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REVIEW

Dissecting the mechanism 
of temozolomide resistance and its association 
with the regulatory roles of intracellular reactive 
oxygen species in glioblastoma
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Abstract 

Glioblastoma is the most common primary malignant brain tumor that is usually considered fatal even with treat‑
ment. This is often a result for tumor to develop resistance. Regarding the standard chemotherapy, the alkylating 
agent temozolomide is effective in disease control but the recurrence will still occur eventually. The mechanism of 
the resistance is various, and differs in terms of innate or acquired. To date, aberrations in O6-methylguanine-DNA 
methyltransferase are the clear factor that determines drug susceptibility. Alterations of the other DNA damage repair 
genes such as DNA mismatch repair genes are also known to affect the drug effect. Together these genes have roles 
in the innate resistance, but are not sufficient for explaining the mechanism leading to acquired resistance. Recent 
identification of specific cellular subsets with features of stem-like cells may have role in this process. The glioma 
stem-like cells are known for its superior ability in withstanding the drug-induced cytotoxicity, and giving the chance 
to repopulate the tumor. The mechanism is complicated to administrate cellular protection, such as the enhancing 
ability against reactive oxygen species and altering energy metabolism, the important steps to survive. In this review, 
we discuss the possible mechanism for these specific cellular subsets to evade cancer treatment, and the possible 
impact to the following treatment courses. In addition, we also discuss the possibility that can overcome this obstacle.
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Background
Glioblastoma (glioblastoma multiforme, GBM) is the 
most common primary malignant brain tumor. In the 
United States, the annual incidence is 5.26 per 100,000 
population or 17,000 new diagnoses per year [1]. GBM is 
the highest grade of glioma by histologic definition, and 
is the most common and the most aggressive type among 
them [2]. In the latest version of World Health Organiza-
tion classification, GBM is categorized based on presence 

or absence of isocitrate dehydrogenase (IDH) mutation 
[3]. The former usually appears as secondary tumor of 
the lower grade diseases, and occurs in about the forth 
to fifth decades of ages. The latter accounts for 90 % of 
the cases, with most of them occurring in the sixth to 
seventh decades of ages. A recent study with The Can-
cer Genome Atlas (TCGA) project had further identi-
fied four distinct subgroups for advanced glioma based 
on the molecular difference: proneural, neural, classical, 
and mesenchymal [4]. The subclassification differed in 
genetic expression and the factors to determine the sur-
vival advantages [5]. For example, IDH-mutation disease 
had relatively longer duration of the disease course [3], 
and thus, recognition of the proneural type that consisted 
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more of IDH1/2 mutation had its clinical significance [4, 
6, 7]. The aberrations of genes in neural subgroup were 
more typified of neuron markers [4]. Finally, the classi-
cal and the mesenchymal types, which were more related 
to EGFR and NF1 aberrations, respectively, benefit with 
more intensive treatment. Altogether, identifying the 
subgroup characteristics would potentially support clini-
cians in making the treatment decision [4].

Comparing to the other malignancies, GBM is rela-
tively rare but desperate. The 2-year survival rate is only 
26.5 %, which has one of the worst outcomes regarding 
the advancement of latest treatment strategies [8]. Even 
applying the standard management with surgical inter-
vention is sometimes questionable to gain benefit in dis-
ease control. In general, extensive resection is suggested 
to yield survival advantage, and the relatively conserva-
tive stereotactic biopsy is performed only in patients 
who have inoperable tumors that are located in critical 
areas [8]. This procedure, however, often accompanies 
with neurological complications, limiting its extent for 
tumor eradication. As thus, aggressive management with 
adjuvant therapy is necessary to maximize the treatment 
effect. Disappointedly, only limited reagents are consid-
ered contributable to disease control. The most widely 
used anti-tumor agent is radiotherapy and temozolo-
mide (TMZ), a chemotherapy that acts as an alkylating 
agent to cause lethal DNA damage. The other drugs such 
as carmustine (BCNU) sponge, alternating electric field 
therapy (tumor-treating fields device, or TTFields), beva-
cizumab, cisplatin are active but again, with modest effect 
in disease control. Novel targeting therapies, such as pep-
tide cancer vaccine against EGFR variant III or immune 
checkpoint inhibitors, were expected to be successful but 
ended up with disappointment [9, 10]. In summary, not 
much option is available for treatment.

As being the standard systemic treatment agent, TMZ 
is a second-generation imidazotetrazine lipophilic prod-
rug. Currently, it is perhaps the most important systemic 
drug in GBM treatment. It works by hydrolyzing into its 
active metabolite 5-(3-dimethyl-1-triazenyl) imidazole-
4-carboxamide. The reactive methyldiazonium ion is 
then formed to methylation-associated residues in the 
DNA molecule at O6- and N7-methylguanine (MeG) or 
N7-methyladenine (MeA). Regarding O6-MeG, when 
DNA mismatch repair (MMR) enzymes attempt to excise 
the modified nucleotide, they generate single- and dou-
ble-strand breaks in the DNA that lead to activation of 
apoptotic pathways if no further repairment is available 
[11]. The drug has been proven with robust data alone or 
with radiotherapy in clinical trials and retrospective stud-
ies, earning the unequivocal role for treatment of the dis-
ease [11–14]. In a clinical trial, patients received standard 
TMZ/radiotherapy yielded significantly better survival, 

with 9.8 % of them survived five years after diagnosis [12]. 
In the TMZ era, the mean survival of glioblastoma in 
patients age 20–29 could be as long as 31.9 months, high-
lighting the significant effect of the drug [13]. Those with 
extremely long survival of more than 4 years are featured 
with lacking O6-methylguanine-DNA methyltransferase 
(MGMT, or O6-alkylguanine DNA alkyltransferase) but 
not the other molecular subclassification [15]. Most of all, 
the drug is capable of penetrating the blood brain barrier, 
giving the area under curve of cerebrospinal fluid approx-
imately 20 % of the systemic TMZ exposure [16]. With its 
superb activity in GBM, the drug has been approved for 
the treatment with radiation and after for maintenance.

Even with the successful data after introduction of 
TMZ, the disease, however, remains far from optimal 
control in clinical aspect. Limited therapeutic efficacy 
has been a major issue due to eventual failure of the 
treatment. Despite of the initial response, development 
of resistance is almost inevitable, with 90 % of patients 
suffering from early disease recurrence [12]. The remain-
ing course after recurrence is often dismal, and exhibits 
more deteriorated and resistant nature to the early one. 
In this article, we review the probable causes leading to 
the failure of this chemotherapeutic agent. This includes 
the theories from DNA to cellular levels, and thus, pro-
viding an overall understanding of the resistant mecha-
nism against TMZ.

Limitation in theory of TMZ resistance related 
to DNA repairing mechanism
Understanding the resistance mechanism is necessary to 
help to develop potential strategies against the dilemma. 
To date, MGMT is the best-known factor leading to 
resistance of TMZ in GBM [17, 18] (Fig. 1). Inarguably, 
the factor has been clinically evidenced to contribute the 
innate tumor resistance against TMZ but not radiother-
apy [19]. Presence of MGMT enables cells to remove the 
alkyl groups from the O6 position of guanine to reverse 
the cytotoxicity of TMZ [20]. The challenge for this fac-
tor to predict treatment outcome, however, is to deter-
mine the most reliable and relevant detecting methods. 
Unfortunately to date, this remained unconfirmed [21]. 
Because of complicated regulatory mechanism, relying 
upon promoter research may not be sufficient [22]. This 
would leave small but certain number of patients to ben-
efit from chemoradiotherapy even with lacking MGMT 
promoter methylation [23]. In addition, presence of this 
DNA repairing gene provides only partial explanation for 
the resistance because about half of patients express the 
protein and 43–47.5 % of patients have MGMT promoter 
methylation silenced [24, 25]. Nevertheless, our under-
standing of MGMT tends to be helpful in predicting the 
prognosis of disease. In a large phase III clinical trials 
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with 833 newly diagnosed patients receiving standard 
or dose-dense TMZ, stratification with the status of the 
MGMT promoter identified improved survival data in 
methylated groups [26]. Moreover, the role for the gene 
status to guide application of TMZ is in suggestive. Two 
phase III trials, one in general and the other in elderly 
populations, suggested effectiveness of adding TMZ to 
radiotherapy in patients with methylated MGMT disease 
[12, 27]. To date, MGMT is the best known but not the 
only determinant in TMZ susceptibility.

The general understanding of DNA repairing mecha-
nism, derived from DNA single-strand break or dou-
ble-strand break, suggests activation of the other DNA 
damage repair (DDR) genes may also have roles, espe-
cially in lab research, but requires more evidences to 
elucidate [28]. As being the key factor to generate TMZ 
toxicity, the deficiency in MMR can have association 
with the resistance (Fig.  1). In a TCGA study, mutation 
of MSH6, a DNA mismatch repair gene, in post-treat-
ment samples were identified to be associated with TMZ 
resistance [29]. In addition, this may have severe conse-
quence by accelerating mutagenesis in resistant clones 
that could promote the neoplastic progression [30]. 
There was challenge in this theory, however, that only 

3 % of 70 clinical samples showed single loci microsatel-
lite instability (MSI) while no sample was with high MSI 
[31]. The rarity of alterations in promoter methylation 
was also confirmed by Felsberg, et al., showing only 9 in 
80 patients and none in 43 patients had altered meth-
ylation in MGMT and in DNA mismatch repair genes 
including MLH1, MSH2, MSH6, and PMS2, respectively 
[32]. On the other hand, the authors found decreased 
expression of these MMR proteins in the recurrent tis-
sue. Though controversy remains for each single factor to 
determine TMZ susceptibility, the DDRs associated with 
the modulation by TMZ in O6-MeG are suggested to 
have net impact in the resistance. As thus, recent studies 
put together MGMT, MMR, nucleotide excision repair 
(NER), homologous recombination (HR) for prediction 
of the drug response [33]. Finally, despite of fewer roles 
in N7-MeG to relate with TMZ drug cytotoxicity, cells 
proficient at repairing with base excision repair (BER) 
enzyme, the major targeting repairing protein, was also 
reported to cause resistance [2] (Fig. 1).

Setting up histological criteria based on the aforemen-
tioned DDRs is seemingly practicable and can contribute 
to personalized algorithm in guiding patients to receive 
the most appropriate treatment [23]. However, this only 

Fig. 1  Schema of classical model of the pharmacology mechanism causing temozolomide (TMZ) resistance. Methylation of O6, N3, and N7 
in DNA can be modulated by the drug. Repairing response through DDR can cause divergent results. As the notable factor targeting majorly 
on O6-methylguanine, presence of MGMT leads to salvage for the cells to survive, and thus, will have negative impact to drug susceptibility in 
terms of the drug effect. Without adequate rescuing action, futile repairment will lead to single- or double-strand break, leading to associated 
reaction causing cell death. Me methylation, SSB single-strand break, DSB double-strand break, BER base excision repair, MPG N-methylpurine DNA 
glycosylase
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applies to prediction of drug response related to innate 
resistance, and is not avoidable for eventual treatment 
failure. In addition, the theory is only applicable of cel-
lular level and ignores the impact of heterogeneity and 
the microenvironment that also compose for the tumor 
[34]. Regarding the complexity, it is doubtful that DDRs 
are fully responsible for all the mechanism in resist-
ance. This is especially of noted in terms of acquired 
resistance, which the roles of DDRs remain ambiguous. 
Unlike the findings in rodent models [17], studies to 
date on whether anti-cancer therapies are responsible 
for inducing MGMT in humans have been inconclusive 
[35]. Much question remains regarding of cells to acquire 
resistance, suggesting more complicated and multi-facto-
rial mechanisms.

Dissecting the role of cancer stem‑like cells in TMZ 
resistant mechanism
Limitation in DDR to fully explain the resistant mecha-
nism gives rise to other theories such as cancer stem-like 
cells (CSCs) model, which represents specific subsets 
in the heterogeneous tumors accountable for acquiring 
treatment resistance and turning into more aggressive 
form [36]. These are characterized as the cells possess-
ing self-renewal and multipotent properties [37]. The 
hypothesis suggests the cells possessing more intracta-
ble and resistant features, and is responsible for the dis-
ease recurrence after treatment [36]. In prostate cancer, 
for instance, enrichment of the CSC subpopulation after 
recurrence was characterized as lacking expression of 
androgen receptors and prostate specific antigen, indicat-
ing it to be no longer relying on hormone [38]. In GBM, 
this was supported by glioma cells carrying the stemness 
gene Nestin that could propagate the recurrence of GBM 
following TMZ treatment [39]. The specific subsets 
empowered with the features of stem-like cells were evi-
denced to take advantage in withstanding the treatment 
toxicity. The leukemia study showed that tumor specific 
treatment promotes outgrowth of the minor subsets with 
resistant power, with the initiating properties crucial in 
reserving the cells [40]. In a GBM study, tracing of the 
individual subpopulations showed their capability of 
phenotype adjustment, with outgrowth of specific ones 
determined by the adaptation speed to stress [41]. The 
theory remains worthwhile to define the phenomenon 
regarding explanation of the acquisition model in drug 
resistance.

Nevertheless, the theory often comes with controversy 
[42]. Inconsistent conclusion is often made between 
studies to studies because of the over-simplified meth-
ods for detection. For example, biomarker study without 
functional concerns may result in misleading recogni-
tion of the “CSC” subsets. Notably, application of CD133 

as a universal phenotype marker in glioblastoma could 
be irrelevant [43]. This may be related to emergent 
understanding of the theory to have more commonality 
between clonal evolutions and CSC models [44], high-
lighting plasticity and dynamic of CSC features to adapt 
themselves against external microenvironment [45]. In 
other word, even the cells carrying the stemness features 
are also very dynamic and heterogenic in expression and 
function [46], and thus, application of single biomarker as 
representative of this specific group is insufficient [47]. In 
fact, in colon cancer, there were discordance between the 
stem cell-like features and the phenotype markers [48]. 
Regarding the complexity, comprehensive functional 
analysis to characterize the cells is hence mandatory [37], 
including functional characteristics such as substantial 
self-renewal, persistent proliferation, and tumor initia-
tion. Specific methods, such as serial transplantation in a 
xenograft assay for self-renewal test, are applied to iden-
tify their ability [49]. Importantly, it is worth to note that 
cell lines often diminish or lose the ability of initiation 
and maintaining the cancer during long-term culture 
process. Even with keeping the stem-cell properties, the 
long-established cell lines were found to lose the nature 
of the disease such as incapable to form neuronal differ-
entiation [50]. The relevant researches of these features 
thereby depends more on patient-derived xenograft tis-
sue, which has the advantage in maintaining their prop-
erties because of avoiding differentiation by long-term 
culturing with serum-containing medium [50]. To sum-
marize, functional studies of CSCs in cell lines can pro-
vide validation for stem-cell features [51].

Conventionally, drug resistance of CSCs is caused 
by abundant ATP-binding cassette (ABC) transporters 
expression in the cells. These proteins enable the cells 
to pump out drugs before intracellular damage occurs, 
allowing them to withstand the drug toxicity. The asso-
ciations of the ABC transporters and CSCs are close, 
providing basic theory for “side population (SP) assay” 
to identify them [52]. This methodology somehow has 
limitation because certain normal tissue expresses the 
protein, and some CSC populations do not express it 
[53]. In regard with brain tissue, the ABC transporters 
is characterized between the barriers of blood and brain 
or blood and cerebrospinal fluid barrier, and is respon-
sible for poor penetration of the drug [54, 55]. The fact 
turns to bring troublesome for applying SP assay to iden-
tify the CSC subpopulation in GBM since the barriers is 
often involved in the disease [56]. Of note, the specific 
cells isolated by SP assays in GBM cell lines and the pri-
mary tumor cells was not associated with cell capability 
of the self-renewal phenotype [57]. Further analysis of 
patient-derived xenograft revealed cells with SP iden-
tity was composed of the brain endothelial cells and was 
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non-tumorigenesis [58]. These concluded the ABC trans-
porters may not or are only partly involved in the resist-
ant mechanism of GBM CSCs.

Superior regulation of reactive oxygen species 
(ROS) in glioma stem‑Like cells (GSCs)
Adaption of tumor cells is critical for their facing con-
stantly fluctuating stress from internal environment or 
from anti-tumor treatment. With regard to TMZ, the 
drug itself and its analog TMZ-perillyl alcohol conju-
gate, were shown to up-regulate ROS production in 
GBM cells and non-small cell lung cancer cells, respec-
tively [59, 60]. ROS is paradoxically critical both in the 
promotion of cancer progression and the induction of 
a detrimental cytotoxic response [61]. In fact, the main 
components of ROS include superoxide (O2

•−), hydro-
gen peroxide (H2O2), and hydroxyl radical (•OH) [62]. 
Presence of superoxide is essential for cells to potenti-
ate receptor tyrosine kinases (RTKs) such as EGFR and 
VEGFR [63, 64], in which the signaling aberrations are 
often related to the carcinogenesis of GBM [65]. As thus, 
several reports have shown that inhibition of ROS with 
N-acetylcysteine or ascorbic acid to decrease the risk of 
the disease [66–69]. On the contrary, unlike the physiol-
ogy one, ROS generated by the treatment was through 
increase of excessive superoxide to induce the DNA dam-
age response. Therefore, alleviation of ROS may miti-
gate the drug response, which interferes tumor control 
[70]. Multiple factors can be involved in this regulation. 
Nuclear factor-erythroid-2–related factor 2 (Nrf-2) is the 
most well-known regulator [71, 72]. In regard with TMZ, 
specific protein 1 (Sp1) was also triggered by ROS [73, 
74], and was known to be a factor in the tolerance of the 
treatment-induced ROS [75]. This was through modula-
tion of a ROS scavenging protein, superoxide dismutase 
(SOD) 2, and hence altered the regulation of oxidative 
stress and energy metabolism [76]. As thus, it is not sur-
prising that certain cells possess an enhanced activity of 
antioxidant to tightly regulate ROS levels, thus maintain-
ing viability and avoiding oxidative stress from anticancer 
therapy.

  Cell-based regulation of ROS is critical. Extrinsic 
sourced and endogenously generated reactive oxidants 
are continually infused to cells by balancing of metabo-
lized oxygen. This is a physiologically regulated process, 
with deregulation leading to oxidative stress and patho-
logic consequence of cells [77]. Organelles such as mito-
chondria and endoplasmic reticulum, as well as enzymes 
including NADPH oxidases, xanthine oxidase, nitric 
oxide synthase and peroxisome, generate ROS. This leads 
to production of superoxide, which itself is only limited 
in impact. With the mid-product, secondary radical spe-
cies can be generated after its variable reactions that yield 

multiple ROS and reactive nitrogen species, for example, 
hydrogen peroxide (H2O2) and peroxynitrite (ONOO−) 
[78]. Superoxide and its derivatives, especially H2O2, have 
crucial roles in promoting cellular proliferation, migra-
tion, and pathogen defensive mechanism [79] (Fig.  2). 
On the other hand, accumulation of the species can bring 
stress to cells. As thus, strict regulation of the product is 
essential to avoid oxidative damage from stress overload 
and for the maintenance of cell viability [80].

As of the regulatory mechanism, the ROS scavengers 
are the mainstay for the reaction. The protein family was 
composed of multiple enzymes including SODs, cata-
lase, and glutathione peroxidase (GPx), with each having 
different role in the different stages required to convert 
superoxide into water and oxygen [81]. In regard with the 
first step of this reaction, three classes of dismutases are 
involved and distributed in different area of cells. SOD1 
is spread in cytoplasm in majority to regulate the super-
oxide from NADPH oxidase reaction and cytochrome 
p450-monooxygenases in the endoplasmic reticulum. 
SOD2 is located in mitochondria, which the electron 
transport chain of mitochondria is the main sources to 
generate electron for superoxide formation. There is 
another dismutase, SOD3, located in the extracellular 
space, having various important roles in pathophysiology 
such as hypertension [82]. The proteins possess different 
catalytic metal ions, with SOD1 and SOD3 through Cu/
Zn and SOD2 through Mn. By this reaction, superoxide 
is catalyzed to H2O2 and oxygen. The process continues 
with the hydrogen peroxide reduced to H2O and O2. This 
will need the involvement of catalase or GPx (Fig. 2).

Regarding the heterogeneity by cell-to-cell bases in 
tumor tissue, it is not surprising some cells have supe-
rior ability in regulating ROS. As aforementioned, the 
CSC subsets are with altered cellular features. Since 
external factors such as hypoxia plays crucial role in 
contribution of resistance in tumor tissue, the specific 
subsets can take advantage from the extreme condition 
[83]. GSCs, the CSCs specified in glioma, are preferably 
concentrated by perivascular, hypoxic, invasive niches 
regarding with the microenvironments [84]. The micro-
environment was suggested to have role in treatment 
resistance, possibly through enrichment of GSCs [85, 
86]. In neural stem cells, presence of hypoxia promotes 
cell differentiation and proliferation, suggesting how 
the external factor impacts [87]. In presence of hypoxia, 
the stemness features in GSC may lead to dominant 
expression of MGMT by increasing function of hypoxia 
inducible factors [88–90]. In addition, as being one 
of the stem cell factors, the polycomb group protein 
Bmi-1 was shown to have a crucial role in the GSCs 
homeostasis in response of ROS stress [91]. The acti-
vation of this factor is associated with radioresistance 
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through the recruitment of DDRs [92]. Supportively, in 
a study by Garnier, et al., the appearance of DDRs was 
suggested to be a result of stochastic and unpredictable 
development from divergent evolution based on GSCs 
[93]. It is thus interesting that aberration of genetic 
repairing factors is related to CSCs and ROS in terms of 
resistance in GBM.

In cellular level, mitochondria are one of the most 
important organelles in adjusting against the external 
stress. It is not surprising for CSCs to have invigorated 
mitochondrial dynamics that offers advantage in with-
standing the tough environment [94]. Mitochondria 
contribute to cancer in multiple aspects and seemingly 
have roles in progression and chemoresistance [95, 96]. 
Especially for treatment that works through generat-
ing excessive ROS such as TMZ treatment with or with-
out radiotherapy, this would be of concern because the 
majority of ROS regulation in the cells takes place in 
mitochondria. In terms of the CSCs, the appearance of 
mitochondria differs from the differentiated cells by dem-
onstrating underdeveloped structure such as more sparse 
and fragment with limited cristae. The CSCs also appears 
with less mitochondrial DNA. This is in reflex of cells to 
process high glycolytic flux and keeping itself in lower 
ROS, which may functionally support the self-renewal 
ability and the genome maintenance [94, 97]. With the 
acquisition of chemoresistance, a study showed that 
mitochondria responded to TMZ genotoxic stress with a 

major contribution from alternation of cytochrome c oxi-
dase [98].

To maintain in a lowered ROS and possibly to with-
stand the cytotoxicity of cancer treatment, altered meta-
bolic reprogramming by mitochondrial control in cancer 
may play a critical role [96, 99]. Many cancer cells rely 
on glycolysis over oxidative phosphorylation [100]. This 
is known as Warburg effect, which allows cancer cells to 
utilize the byproduct of glycolytic flux for synthesis of 
fatty acids, amino acids, and nucleotides. In addition, the 
production of lactate can be released to microenviron-
ment and to feed adjacent oxidative cancer cells and to 
promote angiogenesis [101]. For the stemness-featured 
cells, glycolysis utilization is even more favored compar-
ing to the differentiated cells [102]. Glycolysis reduces 
ROS production that can be destructive to DNA, keeping 
longevity of genome maintenance. More importantly, the 
derivations of cytosolic acetyl-CoA are critical for these 
cells to maintain histone acetylation and pluripotency 
[103]. With the feature, it is not surprising for CSCs, 
which possess superior regulation to maintain in lower 
ROS, to evade the effect of the treatment that delivers 
excessive ROS to the cells. Altogether, the theory high-
lights how the microenvironment and the anti-cancer 
therapy impact the CSC features to take advantage. In 
head and neck cancer cells, the specific subsets exhibited 
superior superoxide adjusting ability to withstand cispl-
atin treatment, which was also known to induce excessive 

Fig. 2  Schema of mechanism with involvement of ROS-related factors to take place in mitochondria in temozolomide (TMZ) resistance. Toxicity 
of TMZ induces excessive superoxide generation which requires activation of ROS scavengers to detoxify. Accumulation of ROS, on the other 
hand, promotes tumorigenesis. The two-handed sword effect of ROS induced by TMZ can end up in sparing the intractable cells that have 
superior regulatory ability. The remaining cells that survive chemotherapy will thus thaw and replace the vulnerable counterparts. Cat catalase, 
GR glutathione reductase, GSH glutathione, GSSG glutathione disulfide
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ROS [104]. In GBM, we suggested that acquisition of 
TMZ resistance was a result of enriched cells with stem 
cell properties with enhanced SOD2 [105]. Finally, with 
the advanced methodology such as tracing system in the 
cells expressing stemness features, we expect the role of 
the specific subsets in drug resistance will be revealed in 
the future [106].

Clinical implication regarding GSCs and TMZ 
resistance
As reviewed above, utilization of ROS and the altered 
mitochondria functioning in CSCs are critical for these 
specific subsets to survive and thrive from TMZ toxicity. 
This may also affect the effect of re-applying the current 
treatment or changing to the next-line treatment since 
many of the current therapy relied on ROS induction. For 
example, the ionizing radiation achieves tumor control 
by inducing oxidizing events that is harmful for DNA. 
Multiple chemotherapy agents achieve to control the 
disease by association with eliciting ROS reaction [107]. 
It was noted that induction of oxidative stress enhanced 
the effect of BCNU while presence of anti-oxidant alle-
viates the effect [71, 108]. Though not the standard rea-
gent, the effect of widely-used cisplatin was also inferior 
in low-ROS exhibiting CSCs [104]. Recently approved 
TTFields contributes to the disease control by low-inten-
sity electric fields that blocks cell division and interferes 
with organelle assembly [109]. The fact that sorafenib 
enhanced the effect of TTFields through increasing ROS 
to promote apoptosis also brings to worrisome in cross-
resistance [110]. In general, replacement of the tumor 
cells that has superior capability in dealing with ROS 
can be troublesome in salvage treatment with the other 
anti-tumor strategies, which is a characteristic for the 
acquired resistance.

Strategies should be made to avoid the cross-resistance. 
Bevacizumab, which is an approved targeting therapy 
against VEGF, can be chosen with less impact in ROS. 
The other methods are active studying for tumor mark-
ers associated with anti-oxidant factors, such as Nrf-2 
or SOD2. Direct modulation of ROS may also avoid 
the resistance or enhance the treatment [111]. Down-
regulation of glutathione reductase can resensitize the 
resistant GBM cells to TMZ or cisplatin [112]. In our 
previous studies, application of Sp1 or SOD inhibitor 
could down-regulate TMZ-induced ROS and promoted 
the cytotoxicity of resistant cells [75]. Metabolism of gly-
colysis is served as new target [113]. In addition, recent 
understanding of autophagy in protecting the cells from 
cytotoxicity also reveals the association with ROS and 
mitochondrial alteration [114–117]. As thus, applica-
tion of chloroquine treatment to block autophagy can 
induce the increased production of intracellular or 

mitochondrial ROS [118, 119]. This will also cause accu-
mulation of damaged mitochondria or oxidative stress 
[120, 121]. Finally, the plasticity model for CSC suggests 
epigenomic regulation crucial for the features to con-
vert in cells [122]. With the enthusiasm of CSC studies 
recently, targeting the relative factors is on the way for 
clinical trials [123]. As thus, specific strategies such as 
applying a histone deacetylases inhibitor, suberoylanilide 
hydroxamic acid, could be studied for the potential strat-
egies in reducing or overcoming the resistance [124].

Conclusions
Limited breakthrough has been achieved in GBM treat-
ment in the past few years. Before the major leap to 
happen, inspection of the tumor biology is potentially 
contributable in optimizing treatment to improve the 
disease outcome and in developing novel therapeutic 
strategies. Regarding the underlying resistant mechanism 
of TMZ, rationales were suggested to combine the first-
line drug along with simultaneous suppression over the 
higher protection mechanisms of the stem-like cells to 
seek for opportunity to enhance the drug efficacy. This 
can possibly be achieved by modulating selective factors 
related to these specific subsets, such as enhancement of 
antioxidant enzymes, energy metabolism, and adaptation 
in the microenvironment. Though the inhibition may 
not be straightforward, the rationale suggests a potential 
framework to benefit cancer treatment.
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