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Abstract 

Background:  Understanding the effects of oxygen levels on yeast xylose metabolism would benefit ethanol pro-
duction. In this work, xylose fermentative capacity of Scheffersomyces stipitis, Spathaspora passalidarum, Spathaspora 
arborariae and Candida tenuis was systematically compared under aerobic, oxygen-limited and anaerobic conditions.

Results:  Fermentative performances of the four yeasts were greatly influenced by oxygen availability. S. stipitis and S. 
passalidarum showed the highest ethanol yields (above 0.44 g g−1) under oxygen limitation. However, S. passalidarum 
produced 1.5 times more ethanol than S. stipitis under anaerobiosis. While C. tenuis showed the lowest xylose con-
sumption rate and incapacity to produce ethanol, S. arborariae showed an intermediate fermentative performance 
among the yeasts. NAD(P)H xylose reductase (XR) activity in crude cell extracts correlated with xylose consumption 
rates and ethanol production.

Conclusions:  Overall, the present work demonstrates that the availability of oxygen influences the production of 
ethanol by yeasts and indicates that the NADH-dependent XR activity is a limiting step on the xylose metabolism. S. 
stipitis and S. passalidarum have the greatest potential for ethanol production from xylose. Both yeasts showed similar 
ethanol yields near theoretical under oxygen-limited condition. Besides that, S. passalidarum showed the best xylose 
consumption and ethanol production under anaerobiosis.
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Background
Conversion of all sugars present at cellulose and hemicel-
lulose fractions of biomass would increase production 
and reduce cost of second-generation ethanol [1, 2]. Sac-
charomyces cerevisiae is the main yeast used for alcohol 
production worldwide, but it cannot produce ethanol 
from xylose, the second most abundant sugar in nature, 
unless when genetically engineered [3, 4]. Despite the 
relative success of engineered strains, recombinant S. 
cerevisiae strains show lower fermentation rates and less 
tolerance to fermentation inhibitors when fermenting 
xylose instead of glucose [5, 6]. Thus, the isolation, identi-
fication and characterization of native xylose-fermenting 

yeasts have received great attention in the past years 
[7–12].

Among the few naturally xylose-fermenting yeasts 
species, Scheffersomyces (Pichia) stipitis is one of the 
most studied [8, 12, 13]. It has been isolated from the 
gut of insects and its fermentation capability evalu-
ated in different lignocellulosic hydrolysates [14]. More 
recently, yeasts from Spathaspora and Candida genera, 
as Spathaspora passalidarum, Spathaspora arborariae 
and Candida tenuis, have been isolated from rotting-
wood samples or wood-boring insects and characterized 
as xylose fermenting yeasts [7, 9, 10]. Like S. stipitis, S. 
passalidarum showed xylose fermentation yields above 
0.40 g ethanol g−1 sugar in both defined and lignocellu-
losic hydrolyzed medium Slininger [14, 15]. In general, 
naturally xylose-fermenting yeasts are able to ferment 
xylose only when the oxygen flow is tightly regulated. 
High oxygenation level leads to aerobic growth and low 
ethanol yield, whereas limited dissolved oxygen slows 
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the fermentation rate, increases xylitol accumulation and 
causes poor ethanol productivity [1, 8, 15–17].

In yeasts, xylose is first reduced to xylitol, a reaction 
catalyzed by a NAD(P)H-dependent xylose reductase 
(XR). Then, a NAD+-dependent xylitol dehydrogenase 
(XDH) oxidises xylitol to xylulose [18–20]. Subsequently, 
xylulose enters into the pentose phosphate and glycoly-
sis pathways, finally being converted to ethanol. Recently, 
it was shown that S. passalidarum exceptionally harbor 
two XRs, and one of them, preferentially uses NADH as 
cofactor [20].

As fermentative conditions like media composition, 
cell density and oxygen availability are usually different 
[1, 10, 20] a comparative assessment among xylose-con-
suming yeasts based on literature data becomes difficult. 
In addition, few studies on physiology of C. tenuis and S. 
arborariae are available [10, 20, 21]. Thus, a systematic 
comparison of fermentative physiology of S. stipitis, S. 
passalidarum, S. arborariae and C. tenuis is still miss-
ing and it might help elucidate important steps on xylose 
metabolism.

The aim of this study was to compare the alcoholic 
fermentative capacity of four native xylose-consuming 
yeasts under different oxygenation conditions. The physi-
ology of S. stipitis, S. passalidarum, S. arborariae and C. 
tenuis in defined mineral medium containing xylose as 
sole carbon source was assessed under aerobic, oxygen-
limited and anaerobic conditions. The results presented 
clearly distinguished the best performing yeast for each 
condition and highlights the importance of cofactor 
usage on ethanol production from xylose.

Methods
Strains
The yeasts employed in this study were Scheffersomyces 
(Pichia) stipitis NRRL Y-7124, S. passalidarum NRRL 
Y-27907, S. arborariae NRRL Y-48658 and C. tenuis 
NRRL Y-1498. All yeasts were preserved in 30% glycerol 
at −80 °C.

Xylose fermentations under different oxygen conditions
The xylose fermentation experiments were carried out 
in bioreactors (Multifors 2, Infors HT) with 500  mL 
working volume. Cells from −80  °C stock were ini-
tially grown in solid YPD medium (10  g  L−1 yeast 
extract, 20  g  L−1 peptone, 20  g  L−1 glucose), overnight 
at 28 °C. One single colony was used to inoculate 50 mL 
of defined mineral medium [22] containing per litre: 
(NH4)2SO4, 12.5 g; KH2PO4, 7.5 g; MgSO4·7H2O, 1.25 g; 
EDTA, 37.5  mg; ZnSO4·7H2O, 11.25  mg; MnCl2·2H2O, 
2.5  mg; CoCl2·6H2O, 0.75  mg; CuSO4·5H2O, 0.75  mg; 
Na2MoO4·H2O, 1.0  mg; CaCl2·2H2O, 11.25  mg; 
FeSO4·7H2O, 7.5  mg; H3BO3, 2.5  mg; KI, 0.25  mg. 

Filter-sterilized vitamins were added after heat steriliza-
tion of this medium. Final vitamin concentrations per 
litre were: biotin, 0.125 mg; Ca-pantothenate 2.5 mg; nic-
otinic acid 2.5 mg; inositol 62.5 mg; thiamin-HCl 2.5 mg; 
pyridoxine–HCl 2.5  mg; P-aminobenzoic acid 0.5  mg; 
riboflavin 0.5 g and; folic acid 0.005 g. The carbon source 
consisted of 40 g L−1 xylose.

The start culture at the bioreactor was OD600 nm of 0.5. 
Cultures were maintained with pH 5.5, by addition of 
KOH 3 M, under agitation—stirrer at 400 rpm, and tem-
perature of 28 °C. First, yeast performance was evaluated 
under aerobic and oxygen-limited conditions. For aero-
bic experiments, synthetic air (20% pure oxygen and 80% 
pure nitrogen) was injected in the reactor at 0.5 L min−1. 
The dissolved oxygen measured in the reactor (Sensors 
METTLER TOLEDO) was above 60% during the entire 
fermentation period. For oxygen-limited experiments, 
the airflow of synthetic air was adjusted for 0.05 L min−1, 
which resulted in dissolved oxygen below 10% in the first 
10  h of fermentation and zero afterwards. But the air-
flow was kept constant in a minimal rate, indicating that 
the entire oxygen that was entering the bioreactor was 
promptly consumed. All fermentations were carried out 
in biological triplicates.

Anaerobic fermentations with the four yeasts were 
performed in small cap vials sealed with a rubber stop-
per, equipped with a needle for carbon dioxide removal. 
Cells from −80  °C stock were initially grown in solid 
YPD medium, overnight at 28 °C. One single colony was 
used to inoculate 50  mL of defined mineral medium as 
described above. The culture started with a high cell den-
sity equal to OD600  nm of 2.0. The pH was adjusted for 
5.5 and, the flasks incubated under agitation—stirrer at 
400 rpm and temperature of 28 °C. All experiments were 
carried out in biological triplicates.

Analytical methods
To monitor yeast growth, samples were withdrawn regu-
larly during fermentations and biomass was measured 
by optical density at 600  nm using a spectrophotom-
eter (SpectraMax® M3, Molecular Devices). For cell dry 
weight (CDW) measurement, 5  mL of pre-inoculum 
culture and of the stationary phase of the growth dur-
ing all fermentations were withdrawn and centrifuged 
(12,000×g, 5 min). Before weighing, the pellet was incu-
bated in glass tube for at least 48 h at 60 °C. The cell dry 
weight was correlated with OD600  nm measured in the 
same time intervals. Each measurement was performed 
in duplicate.

Sugar consumption and products formed during fer-
mentation experiments were measured using a high-
pressure liquid chromatograph (HPLC) system. Initially, 
samples withdrawn regularly during fermentations were 
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centrifuged (12,000×g, 5  min) and the supernatant was 
transferred to a new tube. Concentrations of xylose, 
xylitol, glycerol, acetate and ethanol in supernatants were 
measured using HPLC system (Acquity UPLC H Class, 
Waters) equipped with a refractive index detector and 
an Aminex® HPX-87H column (Bio-Rad) at 45  °C. The 
mobile phase was 5  mM sulfuric acid at a flow rate of 
0.6 mL min−1. Results are shown as average ±  standard 
deviations.

Enzymatic assays for XR and XDH
The enzymatic activity of xylose reductase (XR) and 
xylitol dehydrogenase (XDH) in crude-cell extracts was 
measured according to [23]. For this, 5  mL of cell sus-
pension of S. stipitis, S. passalidarum, S. arborariae and 
C. tenuis were collected in the middle of the exponential 
growth phase during aerobic and oxygen-limited fermen-
tations. Cells were pelleted by centrifugation, washed 
with sterile water, and lysed with Y-PER®—Yeast Protein 
Extraction Reagent (Pierce, Rockford, USA) to obtain 
cell-crude extracts. Protein concentrations in cell-free 
extracts were determined using Quick StartTM Bradford 
Protein Assay Kit (Bio-Rad Laboratories Ltda., USA), fol-
lowing the manufacture’s instruction.

XR reaction mixture contained 100  mM triethan-
olamine buffer (pH 7.0), 0.2  mM NADH or NADPH, 
350 mM xylose. XDH reaction contained 100 mM trieth-
anolamine buffer (pH 7.0), 0.3  mM NAD+, 300  mM 
xylitol. All reactions were started with addition of limit-
ing substrates. The assays were performed at 30  °C and 
the oxidation of NADH/NADPH and reduction of NAD+ 
were followed as the change in absorbance at 340  nm. 
The value of 6.22 mL (μmol cm)−1 was used as the molar 
absorption coefficient of coenzymes per minute. The spe-
cific activities of XR and XDH were given in units per 
mg protein (U mg−1). Enzyme unit is defined as 1 μmol 
of cofactor reduced or oxidized per minute. All assays 
were performed in triplicate and the results are shown as 
means ± standard deviations.

Results and discussion
Xylose fermentation in defined mineral medium
The fermentative capacity of the four naturally xylose-
consuming yeasts, S. stipitis, S. passalidarum, S. arbo-
rariae and C. tenuis were evaluated under aerobic, 
oxygen-limited and anaerobic conditions. Xylose con-
sumption varied considerably among the four yeasts 
both under aerobic and oxygen-limited conditions 
(Fig. 1). Scheffersomyces stipitis, S. passalidarum and S. 
arborariae were able to consume xylose completely and 
showed at least 6 times higher specific xylose consump-
tion rate than C. tenuis under aerobic condition (Fig. 1; 
Table  1). Even after more than 120  h of fermentation, 

C. tenuis consumed about 34 and 28  g  L−1 of xylose 
under aerobic and oxygen-limited conditions, respec-
tively (Fig.  1d). When cultivated under oxygen limita-
tion, S. stipitis and S. passalidarum showed similar 
xylose consumption rates, however the rate was 2 times 
lower for S. arborariae (Table 1). As expected, biomass 
yields for all yeasts were 2 times higher under aerobic 
than oxygen-limited condition. However, biomass yield 
was twofolds higher for S. passalidarum than S. stipitis. 
This may explain the lower ethanol productivity rate for 
this yeast compared to S. stipitis under aerobic condi-
tion (Table 1).

Growth and ethanol production by these yeasts were 
strongly influenced by the oxygen availability. Biomass 
formation was favored in presence of oxygen whereas 
ethanol production was favored under more strictly oxy-
gen availability. Produced biomass varied from a minimal 
of 6.7 g L−1 for S. stipitis to a maximum of 13.9 g L−1 to 
C. tenuis under aerobic condition (Fig.  1). Despite the 
variation in the total biomass, the specific growth rate 
of S. stipitis, S. passalidarum and S. arborariae ranged 
from 0.15 to 0.18 h−1. This is about 2 times higher than 
C. tenuis under aerobic conditions, which reached spe-
cific growth rate 0.08  h−1. The biomass formation was 
about 2 times lower under oxygen-limited condition than 
in aerobic one, varying from 3.0 to 7.0 g L−1 (Fig. 1). In 
anaerobic condition the maximum biomass formation 
reached was 3.5 g L−1 for S. stipitis, 2.4 g L−1 for S. pas-
salidarum, 1.3 g L−1 for S. arborariae and 1.2 g L−1 for C. 
tenuis (Fig. 2).

Scheffersomyces stipitis, S. passalidarum and S. arbo-
rariae produced predominantly ethanol from xylose 
(Fig.  1a–c). Oxygen limitation increased ethanol pro-
duction and yields by S. stipitis, S. passalidarum and S. 
arborariae. Indeed, the concentrations increased approx-
imately twofold when compared to aerobic condition 
(Table  1). Scheffersomyces stipitis and S. passalidarum 
reached the highest ethanol yields (0.45 and 0.44 g g−1) 
among the four xylose-consuming yeasts employed in 
this study (Table 1). These values are in good agreement 
with previous studies, which showed ethanol yields vary-
ing from 0.40 to 0.48 g g−1 to S. stipitis [16, 24] and from 
0.43 to 0.48 g g−1 to S. passalidarum [17, 20] under lim-
ited oxygenation levels. In turn, ethanol yield for S. arbo-
rariae was only of 0.31  g  g−1 (Table  1), which was also 
observed previously in an independent study [20]. Xylitol, 
glycerol and acetate formation by S. stipitis, S. passali-
darum and S. arborariae was minimal and did not show 
significant differences among them (Fig. 1; Table 1). On 
the other hand, C. tenuis did not produce ethanol under 
any condition evaluated. Indeed, it produced mainly 
xylitol during fermentation under oxygen-limited condi-
tion (0.62 g g−1) (Table 1).
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Fig. 1  Xylose fermentation under different oxygen level conditions. Left: aerobic and right: oxygen-limited. S. stipitis (a); S. passalidarum (b); S. 
arborariae (c) and; C. tenuis (d). Xylose (closed square), biomass (open square), xylitol (open triangle) and ethanol (open circle). The different scales 
on x-axis highlight different fermentation rates
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The xylose consumption rate was lower under anaero-
bic condition in all evaluated yeasts (Fig. 2). Only S. stipi-
tis and S. passalidarum were able to produce ethanol, and 
even so, xylitol formation also increased when compared 
to other aerobic and oxygen-limited conditions (Figs. 1a, 
b, 2a, b). Insufficient oxygen rate was reported to increase 
xylitol accumulation and to cause poor ethanol produc-
tivity in S. stipitis and S. passalidarum [17]. Despite the 
similar fermentative performances of S. stipitis and S. 

passalidarum under oxygen-limited condition, S. passali-
darum consumed more xylose and produced 50% more 
ethanol than S. stipitis in anaerobic condition (Fig.  2a, 
b). These results are in agreement with those observed 
in previous work, when S. passalidarum showed efficient 
conversion of xylose into ethanol under anaerobic condi-
tion, while the S. stipitis almost did not ferment xylose 
[1]. Another study that assessed the aeration effect on 
xylose fermentation also showed that S. passalidarum 

Table 1  Parameters calculated for xylose fermentation

The fermentative capacities were measurement under aerobic and oxygen-limited conditions. The values are calculated considering the exponential growth phase

Yeasts species Oxygen 
condition

Xylitol (g L−1) Ethanol 
(g L−1)

Xylitol yield 
[Yx/s (g g−1)]

Ethanol yield 
[Ye/s (g g−1)]

Biomass yield 
[Yb/s (g g−1)]

Specific 
xylose con-
sumption [(g 
g−1

cdw h−1)]

Specific etha-
nol produc-
tivity [(g g−1

cdw 
h−1)]

S. stipitis
S. passalidarum
S. arborariae
C. tenuis

Aerobic 0.41 ± 0.06 8.05 ± 0.91 0.01 ± 0.00 0.24 ± 0.02 0.16 ± 0.04 0.30 ± 0.09 0.08 ± 0.03

0.04 ± 0.00 10.06 ± 0.48 0.00 ± 0.00 0.28 ± 0.02 0.33 ± 0.02 0.13 ± 0.02 0.04 ± 0.01

0.27 ± 0.08 8.65 ± 1.16 0.01 ± 0.00 0.25 ± 0.02 0.31 ± 0.05 0.13 ± 0.02 0.03 ± 0.01

8.03 ± 1.48 0.00 ± 0.00 0.30 ± 0.06 0.00 ± 0.00 0.43 ± 0.06 0.02 ± 0.00 0.00 ± 0.00

S. stipitis
S. passalidarum
S. arborariae
C. tenuis

Oxygen-
limited

0.37 ± 0.01 16.48 ± 0.83 0.01 ± 0.00 0.45 ± 0.04 0.09 ± 0.02 0.29 ± 0.09 0.10 ± 0.02

0.05 ± 0.02 16.36 ± 1.40 0.00 ± 0.01 0.44 ± 0.04 0.13 ± 0.04 0.22 ± 0.10 0.10 ± 0.05

1.82 ± 0.66 11.47 ± 2.37 0.04 ± 0.02 0.31 ± 0.02 0.15 ± 0.01 0.09 ± 0.01 0.03 ± 0.01

15.43 ± 1.90 0.00 ± 0.00 0.62 ± 0.04 0.00 ± 0.00 0.14 ± 0.01 0.04 ± 0.01 0.00 ± 0.00
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Fig. 2  Xylose fermentation under anaerobic condition. S. stipitis (a); S. passalidarum (b); S. arborariae (c) and; C. tenuis (d). Xylose (closed square), 
biomass (open square), xylitol (open triangle) and ethanol (open circle)
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(ethanol yield 0.43  g  g−1) is a better native xylose-fer-
menting yeast than S. stipitis (ethanol yield 0.39  g  g−1) 
when a smaller oxygen transfer rate is employed [17].

Although it has been proposed that C. tenuis is capa-
ble of fermenting xylose [10], it showed the poorest 
xylose consumption rates among the four yeasts assessed 
and it was not able to produce ethanol in any condi-
tion evaluated in this study (Figs.  1, 2). In the previous 
work, Wohlbach et  al. [10] showed that C. tenuis pro-
duced approximately 2.0  g  L−1 ethanol during micro-
aerobic fermentation with 8% xylose and high initial cell 
density (OD600  nm of 10) in an Erlenmeyer flask. In our 
study, some change of parameters may have influenced 
the metabolism of C. tenuis, so the xylitol formation by 
this yeast was significant (up to 15.4 g L−1) and ethanol 
was not detected (Figs. 1, 2; Table 1). The approximately 
20 times lower initial cell density (OD600 nm of 0.5, equal 
to 0.2 g L−1), the low flow air rate during oxygen-limited 
fermentation and the usage of defined mineral medium 
instead of yeast extract and peptone may have hampered 
ethanol detection in this work.

Xylose reductase (XR) and xylitol dehydrogenase (XDH) 
activities
Xylose reductase (XR) and xylitol dehydrogenase (XDH) 
activities were measured in crude-cell extracts of S. stipi-
tis, S. passalidarum, S. arborariae and C. tenuis from cells 
growing under aerobic and oxygen-limited conditions. 
S. stipitis, S. passalidarum and S. arborariae presented 
NADH and NADPH-dependent XR activity, whereas C. 
tenuis XR were strictly NADPH-dependent (Table  2). 
While S. stipitis and S. arborariae showed higher NADPH-
dependent XR activity, S. passalidarum showed approxi-
mately 1.5 times higher NADH-dependent XR activity.

The fermentative performances of yeasts under oxy-
gen-limited condition could be directly correlated 
with the capability to use NADH on xylose reduction 
(Tables 1, 2). Indeed, S. passalidarum showed the highest 

ratio of NADH/NADPH XR activity (around 1.30) and 
the best fermentative performance, i.e. higher xylose 
consumption rate and higher concentration of ethanol, 
under anaerobic condition; followed by S. stipitis and S. 
arborariae with ratios around 0.6 and 0.4, respectively 
(Table  2). Candida tenuis, which XR prefers 33-fold 
NADPH over NADH [25] did not produce ethanol at all. 
Accordingly, it was recently shown that S. passalidarum 
possess two XR (genes XIL1.1 and XIL1.2) and one of 
them uses preferentially NADH as cofactor [20].

XR NADH-preference was previously correlated with 
improved ethanol production by engineered S. cerevisiae 
strains [18, 26, 27]. The usage of NADH on xylose reduc-
tion is advantageous because the redox balance in the 
xylose catabolic pathways is optimized, since XDH, the 
next enzyme in the pathway, is strictly NAD+-dependent 
(Table  2) [18]. The NAD+ surplus regenerated during 
xylose reduction would reduce xylitol formation due 
to higher xylose consumption rate, which impact posi-
tively the ethanol yield and productivity [20, 28]. Indeed, 
strategies aiming to increase NAD+ availability during 
fermentation increases xylose consumption rate and 
ethanol production. These include mutations to alter 
cofactor preference of XRs from NADPH to NADH [29], 
addition of external electron donor [30] or expression 
of additional reactions that generated increased NAD+ 
availability [31]. No enzymatic activity was performed 
in the anaerobic condition because the growth was very 
slow and there was no exponential growth phase. Thus, 
only fermentative capacity was compared.

Conclusion
The comparative assessment of the four-native xylose-
consuming yeasts showed that the S. stipitis and S. 
passalidarum have the greatest potential for ethanol pro-
duction from xylose. Both yeasts showed similar ethanol 
yields near theoretical under oxygen-limited condition. 
Besides that, S. passalidarum showed the best xylose 

Table 2  Xylose reductase (XR) and  xylitol dehydrogenase (XDH) specific activities in  crude-cell extracts of  S. stipitis, S. 
passalidarum, S. arborariae and C. tenuis

Yeasts were grown under aerobic and oxygen-limited conditions and samples were withdrawn in the middle of exponential growth phase

Yeasts species Oxygen conditions XR (U mg−1) XDH (U mg−1)

NADH NAD(P)H RatioNADH/NAD(P)H NAD+

S. stipitis
S. passalidarum
S. arborariae
C. tenuis

Aerobic 0.17 ± 0.06 0.23 ± 0.05 0.74 ± 0.13 0.23 ± 0.11

2.96 ± 0.40 2.15 ± 0.12 1.38 ± 0.16 0.30 ± 0.05

0.88 ± 0.13 3.10 ± 0.29 0.29 ± 0.05 0.65 ± 0.07

– 0.35 ± 0.07 – 0.25 ± 0.05

S. stipitis
S. passalidarum
S. arborariae
C. tenuis

Oxygen-limited 0.26 ± 0.07 0.45 ± 0.11 0.59 ± 0.16 0.19 ± 0.08

0.60 ± 0.08 0.46 ± 0.04 1.29 ± 0.07 0.21 ± 0.03

0.77 ± 0.17 1.86 ± 0.25 0.43 ± 0.16 0.12 ± 0.04

– 0.27 ± 0.05 – 0.28 ± 0.06
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consumption and ethanol production under anaerobio-
sis. The better performing yeasts, i.e. with higher xylose 
consumption rate and higher concentration of ethanol, 
during anaerobic xylose showed higher ratio of NADH/
NADPH XR activity.
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