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Abstract

Nasopharyngeal carcinoma (NPC) is a head and neck cancer with poor clinical outcomes and insufficient treatments
in Southeast Asian populations. Although concurrent chemoradiotherapy has improved recovery rates of patients,
poor overall survival and low efficacy are still critical problems. To improve the therapeutic efficacy, we focused on
a tumor-associated protein called Annexin A2 (ANXA2). This review summarizes the mechanisms by which ANXA2
promotes cancer progression (e.g., proliferation, migration, the epithelial-mesenchymal transition, invasion, and
cancer stem cell formation) and therapeutic resistance (e.g., radiotherapy, chemotherapy, and immunotherapy).
These mechanisms gave us a deeper understanding of the molecular aspects of cancer progression, and further
provided us with a great opportunity to overcome therapeutic resistance of NPC and other cancers with high
ANXA2 expression by developing this prospective ANXA2-targeted therapy.
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Background
Nasopharyngeal carcinoma (NPC) is a low-frequency dis-
ease in western countries; however, it is a high-risk head
and neck cancer in Southeast Asia and China [1, 2]. In the
clinic, concurrent chemoradiotherapy improved overall
survival (OS, 94.5% at 5 years) in stage I/II patients, but
the same treatment did not work effectively in stage III/IV
patients (OS, 72.3% at 5 years). With monotherapy, stage
III/IV patients who received radiotherapy alone had a rela-
tively poor survival rate (an OS of 54.2% at 5 years) [3–6].
To improve the therapeutic efficacy, we tried to under-
stand the mechanism of therapeutic resistance. A meta-
analysis of 2321 cancer patients with several cancer types
including head and neck cancers (esophageal, sinonasal,
and oral), showed that a high expression level of Annexin
A2 (ANXA2) was related to poor overall survival and
disease-free survival [7]. Consistent results of high

expression levels of ANXA2 being associated with ad-
vanced patients were also found for NPC [8].
ANXA2, as a tumor-associated protein, promotes can-

cer progression including proliferation, invasion, and me-
tastasis in various cancer types (NPC, ovarian cancer,
gliomas, hepatomas, pancreatic cancer, and breast cancer)
[8–13]. In addition to cancer progression, ANX family
proteins (ANXA1 and ANXA2) suppress the efficacy of
both chemotherapy and radiotherapy [8, 14, 15]. In 2015,
we further uncovered the interaction of ANXA2 with den-
dritic cell (DC)-specific intracellular adhesion molecule
(ICAM)-3 grabbing non-integrin (DC-SIGN, CD209),
which resulted in immunosuppression. This suppression
might influence outcomes of anticancer therapies [16].
In recent years, increased attention has focused on

ANXA2 and its role in regulating cancer development
[17–19]. In this review, cellular and molecular mecha-
nisms of ANXA2-mediated cancer progression and
therapeutic resistance are addressed in the first two sec-
tions. Then, we further discuss the prospective effect of
ANXA2-targeted therapy in the final section.
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Cancer progression
Aberrant expression in cancers
Over the period of 2014~ 2017, researchers pointed out
that high expression of ANXA2 in biopsies of epithelial
ovarian cancer (56.42%) [20], urothelial carcinoma (53.
02%) [21], hepatocellular carcinoma (HCC; 73.81%) [22],
NPC (33%) [8], and serous ovarian cancer (57.79%) [23]
was associated with poor OS (Table 1). Weihua Qiu and
his colleagues performed a meta-analysis of 2321 cancer
patients to confirm that high expression of ANXA2 was
correlated with both OS (hazard ratio [HR] 1.56; p < 0.
001) and disease-free survival (HR 1.47; p < 0.001) [7].
High ANXA2 expression was also related to a high risk of
metastases (n = 48, NPC) and recurrence (n = 93, endome-
trioid endometrial carcinoma) [8, 24]. On the other hand,
ANXA2 serves as a diagnostic factor for screening can-
cers. In peripheral blood, the ANXA2 serum level has
been evaluated in patients with HCC (median, 69.6 ng/ml)
[25], early-stage HCC (median, 150 ng/ml) [26], gastric
cancer (median, 211.0 ng/ml) [27], lung cancer [28], and
oral squamous cell carcinoma (median, 27.1 ng/ml) [29]
(Table 2). However, serum levels of ANXA2 in NPC
patients have not yet been reported.
Additionally, circulating tumor cell (CTC) detection in

peripheral blood has become a non-invasive way to pre-
dict the risk of developing metastasis in cancer patients. In
2015, Pomila Singh and her colleagues further used cancer
stem cell (CSC) markers (e.g., doublecortin-like kinase 1
(DCLK1) and leucine-rich repeat-containing G-protein
coupled receptor 5 (LGR5)) with epithelial cell markers
(CD44 and ANXA2) to detect circulating CSCs in patients
with malignant colon adenocarcinomas. CTC detection is
an assay for on-going metastasis or relapse, while circulat-
ing CSC detection is a novel diagnosis during the initiation
of metastasis. Detection of circulating CSCs provides a
chance to diagnose metastasis and prevent it at earlier
time points [30]. Due to broad approaches of biopsies, and
serum and circulating CSC detection, ANXA2 might be a
short-term clinical indicator for cancer patients.

Proliferation
There are two types of ANXA2 in cells. The ANXA2
monomer exists in cell cytoplasm and nuclei, while the
ANXA2 heterotetramer (consisting of two ANXA2 and two

S100A10 molecules) exists on cell membranes. In nuclei,
the ANXA2 monomer combines with 3-phosphoglycerate
kinase (PGK) to become a complex. This complex performs
the same function as primer-recognition proteins to stimu-
late DNA polymerase alpha, which contributes to the initi-
ation of DNA replication in the early S phase in cervical
cancer cells (Fig. 1a) [31]. In addition to promoting DNA
replication, nuclear ANXA2 disrupts coilin causing it to ab-
normally localize to centromeres, thereby precipitating
chromosome instability (CIN) which was demonstrated in
human colorectal cancer (CRC) cells (Caco-2, HCT116,
SW480, DLD-1, and RKO). Chromosome instability was re-
ported to accelerate tumor growth and contribute to cellu-
lar resistance to chemotherapy [32–34].

Migration
Phosphorylation of the tyrosine 23 (Tyr23) residue on
ANXA2 is a key regulator controlling cell mobility. The
migration and invasion enhancer 1 (MIEN1) interacts
with ANXA2 to enhance Tyr23 phosphorylation on
ANXA2. Phosphorylated ANXA2 binds to actin filaments
on cell membranes, and modulates cell scattering and
cytoskeletal changes via actin remodeling in human breast
cancer cells (SK-BR-3 and BT-474). A phosphorylation de-
ficiency of Tyr23 and Tyr50 causes cells to lose the ability
to migrate in in vitro wound healing assays [35–38]. How-
ever, a different report showed that the extracellular
matrix metalloproteinase (MMP) inducer (also known as
CD147) prohibits Tyr23 phosphorylation on ANXA2, and
promotes cell migration via suppressing ANXA2-
DOCK3-β-catenin-WAVE2 step-by-step signaling in hu-
man hepatoma cells (SMMC-7721, HuH-7, and HepG2)
[39]. It seems that either the promotion of Tyr23
phosphorylation by MIEN1 or the inhibition of Tyr23
phosphorylation by CD147 eventually contributes to cell
migration (Fig. 1b). The precise role of Tyr23 phosphoryl-
ation in ANXA2’s actions requires further investigation.

Endothelial-mesenchymal transition (EMT)
The EMT is a normal morphogenic process during embry-
onic development and tissue restructuring; however, the
EMT is also the initial step in metastasis [7]. Twist and
Snail are two critical transcription factors that promote the
EMT in cancers. In EMT initiation, Twist and Snail

Table 1 High expression of Annexin-A2 (ANXA2) in biopsies as an indicator of the survival rate

Tumor type N High ANXA2 expression (%) p value Results Reference

Epithelial ovarian cancer 119 65/119 (54.62%) < 0.001 Poor survival rate [20]

Nasopharyngeal carcinoma 48 32/48 (66.67%) 0.025 Poor survival rate [8]

Urothelial carcinoma 232 123/232 (53.02%) 0.012 Poor survival rate [21]

Hepatocellular carcinoma 84 62/84 (73.81%) 0.005 Poor survival rate [22]

Serous ovarian cancer 109 63/109 (57.79%) 0.044 Poor survival rate [23]

Method: immunohistochemistry; N, total number of patients
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decrease epithelial proteins (i.e., E-cadherin) and increase
mesenchymal proteins (i.e., N-cadherin, fibronectin, β-
catenin, and vimentin). Cancer cells without adherent junc-
tions (i.e., E-cadherin) can gain an advantage to metastasize
from one organ to a different indirectly connected one
[40]. Phosphorylation of the Tyr23 residue on ANXA2 was
reported to be an initiator of the EMT (mediated by Rho

or induced by transforming growth factor (TGF)-β) [12,
37, 41]. In ANXA2-knockdown NPC cells, expression
levels of Twist and Snail decreased. ANXA2-knockdown
NPC cells retained the endothelial-like phenotype rather
than changing to a mesenchymal-like one. This result indi-
cated that ANXA2 is a critical factor in initiation of the
EMT via the Twist/Snail signal pathway (Fig. 1c) [8].

Table 2 High levels of Annexin-A2 (ANXA2) in serum as a potential biomarker for cancers

Tumor type N p value Results Reference

Hepatocellular carcinoma 70 < 0.001 Patients (n = 50, median, 69.6 ng/ml)
Healthy individuals (n = 20, median, 9.5 ng/ml)

[25]

Hepatocellular carcinoma (early stage) 70 < 0.01 Patients (n = 50, median, 130 ng/ml)
Healthy individuals (n = 20, median, 17 ng/ml)

[26]

Gastric cancer 93 < 0.001 Patients (n = 63, median, 211.0 ng/ml)
Healthy individuals (n = 30, median, 120.5 ng/ml)

[27]

Lung cancer 85 < 0.01 Patients (n = 42)
Healthy individuals (n = 43)

[28]

Oral squamous cell carcinoma 284 < 0.01 Patients (n = 126, median, 27.1 ng/ml)
Healthy individuals (n = 158, median, 15 ng/ml)

[29]

Method: enzyme-linked immunosorbent assay; N, total number of patients

Fig. 1 Annexin A2 (ANXA2) in cancer progression. a The ANXA2-3-phosphoglycerate kinase (ANXA2-PGK) complex serves as a primer recognition
protein to initiate DNA replication with the support from DNA polymerase alpha, which contributes to cell proliferation. b MIEN1 phosphorylates
ANXA2 and supports ANXA2’s binding to actin filaments to modulate cytoskeletal change, thus resulting in cell migration. c ANXA2 initiates the
endothelial-mesenchymal transition (EMT) via the Twist/Snail pathway. After initiation of the EMT, cells changed to a mesenchymal-like morphology,
and cell junctions dissolved. d The ANXA2 heterotetramer complex links to the plasminogen and tissue plasminogen activator (tPA). After plasminogen
is cleaved into plasmin, plasmin activates pro-matrix metalloproteases (MMPs) to become MMPs. MMPs digest the extracellular matrix and fibronectin,
thus resulting acceleration of invasion. e ANXA2 increases stemness-related transcription factors (Oct4, Sox2, and Nanog) through the Akt signaling
pathway, which activates cancer stem cell formation
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Invasion and metastasis
ANXA2 promotes the invasion and metastasis of different
cancers (ovarian cancer, HCC, gliomas, pancreatic cancer,
renal cell carcinoma, lung cancer, breast cancer, and NPC)
[8–12, 42–44]. The mechanism of the association of the
ANXA2/S100A10 heterotetramer with extracellular
matrix (ECM) digestion was described in previous studies
[45–47]. Here, we update recent advances and more pre-
cisely summarize the mechanism. First, cytoplasmic
phospholipase A2 (cPLA2) binds to the ANXA2/S100A10
heterotetramer in the cytoplasm to assist ANXA2 in
translocating to cell membranes. On cell membranes,
S100A10 links to the plasminogen and tissue plasminogen
activator (tPA). S100A10 is required for the plasminogen-
dependent oxidation of the ANXA2/S100A10 heterotetra-
mer. Oxidation facilitates the catalytic cleavage of plas-
minogen to plasmin between arginine (Arg)561 and valine
(Val)562 by the active tPA [48]. Plasmin cleaves the tissue
inhibitor of metalloproteinases on pro-matrix metallopro-
teases (MMPs), and then the pro-MMPs become the
active forms of MMPs. MMPs (e.g., MMP-2 and MMP-9)
degrade fibronectin and the ECM, thus resulting in accel-
eration of invasion and metastasis (Fig. 1d) [49–52].

CSC formation
CSCs are cancer cells with stem-like properties to initi-
ate self-renewal and differentiation. CSCs promote inva-
sion, metastasis, suppress chemotoxicity and
radiotoxicity [53–55]. In the previous section on aber-
rant expression in cancers, we described how ANXA2
can be a novel marker to detect circulating CSCs in the
clinic; however, the role of ANXA2 in CSCs is not yet
clearly understood. As we know, the Akt protein upre-
gulates stemness-related transcription factors (Oct4,
Sox2, and Nanog) [56–58] and is involved in CSC main-
tenance in different cancer types (gliomas, esophageal
carcinoma, and non-small cell lung cancer) [59–61]. To
further determine the mechanism between Akt and
ANXA2, we established ANXA2-knockdown NPC cells.
After ANXA2 silencing, the amount of active Akt de-
creased, thus indirectly suppressing protein levels of
stemness-related transcription factors (Oct4, Sox2, and
Nanog). Without sufficient stemness-related transcrip-
tion factors, ANXA2-knockdown NPC cells are likely to
lose their CSC properties (Fig. 1e) [8].

Therapeutic resistance
Correlations between the ANX family and therapeutic
resistance
Radiotherapy and concurrent chemoradiotherapy are
general strategies for NPC; however, we found resistance
to both radiotoxicity and chemotoxicity in NPC cells
with high ANXA2 expression. In addition to ANXA2,
high expressions of other Annexin proteins were also

reported to be associated with therapeutic resistance in
different cancers, such as ANXA1 against chemo
−/radiotherapy in the CNE2 NPC cell line [14, 15],
ANXA2 against multiple drugs in NPC, gastric cancer,
breast cancer, and pancreatic cancer [8, 62–64], ANXA3
against chemotoxicity in HCC patients (n = 34) [65], and
ANXA4 against chemotherapeutic drugs in human ovar-
ian (OVTOKO and OVISE), lung (H460) and colorectal
(HCT15) cancer cells [66, 67]. Conversely, low ANXA11
expression is related to ovarian cancer with cisplatin re-
sistance [68]. A correlation between therapeutic resist-
ance and the Annexin protein family was found;
nevertheless, the mechanism is still unclear. To improve
ANAX2’s therapeutic efficacy against NPC, it is neces-
sary to understand the mechanism of how it enables
tumor cells to suppress radiotoxicity or chemotoxicity.

Resistance to chemotherapy
Human NPC cells with high ANXA2 expression can poten-
tially resist different chemotherapeutic drugs (cisplatin, 5-
fluorouracil, docetaxel, and vincristine). ANXA2-coated
enlargeosomes widely exist in various cell types to regulate
Ca2+-dependent cell exocytosis. Knockdown of ANXA2 in
tumor cells might decrease the number of and limit the
function of enlargeosomes. Dysfunctional enlargeosomes
allow chemotherapeutic drugs to condense in the
cytoplasm, thus resulting in tumor death (Fig. 2a) [8, 69–
71]. Furthermore, intracellular ANXA2 binds the p50
subunit of nuclear factor (NF)-κB to become the ANXA2-
p50 complex when pancreatic cancer cells (MIA-PaCa-2)
are exposed to genotoxic agents (such as gemcitabine). This
complex can be translocated to nuclei to activate the NF-
κB signaling pathway. Activated NF-κB has multiple roles
in cancer progression through modulating cell apoptosis
and drug resistance. On the other hand, Qing-Yong Ma
and his colleagues discovered that the phosphatidylinositol-
3-kinase (PI3K)/Akt/NF-κB signaling pathway is activated
by the interaction of ANXA2 and tenascin-C on the surface
of pancreatic cancer cells (AsPC-1, PANC-1, and MIA-
PaCa-2), which suppresses gemcitabine-induced cytotox-
icity [72–74].

Resistance to radiotherapy
In 2012, David M. Waisman and his colleagues indicated
that the ANXA2 protein was imported into nuclei to
protect against DNA damage caused by irradiation in
human breast and lung cancer cells. ANXA2 is mainly
localized in the cytoplasm and plasma membranes, and
only a small amount of it is imported into nuclei.
ANXA2 contains a leucine-rich nuclear export signal
(NES) in its N-terminal domain. In the NES motif, lysine
(Lys)10 and Lys12 are two critical residues which pre-
vent ANXA2 from accumulating in nuclei. However, in-
ducers such as gamma-radiation, ultraviolet radiation,
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etoposide, chromium VI, hydrogen peroxide (H2O2), and
reactive oxygen species (ROS) may induce ANXA2
phosphorylation, which allows it to be translocated into
nuclei [75, 76]. Phosphorylation regulates ANXA2’s ex-
port from and import into nuclei. Phosphorylation of
the serine (Ser)11 and Ser25 residues allows ANXA2 to
be exported from nuclei; however, phosphorylation at
the Tyr23 residue contrastingly allows it to be imported
into nuclei (Fig. 2b) [77, 78]. Different phosphorylation
sites on ANXA2 can cause totally opposite results. In
2015, we investigated the downstream signaling pathway
of ANXA2 in NPC cells. ANXA2 is involved in the Akt
pathway and indirectly increases the number of Akt pro-
teins [8]. When exposed to irradiation, the Akt protein
binds to heat shock protein 27 (HSP27) to become the
Akt-HSP27 complex, which ameliorates radiotoxicity-
induced DNA damage and apoptosis (Fig. 2b) [79].

Resistance to immunotherapy
A range of novel immunotherapies for cancers are under
evaluation. Strategies for NPC were reported and are

divided into two streams. First, Epstein-Barr virus (EBV)-
specific cytotoxic T lymphocytes (CTLs) have become an
effective adoptive cell therapy (ACT). The EBV latent
membrane protein 1 (LMP1) is expressed on EBV-
infected carcinoma cells. In 2014, Dennis J Moss and his
colleagues transferred autologous CTLs that specifically
targeted LMP1-expressing carcinoma cells into patients
with recurrent NPC. After an injection, most of the pul-
monary lesions disappeared, but the primary tumor did
not regress [80]. To improve the disadvantage of targeting
LMP1 alone, a new adenoviral vector was designed. This
new adenoviral vector inserted EBV LMPs and EBV nu-
clear antigen-1 (EBNA1), which expanded specific CTLs
against LMP- and/or EBNA1-expressing NPCs [80–83].
Second, DC-based immunotherapy is another option. DCs
present tumor antigens to naïve CD8+ T cells in draining
lymph nodes, and then naïve CD8+ T cells turn into
tumor-specific CTLs [84–88]. However, NPC cells could
give rise to suppressive responses after cell-cell interac-
tions with DCs, thus resulting in immune escape [16, 89–
91]. DCs can sense tumor-derived factors through

Fig. 2 Annexin A2 (ANXA2) in therapeutic resistance. a ANXA2-coated enlargeosomes widely exist in various cell types to regulate Ca2+-dependent
cell exocytosis. Enlargeosomes exocytose chemotherapeutic drugs to prevent their chemotoxic accumulation inside tumor cells, thus resulting in
chemotherapeutic resistance. b The phosphorylated ANXA2 protein is imported into nuclei to protect against DNA damage by irradiation. ANXA2
also mediates the Akt protein to form the Akt-heat shock protein 27 (Akt-HSP27) complex, which ameliorates radiotoxicity-induced DNA damage
and apoptosis. c When tumor-infiltrating dendritic cells (DCs) are attached to nasopharyngeal carcinoma (NPC) cells, the interaction between DC-SIGN
and ANXA2 causes DCs to lose mature major histocompatibility complex (MHC), and release high levels of the immunosuppressive cytokine interleukin
(IL)-10. IL-10 causes consecutive immunosuppressive responses including DC immaturity, inhibition of IL-12 synthetic, CD8+ T cell dysfunction, and
regulatory T cell expansion
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receptors in both extracellular and intracellular milieus.
Receptors include intracellular helicases, surface/intracel-
lular toll-like receptors (TLRs), and surface C-type lectin
receptors (CLRs). CLRs capture pathogen-associated mo-
lecular patterns (PAMPs) and endogenous ligands. DC-
SIGN, a kind of C-type lectin, is composed of a carbohy-
drate recognition domain (CRD), a neck region with seven
repeats, and a transmembrane region with a cytoplasmic
tail [92–96]. DC-SIGN recognizes N-acetylglucosamine,
mannose, fucose, and non-sialylated Lewis structures by
CRD [95]. Mannosylated lipoarabinomannan (ManLAM)
induces DC-SIGN downstream transcription factors (such
as Ras, Raf-1, and NF-κB) to increase interleukin (IL)-10
promoter activity [97, 98]. After DC-SIGN is ligated by
mannose- or fucose-containing oligosaccharides, it indir-
ectly increases IL-10 production via the Th2 pathway in
DCs. Normally, IL-10 suppresses prolonged and exagger-
ated immune responses [99, 100]. However, when DCs at-
tach to NPC cells with high ANXA2 expression, the
strong interaction between DC-SIGN and ANXA2 causes
DCs to release extremely high levels of IL-10 (Fig. 2c).
Once IL-10 spreads into the tumor environment, it causes
consecutive immunosuppressive responses including DC
immaturity (losing the major histocompatibility complex
and the co-stimulatory molecules), the IL-12 synthetic in-
hibition, CD8+ T cell dysfunction, and regulatory T cell
expansion [101–107].

Prospective ANXA2-targeted therapy
From 2013, different research teams began to develop
ANXA2-targeted therapy. C Ricciardelli’s team used an
anti-ANXA2 antibody to reduce both tumor growth and
metastasis in an ovarian cancer mice model (SK-OV3)
[9]. One year later, Mandip Singh and his colleagues
inserted short hairpin (sh)RNA targeting ANXA2
(shANXA2) into a cationic ligand-guide (CLG, a liposo-
mal carrier) to construct a CLG-ANXA2 compound.
The CLG-ANXA2 was designed to recognize cancer
cells and CSCs in a lung cancer mouse model (H1650).
After CLG-ANXA2 was taken up by tumor cells,
shANXA2 prohibited ANXA2 messenger (m)RNA ex-
pression and decreased its protein level. The CLG-
shANXA2 group showed inhibited tumor growth (re-
duced 72%~ 75% relative to the control, p < 0.001)
[108]. To verify the above results, we established
ANXA2-knockdown NPC cell lines by shRNA. Prolifera-
tion, migration, adhesion, and CSC formation were in-
deed reduced in ANXA2-knockdown NPC cells.
Moreover, ANXA2-knockdown NPC cells lost the ability
to suppress chemotoxicity, radiotoxicity, and immune
responses [8, 16]. Targeting ANXA2 raises the possibility
of being able to overcome the low therapeutic efficacy of
cancers with high ANXA2 expression.

In addition to ANXA2, high expression of the epidermal
growth factor receptor (EGFR) was previously discovered
in NPC cells [109, 110]. In 2005, combined therapy with
cetuximab (as the first chimeric anti-EGFR antibody) and
carboplatin was used against NPC in 60 patients. After
treatment, only 11.7% of patients had a response, and 48.
3% had a stable disease rate [111]. It seems that treatment
with cetuximab and carboplatin needs more consideration
due to its low efficacy. In 2017, Liming Huang and his col-
leagues reported appealing results that silencing ANXA2
would reverse the EGF-induced EMT and inhibit cell mi-
gration in epidermoid cervical carcinoma cells (Ca-Ski,
HeLa, and SiHa) [112]. ANXA2 helps the tyrosine-protein
kinase transforming protein, Src (v-Src), mediate actin-
cytoskeletal rearrangement which enhances proliferation,
migration, and viability through the EFGR pathway [113].
The above findings gave us a new selection to combine
anti-ANXA2 and anti-EGFR antibodies to fight against
double-positive NPC (EGFR+/ANXA2+).
Nevertheless, ANXA2-deficient (ANXA2−/−) mice

showed an increased risk of thrombosis and a decreased
ability of neoangiogenesis [47]. Although ANXA2-targeted
therapy suppresses cancers, it may produce side effects in
patients. Thus, it is necessary to consider the expression
titer of ANXA2, the dose level of ANXA2-targeted anti-
bodies (or carrier with shANXA2), and the patient’s health
condition before using ANXA2-targeted therapy.

Conclusions
This review reveals the cancerous and suppressive
mechanisms of ANXA2. First, we stepwise described the
mechanisms of how ANXA2 promotes proliferation,
migration, the EMT, metastasis, invasion, and CSC
formation. On cell membranes, the ANXA2-S100A10
heterotetramer promotes activation of MMPs to increase
the invasive ability. In cytoplasm, ANXA2, after being
phosphorylated at Tyr23, binds to actin filaments to
enhance migration. Inside cell nuclei, ANXA2 promotes
both EMT- and CSC-related transcriptional factors
(Snail, Twist, Oct4, Sox2, and Nanog). Second, we illus-
trated different therapeutic resistances by ANXA2. After
phosphorylation, ANXA2 is translocated into nuclei and
prevents DNA damage due to radiotoxicity. ANXA2-
coated enlargeosomes exocytose chemotherapeutic drugs
to decrease the level of chemotoxicity in cancer cells.
Moreover, the molecular interaction of ANXA2 and DC-
SIGN triggers immunosuppression, which results in
tumor immune escape. The above findings gave us a
deeper understanding of the molecular aspects of cancer
progression, and provided a great opportunity to
improve the therapeutic efficacy against NPC and other
cancers with high ANXA2 expression. Although the
ANXA2-targeted therapy has not been examined in
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clinical trials yet, it is expected to produce promising
treatment outcomes.
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