUSC3, 
LOC100128054, and C8orf22 and disease progression. 
As reported, STMN2 could be a novel developmentally-
associated marker and STMN2 could contribute to 
regulating the adipocyte/osteoblast balance [48]. Also 
STMN2 could be a novel target of beta-catenin/TCF-
mediated carcinogenesis in hepatoma cells [49]. SPINK6 

Table 6  The correlation between HOXA11-AS and de-regu-
lated genes in NSCLC based on TCGA

Gene symbol Squamous cell  
carcinoma

Lung adenocarci‑
noma

R P R P

RSPO3 −0.022 0.724 −0.025 0.656

ADAMTS8 −0.107 0.087 −0.020 0.756

STMN2 0.000 0.996 0.049 0.434

DMBT1 −0.061 0.330 −0.064 0.309

SPINK6 −0.007 0.911 −0.034 0.589

TUSC3 −0.014 0.828 0.013 0.839

DOCK8 −0.176 0.005 −0.124 0.048

C8orf22 −0.007 0.910 −0.025 0.656

(See figure on next page.) 
Fig. 13  Kaplan-Meyer curves of RSPO3, ADAMTS8 and DOCK8 expression in lung adenocarcinoma based on The Cancer Genome Atlas (TCGA) 
database. a Overall survival of RSPO3 in lung adenocarcinoma. Patients with high RSPO3 expression had a significantly poorer prognosis 
(46.749 ± 7.528 months) than those with low expression (90.101 ± 8.759 months, P < 0.0001). b Disease-free survival of RSPO3 in lung adeno‑
carcinoma. Patients with high RSPO3 expression had a significantly poorer prognosis (56.254 ± 10.462 months) than those with low expression 
(127.159 ± 13.180, P < 0.0001). c Overall survival of ADAMTS8 in lung adenocarcinoma. Patients with low ADAMTS8 expression had a significantly 
poorer prognosis (80.869 ± 8.989 months) than those with high expression (92.497 ± 8.863 months, P = 0.007). d Disease-free survival of ADAMTS8 
in lung adenocarcinoma. Patients with high ADAMTS8 expression had a significantly poorer prognosis (107.704 ± 10.239 months) than those with 
low expression (121.080 ± 14.027 months, P = 0.009). e Overall survival of DOCK8 in lung adenocarcinoma. Patients with low DOCK8 expression 
had a significantly poorer prognosis (80.028 ± 9.108 months) than those with high expression (81.730 ± 8.029 months, P = 0.024). f Disease-free 
survival of DOCK8 in lung adenocarcinoma. Patients with high DOCK8 expression had a significantly poorer prognosis (107.246 ± 8.779 months) 
than those with high expression (114.254 ± 13.518 months, P = 0.024)
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could be a prognostic indicator in nasopharyngeal car-
cinoma patients, and SPINK6 could play a critical role 
in promoting metastasis of nasopharyngeal carcinoma 
patients [50]. Moreover, TUSC3 was reported to related 

to the development of different cancers, such as glio-
blastoma, colorectal cancer, pancreatic cancer, and so 
on [51–53]. No items of LOC100128054 and C8orf22 
were found from pubmed.
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In addition, many studies have researched the differ-
ent mechanisms of the PI3K-Akt signaling pathway. The 
PI3K/AKT/mTOR signaling pathway is well-known to 
play essential roles in cell proliferation, invasion, apop-
tosis, and angiogenesis in lung cancer [54–56]. How-
ever, numerous experiments are required to identify the 
real mechanisms underlying the roles of HOXA11-AS 
and its corresponding differentially expressed genes in 
NSCLC.

Conclusion
In summary, because HOXA11-AS may be an important 
factor in different biological processes of lung cancer, we 
performed bioinformatics analyses (GO, pathway, KEGG, 
and network analyses) to identify differentially expressed 
genes and potential pathways. In this work, we system-
atically analyzed HOXA11-AS-related genes and their 
functional categorization, pathways and networks. Origi-
nal data from TCGA was used to verify the relationships 
between the expression levels of HOXA11-AS and the 
de-regulated genes and clinicopathological parameters 
or patient survival. Based on the results, we speculated 
that HOXA11-AS may play an important role in NSCLC 
development and progression by regulating the expres-
sion of various pathways and genes, especially DOCK8 
and TGF-beta pathway. However, the exact mechanism 
should be verified by functional experiments.
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