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Abstract

Psychiatric disorders (such as bipolar disorder, depression, and schizophrenia) affect the lives of millions of
individuals worldwide. Despite the tremendous efforts devoted to various types of psychiatric studies and rapidly
accumulating genetic information, the molecular mechanisms underlying psychiatric disorder development remain
elusive. Among the genes that have been implicated in schizophrenia and other mental disorders, disrupted in
schizophrenia 1 (DISC1) and glycogen synthase kinase 3 (GSK3) have been intensively investigated. DISC1 binds
directly to GSK3 and modulates many cellular functions by negatively inhibiting GSK3 activity. The human DISC1
gene is located on chromosome 1 and is highly associated with schizophrenia and other mental disorders. A
recent study demonstrated that a neighboring gene of DISC1, translin-associated factor X (TRAX), binds to the
DISC1/GSK3β complex and at least partly mediates the actions of the DISC1/GSK3β complex. Previous studies also
demonstrate that TRAX and most of its interacting proteins that have been identified so far are risk genes and/or
markers of mental disorders. In the present review, we will focus on the emerging roles of TRAX and its interacting
proteins (including DISC1 and GSK3β) in psychiatric disorders and the potential implications for developing
therapeutic interventions.
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Background
Mental disorders (such as bipolar disorder, depression,
and schizophrenia) have recently become great concerns
because of the resultant heavy social and economic bur-
dens on societies [1–3]. Rapidly progressing genetic
technologies have provided many details regarding the
genetic nature of mental disorders. Among the genes
that have been revealed by genetic analyses of schizo-
phrenia and other mental disorders, the function of
disrupted in schizophrenia 1 (DISC1) has been inten-
sively investigated. Biochemical investigations suggest
that DISC1 is a scaffold protein that regulates various
cellular functions (including cytoskeletal processes, intra-
cellular transport, dendritic spine development activities,
neuronal development, the cAMP-signaling pathway, and

DNA repair) by interacting with various proteins [4–12].
Thus, DISC1 has been considered as a hub protein for
schizophrenia and possibly other mental diseases
(Table 1).
Previous genetic studies have associated DISC1 and a

neighboring gene (translin-associated factor X, TSNAX)
with multiple mental disorders (e.g., schizophrenia, bipo-
lar spectrum disorder, and major depressive disorder)
[13–15] (Table 1). TRAX was initially identified as a
binding partner of an RNA/DNA-binding protein (trans-
lin [16]). Further investigations revealed that similar to
DISC1, TRAX regulates distinct cellular functions by
selectively binding to designated partner(s). Moreover,
the list of TRAX-interacting proteins overlaps with that
of DISC1 (Table 2). Both TRAX and DISC1 are involved
in facilitating DNA repair [5]. Chien et al. demonstrated
that TRAX forms a complex with DISC1 and GSK3β in
the cytoplasmic region of resting neurons. Upon stresses
that cause oxidative DNA damage, inhibiting GSK3β
causes the TRAX/DISC1/GSK3β complex to dissociate
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and release TRAX to facilitate ATM-mediated DNA
repair [5]. Because the incomplete repair of oxidative
DNA damage may contribute to the development of
psychotic disorders [1, 17, 18] and because TRAX and
many of its interacting proteins (Table 1) are risk genes
and/or markers of mental disorders, the present review
focuses on the emerging role of TRAX/DISC1 interac-
tome(s) in DNA repair as well as their potential implica-
tions in psychiatric disorders.

DNA damage, oxidative stress, and mental health
Reactive oxygen species (ROS) are usually generated
through mitochondrial oxidative reactions [19]. Exces-
sive ROS levels are a source of oxidative stress, which
causes oxidative damage to DNA, proteins and lipids. ROS
can attack the nitrogenous bases and sugar-phosphate
backbone of DNA to cause single- and double-stranded
DNA breaks that ultimately lead to genetic mutations and
toxicity [20]. When cells are subjected to increased levels
of ROS and reactive nitrogen species, multiple cellular
impairments (e.g., oxidative DNA damage) occur [21].
Accumulating evidence suggests that elevated ROS levels
and the resultant oxidative damage are major factors in
human health and diseases [21–24]. Because the brain uses
approximately 20% of the total oxygen in the body and
generates significant amounts of free radicals, the brain is
more susceptible to oxidative stress than other or-
gans. Moreover, elevated ROS levels have been impli-
cated in most neurological diseases (such as mental
disorder and neurodegenerative diseases) [25–27]. Ele-
vated levels of serum oxidative markers (such as

8-hydroxy-2′-deoxyguanosine, 8-OHdG) have also
been reported in patients with trauma or diseases of
the brain [28–31].
Ample evidence suggests that increased oxidative

stress, which may cause oxidative DNA damage and
mitochondrial dysfunction, is a common feature of men-
tal disorders in the brain. Mitochondrial dysfunction is
associated directly with elevated levels of oxidative stress
and the progression of mental disorders [18, 19, 32]. For
example, the nuclear gene expression levels of mito-
chondrial proteins, including electron transport chain
(ETC) complexes I–V, are significantly decreased in the
hippocampus and postmortem frontal cortex of patients
with bipolar disorder and schizophrenia [33–35]. It is
important to note that ETC complex I is one of the
major sources of ROS in mitochondria. Moreover, the
expression levels of NADH:Ubiquinone oxidoreductase
core subunit v2 (NDUFV2), a mitochondrial complex I
subunit gene, were decreased in lymphoblastoid cell
lines derived from patients with bipolar disorder [36].
These findings indicate that mitochondria dysfunction is
a major factor that contributes to the development of
mental disorders, including bipolar disorder and schizo-
phrenia [19]. Another important feature of the brains of
patients with mental disorders is an imbalance in the
levels of dopamine and glutamate (for a review, see
[37]). Accumulating evidence suggests that hypofunction
of NMDA receptors was observed in schizophrenia
[38, 39]. Several NMDA receptor antagonists (e.g.,
phencyclidine and ketamine) therefore have been shown
to induce schizophrenia-like symptoms [40, 41]. Other

Table 1 Potential involvement of TRAX-interacting proteins in three psychiatric disorders

Binding partner Full name Gene name Schizophrenia Autism Panic attack

A2AR [5, 132, 134] A2A adenosine receptor ADORA2A Drug target [164–166] Risk gene (#) Risk gene [167]

Akap9 [168] A-kinase anchoring protein 9 AKAP9 Risk gene [169, 170] Risk gene
(#, [171–173])

Risk gene [167]

ATM [137] Ataxia telangiectasia mutated ATM Risk gene [139, 174] – –

C1D [136] nuclear matrix protein C1D C1D (1) Risk gene (*) – –

(2) Drug target [175]

DISC1 [5] Disrupted in schizophrenia 1 DISC1 (1) Risk gene (*) Risk gene [176, 177] Risk gene [167]

(2) Drug target [116, 178]

GSK3β [5] Glycogen Synthase Kinase 3 Beta GSK3B (1) Risk gene (*) Risk gene [179, 180] Risk gene [181]

(2) Drug target [182]

KIF2A [134, 183] Kinesin Family Member 2A KIF2A Risk gene (*) – –

MEA2 [168] Male-enhanced antigen 2 MEA2 – – –

PLCβ1 [184, 185] Phospholipase C Beta 1 PLCB1 Risk gene (*, [185–187]) Risk gene (#, [188]) –

SUN1 [168] SUN domain-containing protein 1 SUN1 – – –

Translin [126–128, 130, 189, 190] Translin TSN Risk gene [191, 192] Risk gene (#, [193]) –

TRAX-interacting protein-1 [22] Translin Associated Factor X
Interacting Protein 1

TSNAXIP1 Risk gene [194] – –

The corresponding references are listed in parentheses. “-”, no information. *, http://www.szdb.org/score.php. #, https://gene.sfari.org/database/human-gene/
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studies reported that hypofunction of synaptic NMDA
receptors are detrimental to neurons. Activation of synap-
tic NMDA receptors promotes signaling pathways that
have been implicated in neuronal survival [42]. Thus, the
enhancement of NMDA receptor function may serve as a
potential therapeutic strategy for patient with schizophre-
nia. It should be noted that excess glutamate causes
calcium influx and subsequently facilitates the generation
of ROS [43, 44].
In addition to high oxidative stress levels, impaired

DNA repair is also a pathogenic feature of mental disor-
ders [1]. Many genes involved in DNA repair or DNA
damage detection have also been implicated in mental
disorders. For example, variants of genes involved in
DNA repair, such as x-ray repair cross complement-
ing 1 (XRCC1), XRCC3, human 8-oxoguanine DNA
N-glycosylase 1 (hOGG1), and xeroderma pigmentosum
group D (XPD), have been documented in schizophrenia
pathophysiology [2]. Improving DNA repair is thus a

possible strategy for developing therapeutic interventions
for mental disorders. In the present review, the emerging
role of a new set of risk genes (DISC1, GSK3β, and TRAX)
for mental disorders in the repair of oxidative DNA dam-
age will be discussed.

GSK3
GSK3 was originally identified as a highly specific
serine/threonine kinase for glycogen synthase in rabbit
skeletal muscle [45]. There are two types of GSK3,
GSK3α and GSK3β, and these are encoded by two differ-
ent genes that share 83% identity in humans [46]. GSK3
activity can be regulated positively by the phosphoryl-
ation of GSK3α and GSK3β at Tyr279 and Tyr216, re-
spectively [47], and negatively by the phosphorylation of
GSK3α and GSK3β at Ser21 and Ser9, respectively [48, 49].
The phosphorylation of Tyr279-GSK3α and Tyr216-GSK3β
are intramolecular autophosphorylation events [50],
whereas the phosphorylation of Ser21-GSK3α and Ser9-

Table 2 Pathways interacting with DISC1 and/or TRAX

Pathway Binding partner Full name Interaction with TRAX Interaction with DISC1

cAMP/PKA A2AR [5, 132, 134] A2A adenosine receptor + [132] Nd

Akap9 [168] A-Kinase Anchoring Protein 9 + [168] + [194, 195]

ATF4 Activating Transcription Factor 4 nd + [194, 196, 197]

ATF5 Activating Transcription Factor 5 nd + [194, 198–200]

ATF7IP Activating Transcription Factor 7 nd + [194]

D2R Dopamine D2 receptor nd + [146]

PDE4B Phosphodiesterase 4B nd + [8, 194, 201]

PDE4D Phosphodiesterase 4D nd + [194, 202]

Wnt signaling GSK3β [5] Glycogen Synthase Kinase 3 β + [5] + [5, 7, 194]

β-catenin Catenin β-1 nd + [7, 194, 203]

DIXDC1 DIX Domain Containing 1 nd + [194, 204]

TNIK TRAF2 And NCK Interacting Kinase nd + [194, 205, 206]

WNT3A Wnt Family Member 3A nd + [194]

Intracellular Transport Dynactin Dynactin nd + [207]

FEZ1 Fasciculation And Elongation Protein Zeta 1 nd + [208, 209]

HZF Haematopoetic zinc finger nd + [12]

KIF1B Kinesin Family Member 1B nd + [12]

KIF2A Kinesin Family Member 2A + [134, 183] nd

KIF5A Kinesin Family Member 5A nd + [11, 12]

Miro1/2 Mitochondrial Rho GTPase 1/2 nd + [9, 210]

SNPH Syntaphilin nd + [10]

TRAK1/2 Trafficking kinesin protein-1/2 nd + [9]

Translin Tanslin + [211] nd

DNA repair ATM ataxia-telangiectasia mutated + [137] nd

C1D nuclear matrix protein C1D + [136] nd

Rad21 Double-strand-break repair protein rad21 homolog Nd + [212, 213]

Accumulating evidence suggests the involvement of DISC1/TRAX in several signaling pathways and machineries that mediate a wide variety of cellular functions.
+, direct interaction. nd, not determined. The corresponding references are listed in parentheses
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GSK3β can be mediated by several kinases, including
AKT [51] and protein kinase A (PKA) [52]. Both GSK3α
and GSK3β are expressed highly in the mouse brain [53],
whereas GSK3β is mainly expressed in the human brain
[54]. GSK3β is thus expected to play a critical role in the
brain.
As a kinase, GSK3β is involved in diverse biological

activities and pathways by phosphorylating its down-
stream substrates. Briefly, GSK3β regulates neurite out-
growth, neuronal polarization and microtubule dynamics
by phosphorylating several microtubule-associated pro-
teins (MAPs), such as tau [55], MAP1β [56] and collap-
sin response mediator protein-2 (CRMP-2) [57]. GSK3β
also regulates structural synaptic plasticity. GSK3β phos-
phorylates β-catenin and promotes β-catenin degrad-
ation [58]. GSK3β deletion in a subset of cortical and
hippocampal neurons results in constitutively active
β-catenin, which reduces spine density and excitatory
synaptic neurotransmission [59]. GSK3β deletion in
dentate gyrus (DG) excitatory neurons also reduces the
levels of several synaptic proteins and subunits of
N-methyl-D-aspartate (NMDA) and α-amino-3-hy-
droxy-5-methyl-4- isoxazolepropionic acid (AMPA)
receptors and inhibits calcium/calmodulin-dependent
protein kinase II (CaMKII)/CaMKIV-cAMP response
element binding protein (CREB) signaling [60]. Further-
more, GSK3β is involved in long-term potentiation
(LTP) and long-term depression (LTD). During LTP
induction in the DG and CA1 areas of the hippocampus,
the phosphorylation level of GSK3β at Ser9 is increased,
which subsequently inhibits the induction of LTD
[61–63]. GSK3β overexpression in the hippocampus
reduces neurotransmitter release and hyper-phosphorylates
tau, which impairs the induction of LTP and learning
[64, 65]. In addition, GSK3 inhibition rescues the
number of abnormal dendritic spines and glutamater-
gic synapses in pyramidal neurons and may improve
the psychiatric pathogenesis caused by DIXDC1/GSK3
axis impairment in mental disorders [66].
GSK3β is also involved in apoptotic regulation in re-

sponse to several stresses, including DNA damage [67]
and oxidative stress [68]. In response to DNA damage,
the interaction between GSK3β and p53 enhances the
activity of GSK3β and p53-mediated apoptosis via in-
creasing p21 protein levels and caspase-3 activation [67].
GSK3β inactivation protects hippocampal [69] and cere-
bellar granule neurons [70] from irradiation-induced
death through inhibiting p53 accumulation [71]. In neu-
rons, oxidative stress exposure for a short period of time
reduces the activity of GSK3β, while prolonged exposure
to ROS increases GSK3β activity [72, 73]. Therefore,
GSK3β is a redox-sensitive kinase. GSK3β activation in
response to oxidative stress downregulates the nuclear-
localized NF-E2-related factor 2 (NRF2), which inhibits

the expression of antioxidant genes, such as heme
oxygenase-1 (HO-1), and sensitizes neurons to oxidative
stress-induced death [72]. Furthermore, GSK3β activa-
tion in response to oxidative stress phosphorylates and
induces the degradation of CRMP-2, a cytoskeleton
regulator involved in lithium response in bipolar
disorder patients [74], and results in axonal degeneration
and neuronal death [73, 75]. GSK3β inhibition is thus
expected to protect neurons from oxidative stress-in-
duced damage and death. Consistently, GSK3β inhibition
through activating A2A adenosine receptor (A2aR) has
protective effects on oxidative stress-induced DNA dam-
age because its binding partner (TRAX) is released to fa-
cilitate DNA repair and improve survival [5].
Accumulating evidence suggests that the dysregulation

of GSK3β and/or its up/downstream molecules may
contribute to bipolar disorder and schizophrenia. The
inhibitory phosphorylation levels of GSK3 are lower in
the peripheral blood mononuclear cells (PBMCs) from
bipolar disorder patients than in those from healthy
controls [76], but not in platelets [77]. Interestingly, al-
though the protein levels of GSK3 are higher in PBMCs
from type 1 bipolar disorder patients than in those from
normal subjects, the amount of inhibitory GSK3 phos-
phorylation shows only a decreasing trend [78]. Con-
versely, the protein levels of GSK3β in the frontal cortex
and cerebrospinal fluid are lower in schizophrenia
patients than in normal subjects [79, 80]. However, other
studies have failed to show changes in the protein levels
or activity of GSK3β in patients with mental diseases
compared to normal controls [81, 82].
One reason that GSK3β is linked to psychiatric dis-

eases is that GSK3 is a target of lithium, a mood
stabilizer used to treat mental diseases [83]. Lithium
enhances the phosphorylation of GSK3β at Ser9 to in-
hibit GSK3β directly through competition with magne-
sium [84] and indirectly by activating AKT [85].
Significant efforts have thus been devoted to the design
and development of new GSK3 inhibitors [86–89]. Sev-
eral new GSK3 inhibitors have been assessed in mouse
models of bipolar diseases. For example, the maleimide
derivative, 3-(Benzofuran-3-yl)-4-(indol-3-yl)maleimide
compound 2B, which mimics the structure of lithium,
inhibits GSK3β activity and locomotor hyperactivity
induced by the combination of amphetamine and
chlordiazepoxide as a model for the manic phase of bi-
polar disease [90]. Additional GSK3 inhibitors (including
indirubin, alsterpaullone, TDZD-8, AR-A014418, SB-
216763, and SB-627772) were shown to inhibit rearing
hyperactivity in the amphetamine-induced hyperactivity
[91]. In the present review, we focus on a novel func-
tion of GSK3 that may provide new insights into the
role of GSK3 in neuronal development and psychi-
atric pathogenesis.
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DISC1
DISC1 was initially identified in a large Scottish family
with a spectrum of mental diseases (including schizo-
phrenia, recurrent major depression and bipolar
disorder) [92–95]. The N-terminal globular domain of
DISC1 contains a conserved nuclear localization signal,
and the C-terminal coiled-coil region is predicted to me-
diate its interactions with different proteins [96]. DISC1
is highly expressed in the heart, brain and placenta of
humans [94] and in the heart, brain, kidney, and testis of
mice [97]. DISC1 expression in the brain is regulated
during development; its highest level occurs during the
neonatal-infancy period and decreases gradually with
age in human brains [98]. It is important to note that
DISC1 expression may be regulated by environmental
stimuli too. For example, the activation of Toll-like
receptor 3 (TLR3) during viral infection leads to the
downregulation of DISC1 through myeloid differenti-
ation primary response gene 88 (MYD88) and subse-
quently impairs dendritic arborization and neuronal
development [99]. Such cytoarchitectural defects (e.g.,
dendritic organization) have been found in schizo-
phrenic subjects [100, 101], suggesting the importance
of DISC1 in the regulation of neuronal development at
prenatal and neonatal stages. Given the correlation
between the deficits in neuronal development and the
risk of developing schizophrenia, schizophrenia is also
referred to as a neurodevelopmental disorder.
Previous studies suggest that DISC1 functions as a

scaffold protein and mediates diverse neurodevelop-
mental processes by interacting with different proteins
(Table 2). Specifically, DISC1 regulates cytoskeletal
processes (e.g., neurite outgrowth and neuronal mi-
gration) by interacting with several proteins that are
localized to the centrosome and axonal growth cones,
including lissencephaly 1 (LIS1), nuclear distribution
nudE-Like 1 (NDEL1) [11, 102], NDE1 [103], pericen-
triolar material 1 (PCM1), and Bardet-Biedl syndrome
4 (BBS4) [104].Given that DISC1 is located at the
post-synaptic density (PSD) in the human neocortex
[105], DISC1 is likely to play an important role in
dendritic spine development and synaptic activities.
DISC1 interacts with kalirin-7 (kal-7) at the gluta-
matergic PSD and mediates the interaction between
kal-7 and PSD-95 or Rac family small GTPase 1
(Rac1) to regulate the size and number of spines [6].
Another important function of DISC1 is its regulation

of the cyclic adenosine monophosphate (cAMP)-signal-
ing pathway by binding and inhibiting phosphodiesterase
4B (PDE4B; Table 2). Increased cAMP levels cause
DISC1 and PDE4B dissociation and enhance PDE4B
activity [8]. The DISC1/PDE4 complex also regulates the
PKA-mediated phosphorylation and association of a
complex (NDE1/LIS1/NDEL1) important for neuronal

development [106]. In addition, DISC1 interacts with
several key molecules in the cAMP/PKA pathway, in-
cluding an anchoring protein of PKA (A-kinase anchor-
ing protein 9 (AKAP9); Table 2), several transcription
factors (activating transcription factor 4 and 5 (ATF4
and ATF5); Table 2) that recognize the cAMP response
element, and a Giα-coupled receptor that suppresses
cAMP production upon activation (D2 dopamine recep-
tor (D2R); Table 2).
DISC1 also plays an important role in intracellular

transport (Table 2). By interacting with syntaphilin
(SNPH), Mitochondrial Rho GTPase 1/2 (Miro1/2), and
Trafficking kinesin protein-1/2 (TRAK1/2), DISC1 me-
diates the transport of mitochondria in the axons and
dendrites [4, 9, 10]. DISC1 is involved in the transport of
synaptic vesicles because it stabilizes the interaction be-
tween fasciculation and elongation protein zeta 1 (FEZ1)
and synaptotagmin-1 (SYT-1) in the axons [107]. More-
over, DISC1 interacts with hematopoietic zinc finger
(HZF) to mediate the dendritic transport of inositol-1,4,5--
trisphosphate receptor type 1(ITRP1) mRNA [12].
Another important interacting protein of DISC1 is

GSK3β, as well as several proteins involved in the Wnt
pathway (Table 2). The direct binding of DISC1 inhibits
GSK3β activity [7]. The interaction between DISC1 and
GSK3β controls the fate of neural progenitors in the
ventricular zone/subventricular zone [7] and subgranular
zone of the dentate gyrus [97]. GSK3β inhibition pre-
vents the phosphorylation and degradation of β-catenin,
its downstream target [58], resulting in increased neural
progenitor proliferation [108]. Intriguingly, the phos-
phorylation of DISC1 at Ser710 determines the affinity of
DISC1 toward its binding partners. For example,
non-phosphorylated DISC1 at Ser710 inhibits GSK3β and
subsequently activates β-catenin signaling. Conversely,
the phosphorylation of DISC1 at Ser710 increases the af-
finity of DISC1 for another binding partner, BBS protein,
which facilitates the recruitment of BBS to the centro-
some and subsequently causes the transition from pro-
genitor proliferation to neuronal migration in the
developing cortex [109]. It is interesting to note that the
PKA-mediated inhibitory phosphorylation of GSK3β at
Ser9 leads to the dissociation of the DISC1/GSK3β/
TRAX complex and facilitates TRAX-mediated DNA
repair in neurons [5]. These results collectively suggest
that phosphorylation is a key modulatory mechanism
that regulates the complex formation of DISC1 and
other interaction proteins through which a wide variety
of cellular functions are regulated.
Ample genetic evidence links DISC1 with major

mental illnesses. The balanced (1;11) translocation of
DISC1 within a Scottish family increased the incidence
of major mental illnesses [95], probably due to the de-
crease in DISC1 protein levels [8] or the production of a
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dominant-negative C-terminal truncated DISC1 that
loses its interaction with DISC1-interacting proteins
[110, 111]. In addition, expression levels of the DISC1-
interacting proteins LIS1 and NDEL1 are decreased in
the brains of schizophrenia patients and are associated
with high-risk DISC1 SNPs [98]. To date, the DISC1
gene has been identified as a risk factor for major mental
illnesses [13, 112–120]. In contrast, some other reports
have failed to show the association between DISC1 vari-
ants and mental diseases [121–123]. Further investigations
of the roles of DISC1 in mental disorders are needed.

TRAX
TRAX was first discovered as a binding partner of translin
using a yeast two-hybrid system. Amino acid sequence
alignment revealed that TRAX displays 28% identity with
translin [16]. Because the genetic removal of translin pro-
motes the degradation of TRAX, TRAX stability appears
to be controlled by its binding partner (i.e., translin [124]).
Both TRAX and translin are highly enriched in the brain.
The heteromeric complex composed of TRAX and trans-
lin shows nucleic acid binding activity in brain extracts

[125] and plays a role in dendritic RNA trafficking in
neurons [126, 127]. The heteromeric translin/TRAX com-
plex also functions as an endoribonuclease that cleaves
passenger strands of siRNA and therefore facilities siRNA
guide strand loading onto the RNA-induced silencing
complex (RISC) in Drosophila [128]. In contrast, the
TRAX/translin complex suppresses microRNA (miR-
NA)-mediated silencing in mammalian cells by degrading
pre-miRNA with mismatched stems and subsequently
reversing miRNA-mediated silencing [129] (Fig. 1). In
support of this hypothesis, TRAX/translin was recently
shown to play a critical role in regulating long-term mem-
ory by suppressing microRNA silencing at activated
synapses [130]. Given that aberrant profiles of miRNAs
and their targeted genes have been implicated in mental
disorders (such as schizophrenia, bipolar disorder and
autism) (for a review, see [131]), the role of abnormal
TRAX/translin regulation in mental disorders warrants
future investigations.
Similar to DISC1, TRAX also has many interacting

proteins with a wide variety of functions. Most of these
TRAX-interacting proteins are risk genes, markers, or

Fig. 1 A schematic representation showing the major functions of TRAX and its interacting proteins. In neurons, TRAX interacts with the C
terminus of the A2A adenosine receptor (A2AR), a Gsα-coupled receptor that activates adenylyl cyclase to produce cAMP upon stimulation with
adenosine (ADO). At the resting stage, TRAX forms complexes with GSK3β and DISC1. High oxidative stress is known to cause double-strand DNA
breaks. Activating the A2AR/PKA-dependent pathway or inhibiting GSK3β using selective inhibitors (e.g., SB216763 or lithium) release TRAX from
the complex and assist in ATM/DNA-PK-dependent non-homologous end joining (NHEJ) repair in the nuclei [5, 137]. TRAX may also bind with
translin to regulate the amount of miRNA and downstream gene expression profiles [130].
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drug targets for psychotic disorders (e.g., schizophrenia,
autism, and panic disorders; Table 1). For example,
A2AR is the binding partner of TRAX [132]. A2AR is a
Gsα-coupled receptor that activates the cAMP/PKA
pathway upon stimulation [133]. A2AR activation or
TRAX overexpression rescues the impaired neurite
outgrowth caused by p53 blockade in a neuronal cell line
(PC12) and primary hippocampal neurons. Knocking
down TRAX or preventing the interaction between
TRAX and its interacting protein (kinesin heavy chain
member 2A, KIF2A) blocks the rescue effect of A2AR
activation [134]. Of note, KIF2A is a schizophrenia
susceptibility gene [135]. A2AR is a risk gene for autism
and anxiety disorders, and a marker for schizophrenia
(Table 1).
Two of the TRAX-interacting proteins (C1D and

ataxia-telangiectasia mutated (ATM) kinase) are involved
directly in DNA repair. C1D is an activator of DNA-
dependent protein kinase (DNA-PK). Upon DNA
damage induced by γ-irradiation, TRAX increasingly
interacts with C1D in mammalian cells, suggesting that
TRAX might participate in DNA repair [136]. ATM is a
serine/threonine kinase and is activated and recruited by
DNA double-strand breaks (DSBs) to phosphorylated
proteins (e.g., histone H2A (H2AX) and p53) that are
important for DNA repair. In the absence of TRAX,
ATM fails to be recruited to DSB sites to initiate the
DNA repair machinery and subsequently causes cell
death due to insufficient DNA damage repair [5, 137].
During oxidative stress-induced DNA damage in neu-
rons, TRAX forms a complex with DISC1 and GSK3β in
the cytoplasmic region. A2AR stimulation activates PKA,
which phosphorylates GSK3β at Ser9 and dissociates the
TRAX/DISC1/GSK3β complex so that TRAX can enter
the nuclei to facilitate DNA repair [5] (Fig. 1). The role
of TRAX and its interacting proteins in mental disorders
appear important because ample evidence suggests
that incomplete oxidative DNA damage repair may
contribute to the development of psychotic disorders
[1, 17, 18]. Most of the major components (including
ATM, [138, 139]) involved in TRAX-mediated DNA
repair are also risk genes of mental disorders (Table 1).
Consistent with the hypothesis that TRAX is involved

in the development of mental disorders, genetic studies
have implicated TRAX in major psychiatric diseases.
The human TSNAX gene is located at 1q42.1 and adja-
cent to the DISC1 gene. Several TSNAX transcripts con-
tain the DISC1 sequence at the 3’ end due to intergenic
splicing in human adult and fetal tissues [93]. A SNP
analysis revealed that 2 SNPs (i.e., rs1615409 and
rs766288) are located within intron 4 of TSNAX, and 2
SNPs (i.e., rs751229 and rs3738401) were found in
DISC1 in Finnish schizophrenia patients [13]. A rare
AATG haplotype comprising these 4 SNPs is positively

associated with the reaction time to visual targets and
negatively with the gray matter density in Finnish
schizophrenia patients [140]. Furthermore, another SNP
analysis identified that rs1655285 at intron 5 of TSNAX
and a haplotype comprising rs1630250 and rs1615409
within TSNAX are associated with Finnish bipolar
spectrum disorder [15]. The SNP rs766288 at intron 4 of
TSNAX has been reported to be associated with
Japanese female major depressive disorder [14]. These
studies collectively suggest that TRAX is a risk gene for
major mental diseases. It should also be noted that
TRAX and DISC1 share several interacting proteins
(e.g., GSK3β and AKAP9; Table 2) and functional
pathways/machineries (e.g., the cAMP/PKA pathway,
Wnt signaling, intracellular transport and DNA repair;
Table 2); thus, they may act together to regulate import-
ant pathophysiological events, including the develop-
ment of mental disorders.

Regulation of the TRAX/DISC1/GSK3β complex and
therapeutic relevance
Although DISC1 mediates many different cellular func-
tions, it has not been implicated in DNA repair until a
recent report [5] demonstrating that DISC1 interacts
with GSK3β and TRAX; this complex facilitates DNA
repair by binding to ATM [137]. This finding leads to a
new mechanistic role of DISC1 in mental disorders in
which accumulating oxidative DNA damage and in-
sufficient DNA repair contribute to the pathogenesis
[1, 17, 18]. Disassembly of the TRAX/DISC1/GSK3β
complex, followed by the release of TRAX, provides a
new means to facilitate DNA repair and ameliorate
the damage caused by unrepaired DSBs. For example,
A2AR activation dissociates TRAX/DISC1/GSK3β com-
plex tethering at its C terminus through a PKA-dependent
pathway and amends the DNA damage-induced apoptosis
[5]. Consistent with an important role of A2AR in facilitat-
ing DNA repair, A2AR activation ameliorates oxidative
DNA damage in human medium spiny neurons (MSNs)
derived from induced pluripotent stem cells (iPSCs) [141].
Interestingly, the amount of A2AR is altered in different
brain regions of patients with schizophrenia [142, 143],
supporting that A2AR might play an important role in
schizophrenia. Because A2AR is an antagonistic binding
partner of the D2R and may suppress the hyperfunction
of D2R in schizophrenia [144], A2AR agonists are poten-
tially advantageous anti-schizophrenic drugs (for a review,
see [145]). D2R is a primary target of antipsychotic drugs.
It forms complex with not only A2AR but also DISC1 to
mediate the D2R-dependent activation of GSK3β [146].
This is of great interest because DISC1 binds with TRAX
and GSK3β [5]. Whether D2R activation affects the
accumulation of oxidative DNA damage and contributes
to pathogenesis requires further investigation.
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It is important to note that adenosine is known to
regulate the dopamine and glutamate- mediated neuro-
transmissions, the major neurotransmitter systems
involved in schizophrenia pathophysiology [147–149].
Dysfunction of purinergic system is one of the factors
that cause schizophrenia [149, 150]. Moreover, inhibition
of adenosine kinase (ADK), which controls adenosine
level, exhibits anti-psychotic-like efficacy, while overex-
pression of ADK causes changes in the sensitivity to
psychomimetic drugs in mice [151, 152]. Consistent with
the abovementioned hypothesis, increased brain adeno-
sine tone using an inhibitor of adenosine uptake (i.e.,
dipyridamole) indirectly activates adenosine receptors
and hasWr beneficial effects on patients with schizo-
phrenia [153]. Likewise, inhibiting adenosine clearance
using ABT702 to globally increase adenosine tone also
ameliorates the psychotic and cognitive phenotypes of
schizophrenia in mice [151]. Given that adenosine is also
known to play an important role during neurodeve-
lopment. (for a review, see [154]). Augmenting the
adenosine tone in the brain using various approaches
might thus serve as a therapeutic means to treat
schizophrenia as well as to prevent the development
of schizophrenia [154, 155].
Lithium is an inhibitor of GSK3 and a common mood

stabilizer for treating mental disorders. To date, the
underlying molecular mechanism of lithium’s action
remains largely elusive [156, 157]. Accumulating evi-
dence suggests that chronic treatment with lithium in-
hibits the oxidative damage evoked by glutamate [158]
and increases the expression level of the anti-apoptotic
factor Bcl2 [159, 160]. Treatment with lithium also pro-
tects neurons by facilitating the NHEJ repair-mediated
DNA repair pathway [161]. Chronic treatment with lith-
ium results in not only the inhibition of GSK3β but also
the regulation of many anti-apoptotic proteins. For
example, lithium inhibits calcium influx via regulating
the NMDA receptor and reduces apoptosis by directly
inhibiting GSK3β [162]. Because inhibiting GSK3β
causes the disassembly of the TRAX/DISC1/GSK3β
complex and releases TRAX to facilitate DNA repair [5],
at least part of the actions of lithium might be mediated
by the TRAX/DISC1/GSK3β complex. New GSK3β
inhibitors have been actively developed for brain diseases
[163], which may pave the way for establishing new
treatments for schizophrenia.

Conclusions
As a major gene implicated in schizophrenia and other
mental disorders, DISC1 is known to regulate various
cellular functions by interacting with proteins of differ-
ent machineries. Ample evidence suggests that DISC1 is
a hub protein for schizophrenia and possibly other
mental diseases. Emerging evidence also suggests that

TRAX, a neighboring gene of DISC1, not only physically
interacts with DISC1 but also switches binding partners
under different pathophysiological conditions as does
DISC1. Because the studies regarding TRAX are still in
their infancy, the overlapping functional pathways of
DISC1 and TRAX appear limited at this time (Table 2)
but may become more evident when more binding part-
ners of TRAX are revealed in the future. Most import-
antly, genetic evidence suggests that DISC1 and TRAX
are closely associated with several major mental disor-
ders (such as schizophrenia, autism, and anxiety
disorder; Table 1). Therefore, it is certainly worth further
exploring the role of the DISC1/TRAX complex in
psychiatric disorders. Because oxidative DNA damage
accumulation and insufficient DNA repair have been im-
plicated in the development and progression of mental
disorders, the recently reported function of the DISC1/
TRAX/GSK3β complex in DNA repair also warrants fur-
ther investigations of the temple and the special regula-
tion of this complex during neuronal development and
disease progression. Further understanding of when and
where the DISC1/TRAX/GSK3β complex is formed and
how the complex can be effectively dissembled by either
GSK3β inhibitors or PKA activators (such as A2AR ago-
nists or PDE4 inhibitors) would pave the way for devel-
oping new therapeutic agents for mental disorders.
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