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Abstract

Background: Methionine, an essential amino acid, is required for protein synthesis and normal cell metabolism.
The transmethylation pathway and methionine salvage pathway (MTA cycle) are two major pathways regulating
methionine metabolism. Recently, methionine has been reported to play a key role in Drosophila fecundity.

Results: Here, we revealed that the MTA cycle plays a crucial role in Drosophila fecundity using the mutant of
aci-reductone dioxygenase 1 (DADI1), an enzyme in the MTA cycle. In dietary restriction condition, the egg production
of adil mutant flies was reduced compared to that of control flies. This fecundity defect in mutant flies was rescued by
reintroduction of Dadi1 gene. Moreover, a functional homolog of human ADI1 also recovered the reproduction defect,
in which the enzymatic activity of human ADI1 is required for normal fecundity. Importantly, methionine supply
rescued the fecundity defect in Dadil mutant flies. The detailed analysis of Dadil mutant ovaries revealed a dramatic
change in the levels of methionine metabolism. In addition, we found that three compounds namely, methionine, SAM

regulation of methionine metabolism.

and Methionine sulfoxide, respectively, may be required for normal fecundity.
Conclusions: In summary, these results suggest that ADIT, an MTA cycle enzyme, affects fly fecundity through the
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Background

Methionine, one of the essential amino acids, plays a key
role in protein synthesis and cellular metabolic function,
supplying sulfur and other compounds required for normal
metabolism and cell growth [1,2]. Methionine executes a
well-known role for the initiation of protein synthesis in
eukaryotes and prokaryotes. Indeed, the hydrophobic char-
acter of methionine is important for the binding of initiator
tRNA to elF-2, and most methionine residues are detected
in the hydrophobic interior core of globular proteins [3,4].
Previous studies have also shown that methionine is a
source of the methyl groups that regulate the methylation
of DNA and histones, and influence chromatin structure
and gene expression in the liver [5,6]. Methylation imbal-
ance is correlated with several diseases including liver
disease, cardiovascular disease and cancer [7,8]. Methionine
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residues on the protein surface also function as endogenous
antioxidants [9,10]. Recent study also indicated that methio-
nine plays a critical role in fecundity in Drosophila [11].
Except from diet, methionine contents are controlled
by several pathways, including the folate pathway, trans-
methylation pathway and methionine salvage pathway.
The folate pathway plays a pivotal role in one-carbon
metabolism [12,13]. In the transmethylation pathway,
also called the methionine de novo pathway or methyl
cycle, S-adenosylmethionine (SAM) is synthesized from
ATP and methionine by SAM synthetase (SAM-S). The
process of methyl cycle pathway is to metabolize SAM
into S-adenosylhomocysteine (SAH) and subsequently
to homocysteine. Then, homocysteine is converted into
cysteine by trans-sulfuration or re-methylated to form
methionine. SAM functions as a methyl donor involved
in many biochemical reactions [6,14]. The methionine
salvage pathway, also termed the 5’-methylthioadeno-
sine (MTA) cycle, is allowed to regenerate methionine
from MTA and is also responsible for the production of
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polyamines which are critical for cell proliferation [15,16].
The biochemical reactions in the MTA cycle are mainly
carried out by six enzymes which are conserved from bac-
teria to yeast to human [17,18]. However, the effects of the
MTA cycle on methionine metabolism in Drosophila are
still unknown.

In a previous study, Yeh et al. [19] identified Sip-L
(hADI1), a hepatic factor capable of supporting HCV in-
fection and replication in an otherwise non-permissive cell
line. In a subsequent study, we demonstrated that human
aci-reductone dioxygenase 1 (hADI1) over-expression in
293 cells enhances viral entry into cells but not replication
of HCV [20]. ADI1, an MTA cycle enzyme, belongs to the
cupin domain superfamily and has aci-reductone dioxy-
genase (ARD) enzymatic activity. The ADI1 associates
with Fe** to produce formate and 2-keto-4-methylthiobu-
tyrate (MTOB), the keto-acid precursor of methionine. Al-
ternatively, ADI1 can associate with Ni** to produce
formate, carbon monoxide and 3-methylthiopropionate
[21,22]. Previous studies of hADI1 have shown that it has
multiple functions, such as the modulation of cell mi-
gration, apoptosis and RNA processing [23-25]. Despite
these functions in basic cellular processes, the roles of
ADI1 in whole animals are unknown. Therefore, we
attempted to investigate the function of ADI1 in model
animal Drosophila

In the present study, we generated the Dadil null mu-
tant and studied the role of Dadil in fly fecundity. We
found that the enzymatic activity of ADI1 is required for
normal egg production, and human ADI1 is functionally
exchangeable for this effect. From the metabolomic ana-
lysis, we concluded that three metabolites in methionine
metabolism might be critical for Drosophila fecundity.

Methods

Fly strains

Deletions in Dadil (CG32068) were generated by impre-
cise excision of P-element P{XP}CG32068%°1* (Exelixis
Collection), which is located at 48 bp upstream of the start
codon in exon 1 of the Dadil gene. First, the P-element
strain was crossed with the rucuca strain (Bloomington
stock number 576), which carries third-chromosome lines
marked with several recessive markers. The recombined
P-element strain was mobilized using standard genetic
methods by crossing to Delta2-3/TM3,Sb (carrying the
transposase) and excision alleles were identified by loss
of white marker. Three null mutants (Dadil’, Dadil®,
Dadil”™) with deletions in the Dadil gene and 11 hypo-
morphic alleles were selected from a collection of 508 ex-
cision strains by western blotting. Three null mutant
alleles (Dadil’, Dadi1’®, Dadil”®) also verified the deletion
region in the Dadil gene by PCR amplification. The dele-
tion region of Dadil”™ was from 10656504 to 10657550
in fly genomic DNA. The deletion region of Dadil”
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and Dadil® were 10656504—10658482 and 10655425—
10657620, respectively. The lethality of Dadil null
mutants (Dadil”* homozygote or Dadil’/Dadil’ trans-
heterozygote) were shown to be less than 5%.

To remove most of the markers in rucuca, the Dadi
FRT®® strain was generated by crossing Dadil”* with P
{neoFRT}80B/TM3Ser. The recombination was performed
using standard genetics methods, and alleles were identi-
fied by containing two markers, thread (th) and ebony (e).
The Dadil”*-FRT®* strain was used in this study for the
fecundity assay. The P{neoFRT}80B strains were used in
this paper for genetic background control.

To create the rescue construct P{UAST-DADI1}, first,
Dadil cDNA encoding full-length DADI1 was amplified
by PCR, inserted with hemagglutinin (HA) epitope tag or
without HA tag by EcoRI-Xhol sites, and introduced into
the pBluescript (pBS) vector. Then, the EcoRI-Xhol frag-
ment from pBS-HA-DADI1 and pBS-DADI1 were sub-
cloned into the pUAST vector. The constructs were
injected into w minus flies by P-element transformation.
For the P{UAST-hADI1} and P{UAST-hADI1-E94A} con-
structs, full-length human AD1 cDNA was amplified from
the human liver cDNA. The strategy used for the hADI1
constructs was the same as the one used for the P{UAST-
DADI1} constructs. For the P{UAST-hADI1-E94A} construct,
site-direct mutagenesis was performed in the pBS-hADI1
construct. The pBS-hADI1-E94A was subcloned into
pUAST and then injected into the w minus embryo.

174

Western blotting

For western blot analysis, fly adult samples were dis-
sected and homogenized gently in cell lysate buffer (50
mMTris-HCl, pH 7.5, 400mMNaCl, 5 mM EDTA, 1%
Nonidet P-40 and protease inhibitor cocktail). Samples
were left for 10 min on ice and then centrifuged at
14,000 rpm for 10 min at 4°C. The supernatant was then
placed into a fresh centrifuge tube, protein sample buffer
was added, and the sample was heated to 95°C for
10 min; this was followed by analysis by 12% SDS-
PAGE. The proteins were then transferred to PVDF
membrane and incubated for 1 hr in blocking buffer (7%
nonfat milk in TBS/0.1% Tween-20). DADI1, hADIlor
alpha-tubulin (Sigma) antibody incubations were carried
out first in blocking buffer for 16 hr at 4°C and then the
membranes were washed with TBS/0.1% Tween-20. HRP-
conjugated antibody was used as the secondary antibody
for one hour. Finally, ECL substrate was added and pro-
tein signals were detected. For DADI1 antibody gener-
ation, DNA fragment-encoding full-length DADI1 was
cleaved from pBS-DADI], inserted by EcoRI-Xhol sites,
and introduced into the pQE81L (QIAGEN) vector. DH5«
bacterial cells were transformed with pQE81L-DADII1 and
purified by Ni-NTA resin (QIAGEN). DADI1 polyclonal
antibody was raised in rabbits and rats by immunization
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with His-tag-DADI1 fusion protein. The dilution of
DADI1 antibody used for western blotting was 1:500. For
hADI1 antibody generation, full-length hADI1 was ampli-
fied by PCR, inserted by EcoRI-Xhol sites, and introduced
into the pET32a vector. The His-tag-hADI1 fusion pro-
teins were overexpressed in BL21 bacterial cells and puri-
fied by Ni-NTA resin. Human ADI1 polyclonal antibody
was raised in rabbits and the dilution of hADI1 antibody
was 1:500.

Food conditions

For the fly food condition and fecundity assay, we used a
protocol adapted from the one described in a study by
Grandison et al. [11]. The restricted diet food contained
100 g BREWER'S Yeast, 50 g sucrose, 15 g agar, 3 ml
propionic acid and 30 ml p-Hydroxy-benzoic acid me-
thyl ester (3 g in 30 ml 95% ethanol) per liter. The fully-
fed food was the same as the restricted diet food, except
that the concentration of BREWER'S Yeast was in-
creased to 200 g per liter. For methionine rescue experi-
ments, the 0.7 or 1.4 mM methionine (Sigma, M9625)
or 0.4 mM tryptophan (Sigma, T0254) was added to re-
stricted diet food.

Fecundity assay

Homozygous mutant flies (Dadil”*/Dadil”®) were gen-
erated by crossing male Dadil heterozygous mutant flies
with female Dadil heterozygous mutant flies. Under the
restricted diet condition, 135 Dadil homozygous mutant
female flies were mixed with 90 OreR male flies to mate
for two days in 5 egg laying cups. The females were then
separated from males and transferred to new egg laying
cups with the restricted diet food. The density of flies
was 30 females per egg laying cup. At least 90 females
per one genotype were observed in various experiments.
We regularly transferred flies to new egg laying cups
after approximately 2 days and collected eggs on the
appointed days. The eggs were counted on days 3, 6, 8,
11, 15, 22, 29 and 35, and a Student’s ¢ test was used to
investigate differences between the various genotypes.

Targeted metabolites analysis

The methionine-associated metabolites were determined
from wild-type and Dadil homozygous mutant ovaries
raised under the restricted diet condition. Twenty ovar-
ies per genotype were collected and homogenized in
80% MeOH. The extraction samples were centrifuged at
12000 rpm for 10 min at 4°C. The supernatants were trans-
ferred into clean tubes, dried with N2, and stored at —80°C
until UPLC/MS analysis. Samples were subjected to Ultra
performance liquid chromatography coupled with triple
quadrupole massspectrometry (UPLC/TQMS) system. Re-
sults were further analyzed using the Masslynx™ 4.0 and
QuanLynx™ (Waters) software systems. The UPLC/
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TQMS analysis was conducted in the Metabolomics
Core Laboratory of the Healthy Aging Research Center,
Chang Gung University.

Results

The generation of Drosophila adil mutants

To investigate the role of methionine metabolism in
Drosophila fecundity, we generated Dadil null mutants,
by imprecise excision of the P element from strain P
{XP}CG32068d01129 (Exelixis Collection). The Drosoph-
ila adil gene encodes aci-reductone dioxygenase (ARD)
and presumably functions in the MTA cycle (Figure 1A).
It is located on chromosome 3 L at 67E6, and consists
of five exons that encode a predicted protein of 186
amino acids (Flybase database ID CG32068). The P{XP}
CG32068 d01129 P-element is located at 48 bp up-
stream of the start codon, in exon 1 of the Dadil gene.
Using genomic PCR amplification, three null mutants
(Dadil’, Dadil’, Dadil”®) with deletions in the Dadil
gene were selected from a collection of 508 excision
strains (Figure 1B). The deleted region of Dadil”* includes
an entire coding region of Dadil gene but has no effects
on neighboring genes, while the deleted regions of Dadil’
and Dadil’ are larger and include parts of the 5" and 3’
neighboring genes, respectively. Therefore, homozygote
Dadil”™ and trans-heterozygote of Dadil’/Dadil’
served as null mutants. More than 95% of the Dadil
null mutants eclosed to viable adults. Polyclonal anti-
DADI1 antibody raised against full-length protein, rec-
ognized one major band about 19 kDa in immunoblots
of wild-type extracts from different developmental
stages (Figure 1C). The ubiquitous expression of DADI1
throughout all developmental stages suggested it could
serve as an enzyme involved in metabolic reactions in
fly life. A lack of proteins in null mutants was confirmed
by a lack of signaling in western blotting for Dadil’/
Dadil® trans-heterozygous and Dadil”* homozygous
flies (Figure 1D). To our knowledge, the Dadil mutant
is the first mutant involved in the MTA cycle in Dros-
ophila. Thus, the Dadil mutant provides us with an op-
portunity to investigate the role of the MTA cycle in
Drosophila development.

Dadi1 mutant females displayed a fecundity defect under
dietary restriction

MTA cycle enzymes are actively expressed in Drosoph-
ila ovaries (Flybase). Thus, we examined fecundity, the
egg production ability, was examined in control and
Dadil”*mutant female flies under different food condi-
tions. Since protein supply is a major factor for growth
and dietary restriction is known to reduce fecundity in
flies [11,26,27], we designed both fully-fed and re-
stricted diet conditions, which provided 20% and 10%
yeast, respectively. Interestingly, under the restricted
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Figure 1 Isolation of Dadi1 alleles. (A) Schematic diagram of the
methionine salvage and recycling pathways, which is generated
based on metabolism pathways in the Kyoto Encyclopedia Genes
and Genomes (KEGG) database. The Main enzyme studied here is
highlighted with yellow. (B) A map of genomic DNA displays the
Dadi1 (CG32068) locus. The DADI19"?? p-element insertion line
(black arrow) contains a p-element at 48 bp upstream of the DADI1
start codon (red arrow). Three DADIT mutant alleles (Dadi1’, Dadi1’
and Dadi1”*) were produced with alterations in the Dadi! coding
region. (C) Immunoblotting of DADI1 in several developmental
stages. Embryos were collected after egg deposition. (D) The protein
levels of DADI1 were reduced in Dadil”* heterozygote strain
(Dadi1”*/TM3Ser). Western blot analysis of DADIT protein levels of
Dadi1’/ Dadi1® trans-heterozygous alleles and Dadi1” homozygous
mutant indicated that they were protein null alleles.

diet condition, Dadil”* mutant females displayed a sig-
nificant reduction in fecundity compared to that in the
control females (Figure 2A), indicating that Dadil is es-
sential for fecundity when nutrition is poor. To verify
whether this difference was caused by the lack of Dadil,
we expressed the exogenous Dadil gene in the mutant
flies. The ubiquitous expression of DADI1 driven by
actin-Gal4, indeed partially rescued the fecundity defect
in Dadil mutant females (Figure 2B-C).
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The enzymatic activity of Dadi1 is required for the
regulation of fly fecundity

ADI1 family proteins are highly conserved among differ-
ent species from bacteria to human [23], and hADI1
shared 50% identity and 69% similarity with DADI1
(CG32068) in protein sequence alignment (by NCBI-
blast). The enzyme activity of this protein family is located
in the highly conserved ARD domain, and DADI1 showed
68% identity and 84% similarity to human ADI1 on this
domain (Figure 3A). Previous studies have reported that
human ADI1 obtains the ARD activity and functionally re-
places yeast ADI1 in the in vivo enzyme activity assay [21].
Furthermore, a critical glutamic acid at the 94th residue
has been demonstrated to be essential for its enzyme ac-
tivity [22,25]. In this study, we generated transgenic flies
expressing a wild type hADIlor a hADI1-E94A mutant
in which the glutamic acid is substituted with alanine
(Figure 3A-B). Indeed, both wild-type hADI1 strains al-
most completely rescued the fecundity defect in the
Dadil mutants (Figure 3C). In contrast, hADI1-E94A
could not rescue the fecundity defect in Dadil mutant
females (Figure 3D), despite that the protein levels of
E94A mutants and wild-type-15 of hADI1 were equal.
Flies expressing this E94A mutant hADI1 displayed
similar egg production ability to those expressing the
GEFP control protein. Based on these data, we concluded
that human ADI1 is functionally interchangeable with
Drosophila ADI1 and that the enzymatic activity of
ADI1 is essential for normal egg production.

Methionine supply suppressed the fecundity defect in
Dadi1 mutant females

The MTA cycle regulates the methionine metabolism.
Thus we set out to test whether providing a supply of
methinonine could rescue the fecundity defect in Dadil
mutants. Indeed, adding 0.7 mM or 1.4 mM methionine
to the fly food completely rescued the fecundity defect
(Figure 4), such that the mutant females showed a similar
ability to produce eggs to that of the control females. To
further investigate whether the rescue was specifically due
to methionine, tryptophan was also supplied in the food.
However, no significant rescue in fecundity was found as a
result of supplying tryptophan (Figure 4). Therefore, we
concluded that the depletion of methionine was the major
cause for reduced fecundity in Dadil mutants.

Metabolites of MTA cycle were altered in Dadi1

mutant ovaries

In order to understand what metabolites are critical for
fly fecundity, we first examined the metabolism in Dadil
mutant ovaries and in the ovaries from control flies in
dietary restriction condition. UPLC-TQMS based tar-
geted metabolites analysis indicated that metabolites in
the MTA cycle, including methionine, SAM, MTA, and
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Figure 3 Enzymatic activity of ADI1 is essential for regulating egg production. (A) Protein sequence alignment is shown in the Cupin
domain of hADIT and DADI1. The identity and similarity of Cupin domain is 68% and 84%, respectively. The glutamic acid site is required the
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were observed in the Dadil null mutant background by hADIT antibody. (C) Expressing human ADI1 by Actin-Gal4 can rescue the egg production
defect in Dadil mutant alleles. (D) The fecundity was not rescued by diverse expressing enzyme dead mutant (E94A) transgenic lines. *P < 0.05,
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Figure 4 Methionine supplementation rescued the fecundity
defect in Dadi1 mutant alleles. The fecundity of Dadil null
mutants was recovered to the level of control flies after adding back
met but not trp. *P < 0.05, **P < 0.01 and N.S,, no significance.

spermidine were significantly reduced. It clearly displayed
that MTA cycle are significantly impaired in Dadil mu-
tant ovaries (Figure 5A). Consistently, the metabolites in
the downstream of ADI1 (methionine and SAM) were af-
fected more severely than those upstream (MTA and
spermidine). However, the metabolites in methyl cycle
(SAH and homocysteine) and the trans-sulfuration (cyst-
eine) were also affected, suggesting that under dietary re-
striction condition the methionine metabolism was greatly
reduced in the Dadil mutant ovary (Figure 5B). The con-
tents of Methionine sulfoxide, an oxidized form of methio-
nine, were dramatically reduced. In contract, the levels of
serine and phenylalanine, an indication of amino acid
pools, remained unaffected (Figure 5B), suggesting that
the general amino acid metabolism was not altered.

Since methionine supply in the diet rescued fecundity
defect in Dadil mutant completely (Figure 4), we further
compared the methionine metabolism in Dadil mutant
ovaries and mutant ovaries with a methionine supply in
the diet. Results demonstrated that the methionine supply
elevated metabolites of MTA cycle, such as methionine,
SAM, and MTA. Interestingly, the contents of spermidine
were not increased. Nevertheless, metabolites in the me-
thyl cycle and trans-sulfuration were not increased. These
results suggest that MTA cycle might be dominant in me-
thionine metabolism in fly ovary under dietary restriction
condition. The amount of Methionine sulfoxide was also
returned to the levels of control ovaries (Figure 5B). Again,
the contents of serine and phenylalanine remain the same,
indicating this amount of methionine in food supply did
not alter general amino acid polls. Collectively, these re-
sults suggest that the rescue of fecundity by methionine
most likely relates to the metabolites of the MTA cycle.
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Figure 5 The metabolites of MTA cycle are affected by DADI1.
(A) Four metabolites, Methionine, SAM, MTA and Methionine
sulfoxide, were observed to be rescued in Dadil mutant ovaries by
methionine addition. (B) Under the restricted diet condition, the
metabolites of the methyl cycle and MTA cycle were dramatically
changed in Dadil mutant ovaries. The raw data of metabolites are
displayed below the picture. The results represent the means + SD of

three experiments. *P < 0.05, **P < 001 and N.S. indicates no significance.
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Discussion

Drosophila ADI1 is involved in MTA cycle

In the present study, we demonstrated that the MTA
cycle is crucial for Drosophila female fecundity under
the restricted diet condition, and that a methionine sup-
ply could suppress the fecundity defect in Dadil mu-
tants. The role of MTA cycle is used for the SAM, the
principal methyl donor, which can recycle sulfur group to
regenerate methionine. The MTA cycle also links tightly
with polyamine synthesis. The intermediate compound of
MTA cycle, MTA, is formed from dcSAM and a polyamine
precursor [15]. In addition, the downstream products of
MTA cycle, MTA and MTOB, are reported to inhibit the
rate-limiting enzyme in polyamine synthesis, ornithine de-
carboxylase [28]. However, the biological functions of MTA
cycle are still poorly understood. In previous studies, the
MTA cycle has been found to process 10 ~ 15% of methio-
nine contents in yeast [29], and is active in the human
liver and kidney. Similarly, the MTA cycle is very active in
Drosophila ovaries, which was revealed by the observation
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of a 64% reduction of methionine which could not be
recycled back through the MTA cycle in Dadil mutant
ovaries (Table 1).

Drosophila fecundity is regulated by DADI1 through the
alteration of methionine balance

Drosophila female fecundity is controlled by nutrients in-
take and signaling pathways. For example, flies fed with re-
striction food can extend adult survivorship but reduce
fecundity [30,31]. Moreover, scientists report that mutants
in the insulin/insulin-like growth factors (IGFs) signaling
pathway have reduced juvenile hormone contents, pro-
longed lifespan and impaired in reproduction [32-34]. Pro-
tein supply is considered very crucial for the growth and
reproduction of organisms [11]. Recently, among all essen-
tial amino acids, methionine has been found to play the
most pivotal role in Drosophila fecundity. Partridge et al.
showed that adding methionine alone in restricted diet
conditions food promoted longevity and increased fecund-
ity [11]. When the maternal diets with an inappropriate
intake of methionine can affect short-term reproductive
ability and impair long-term health of the offspring [35]. A
recent study suggested that the rat diet with low protein
during gestation also observes the alterations of DNA
methylation and gene expression in the offspring [36].
Furthermore, several studies also demonstrated that me-
thionine is able to regulate gene expression and protein
synthesis through the target of the rapamycin (mTOR)
pathway [37,38]. The mTOR activity is modulated by the
content of amino acids and insulin/insulin-like growth fac-
tors (IGFs). In contrast, adding methionine did not
promote egg production in mutant flies that express a
dominant- negative form of insulin receptor [11]. So, we
propose that the MTA cycle may control methionine bal-
ance in Drosophila and lead to normal egg laying through
the regulation of amino acid signals (via the mTOR path-
way and insulin pathway). Further experiments are needed
to reveal the details of how any mechanism controlled by
methionine affects fecundity.

Table 1 The levels of biosynthetic metabolites
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The metabolites of methionine metabolism are affected
by DADI1

Given that an increased methionine supply did not improve
fecundity much in the control flies (Figure 4A), even as it
increased the level of Methionine sulfoxide dramatically (by
about 2 folds), we concluded that Methionine sulfoxide
may not be the critical metabolite regulating fecundity.
However, it is still possible that Methionine sulfoxide plays
a role at the check-point of oogenesis progression. There-
fore, when the content is below some threshold, the egg
production is limited. This could explain why Methionine
sulfoxide did not show a dosage effect on fecundity. In
addition, spermidine, which is known to play a major role
in cell proliferation, was not increased much with methio-
nine supply (Figure 4B). Therefore, we hypothesized that
the role of the MTA cycle in fly fecundity may not simply
be to affect cell proliferation through control of spermidine
contents. On the other hand, the content of spermidine in
the fly ovary is much more than that required for normal
fecundity, even under a restricted diet condition or in
Dadil mutants. Based on the almost 100% recovery in me-
tabolite contents, MTA may correlate with the rescued fe-
cundity. MTA is known as a methyltransferase inhibitor,
which influence methylation status [39]. Because the con-
tents of MTA are very low in fly ovary, further experiments
are needed to confirm the importance of MTA in fly fe-
cundity. SAM is a universal methyl group donor for DNA,
RNA, protein and lipid. In the fly ovary, SAM-S seems
to be very active, leading to rapid conversion of methio-
nine into SAM, such that SAM levels are 10 times
greater than those of methionine. However, which of
these three metabolites plays the most critical role and
how it regulates fecundity are questions that remain to
be resolved by further experiments.

The relationship of reproduction and longevity is
uncoupled in Dadi1 mutant allele

Reduced fecundity has been found to be coupled with ex-
tended life spans in many organisms [26,40]. In Drosophila,

(ppm)

Metabolites Control Control + Met Dadi1-74 Dadi1-74 + Met
SAM 6733 + 1.149 6217 + 1.295 1.604 + 0.535 3014 + 1.061
Spermidine 0.647 + 0.188 0.647 + 0.241 0422 = 0.087 0262 £ 0.134
MTA 0.013 + 0.003 0.014 + 0.002 0.010 + 0.001 0.014 + 0.002
Methionine sulfoxide 15.852 £ 3377 46482 + 1972 0.392 + 0.206 11.949 + 1.794
SAH 0.028 + 0.009 0.017 = 0.005 0.023 = 0.011 0.017 = 0.004
Homocysteine 0.083 +0.019 0.049 + 0014 0.051 + 0.004 0.035 + 0.005
Cysteine 0261 + 0.063 0.230 + 0.075 0.149 + 0.029 0.119 + 0.021
Serine 11.839 + 2942 10.746 + 0.643 11450 + 0.894 10374 £ 1.722

The concentrations of metabolites were analyzed by UPLC-MS/MS and normalized with phenylalanine.

The unit of concentration is ppm (parts per million).
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protein supply played a pivotal role in female fecundity, and
under the restricted diet condition fewer eggs were pro-
duced and the average life span was prolonged. Interest-
ingly, adding back essential amino acids resulted in
fecundity being recovered, whereas life span was reduced.
However, supplying methionine appears to uncouple fe-
cundity and life span, such that females lay normal num-
bers of eggs and while living just as long as control flies
[11]. In Dadil mutants, the methionine content in ovaries
was reduced to 36% of that in control flies, and the fecund-
ity was diminished by about 20-30% (Figures 2 and 3 and
Table 1). However, Dadil mutants were less viable (5% le-
thality) and had a shorter average life span (data not
shown). It is possible that this reduced life span was caused
by a metabolic imbalance. Consistently, the methionine
supply did not alter the life span of Dadil mutants.

Conclusions

In summary, this study presents the first isolation of MTA
cycle enzyme mutant alleles in Drosophila. The MTA
cycle enzyme, DADII, is required for normal fecundity.
The fact that human ADI1 can rescue the egg production
defect suggests that the functions of ADI1 proteins among
different species are interchangeable and that the enzym-
atic activity of ADI1 is essential for its ability to regulate
fly reproductive activity. The fecundity defect in Dadil
mutants was rescued by adding methionine under dietary
restriction. Using metabolic analysis, we found that
DADI1 may regulate fly fecundity through the change of
MTA cycle metabolites. The discovery of the Drosophila
ADI1 protein in this study could clarify the role of the
MTA cycle in methionine metabolism. Furthermore, the
results of this study suggest that normal fecundity may be
controlled by the metabolites of methionine metabolism.

Competing interest
The authors declare that they have no competing interests.

Authors’ contributions

Conceived and designed the experiments: HYC, LMP and YHL; Performed
experiments: HYC, YHL, GLS and HYT; Data analysis: HYC, YHL, MLC and MSS;
Manuscript writing: HYC and LMP. All authors have read and approved

the manuscript.

Acknowledgements

We thank Fly Core Taiwan, Bloomington Drosophila Stock Center, and Exelixis
Collection at Harvard Medical School for fly stocks and reagents. We thank
Drs Chien-Kuo Lee, Hai-Wei Pi and Chia-Lin Wu for their comments and the
members of Pai lab for the valuable discussions. This work was supported by
grants from the national Science Council of Taiwan, ROC (NSC100-2311-B-182-
001-MY3 to LP), the Chang Gung Memorial Hospital (CMRPD180111-3 to L.P.),
and the Ministry of Education, Taiwan, ROC (EMRPD1C0041 to L.P.).

Author details

'Graduate Institute of Biomedical Sciences, Chang Gung University,
Tao-Yuan, Taiwan. *Department of Biochemistry, Chang Gung University,
Tao-Yuan, Taiwan. Chang Gung Molecular Medicine Research Center, Chang
Gung University, Tao-Yuan, Taiwan. 4Departmem of Biomedical Sciences,
Chang Gung University, Tao-Yuan, Taiwan. “Healthy Aging Research Center,
College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.

Page 8 of 9

Received: 1 May 2014 Accepted: 8 July 2014
Published: 19 July 2014

References

1. Brosnan JT, Brosnan ME: The sulfur-containing amino acids: an overview.
J Nutr 2006, 136:16365-1640S.

2. Tesseraud S, Metayer Coustard S, Collin A, Seiliez I: Role of sulfur amino
acids in controlling nutrient metabolism and cell functions: implications
for nutrition. Br J Nutr 2009, 101:1132-11309.

3. Chao CC, Ma YS, Stadtman ER: Modification of protein surface
hydrophobicity and methionine oxidation by oxidative systems. Proc Natl
Acad Sci U S A 1997, 94:2969-2974.

4. Drabkin HJ, RajBhandary UL: Initiation of protein synthesis in mammalian
cells with codons other than AUG and amino acids other than
methionine. Mol Cell Biol 1998, 18:5140-5147.

5. Mato JM, Martinez-Chantar ML, Lu SC: S-adenosylmethionine metabolism
and liver disease. Ann Hepatol 2013, 12:183-189.

6. Lu SC, Mato JM: S-adenosylmethionine in liver health, injury, and cancer.
Physiol Rev 2012, 92:1515-1542.

7. Brosnan JT, da Silva R, Brosnan ME: Amino acids and the regulation of
methyl balance in humans. Curr Opin Clin Nutr Metab Care 2007, 10:52-57.

8. Williams KT, Schalinske KL: New insights into the regulation of methyl
group and homocysteine metabolism. J Nutr 2007, 137:311-314.

9. Levine RL, Mosoni L, Berlett BS, Stadtman ER: Methionine residues as
endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 1996,
93:15036-15040.

10.  Kim G, Weiss SJ, Levine RL: Methionine oxidation and reduction in
proteins. Biochim Biophys Acta 1840, 2014:901-905.

11. Grandison RC, Piper MD, Partridge L: Amino-acid imbalance explains
extension of lifespan by dietary restriction in Drosophila. Nature 2009,
462:1061-1064.

12. Stipanuk MH: Sulfur amino acid metabolism: pathways for production and
removal of homocysteine and cysteine. Annu Rev Nutr 2004, 24:539-577.

13. Stover PJ: Physiology of folate and vitamin B12 in health and disease.
Nutr Rev 2004, 62:53-512. discussion S13.

14.  Grillo MA, Colombatto S: S-adenosylmethionine and its products.

Amino Acids 2008, 34:187-193.

15. Albers E: Metabolic characteristics and importance of the universal
methionine salvage pathway recycling methionine from
5"-methylthioadenosine. [UBMB Life 2009, 61:1132-1142.

16.  Kusano T, Berberich T, Tateda C, Takahashi Y: Polyamines: essential factors
for growth and survival. Planta 2008, 228:367-381.

17. Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M: Methionine salvage and
S-adenosylmethionine: essential links between sulfur, ethylene and
polyamine biosynthesis. Biochem J 2013, 451:145-154.

18.  Pirkov I, Norbeck J, Gustafsson L, Albers E: A complete inventory of all
enzymes in the eukaryotic methionine salvage pathway. FEBS J 2008,
275:4111-4120.

19. Yeh CT, Lai HY, Chen TC, Chu CM, Liaw YF: Identification of a hepatic
factor capable of supporting hepatitis C virus replication in a
nonpermissive cell line. J Virol 2001, 75:11017-11024.

20. Cheng JC, Yeh YJ, Pai LM, Chang ML, Yeh CT: 293 cells over-expressing
human ADI1 and CD81 are permissive for serum-derived hepatitis C
virus infection. J Med Virol 2009, 81:1560-1568.

21, Hirano W, Gotoh |, Uekita T, Seiki M: Membrane-type 1 matrix
metalloproteinase cytoplasmic tail binding protein-1 (MTCBP-1) acts as
an eukaryotic aci-reductone dioxygenase (ARD) in the methionine
salvage pathway. Genes Cells 2005, 10:565-574.

22. Pochapsky TC, Pochapsky SS, Ju T, Mo H, Al-Mjeni F, Maroney MJ: Modeling
and experiment yields the structure of acireductone dioxygenase from
Klebsiella pneumoniae. Nat Struct Biol 2002, 9:966-972.

23. Uekita T, Gotoh I, Kinoshita T, Itoh Y, Sato H, Shiomi T, Okada Y, Seiki M:
Membrane-type 1 matrix metalloproteinase cytoplasmic tail-binding
protein-1 is a new member of the Cupin superfamily. A possible
multifunctional protein acting as an invasion suppressor down-regulated
in tumors. J Biol Chem 2004, 279:12734-12743.

24.  Gotoh |, Uekita T, Seiki M: Regulated nucleo-cytoplasmic shuttling of
human aci-reductone dioxygenase (hADI1) and its potential role in
mMRNA processing. Genes Cells 2007, 12:105-117.

25. Oram SW, Ai J, Pagani GM, Hitchens MR, Stern JA, Eggener S, Pins M, Xiao W,
Cai X, Haleem R, Jiang F, Pochapsky TC, Hedstrom L, Wang Z: Expression and



Chou et al. Journal of Biomedical Science 2014, 21:64 Page 9 of 9
http://www.jbiomedsci.com/content/21/1/64

function of the human androgen-responsive gene ADIT in prostate cancer.
Neoplasia 2007, 9:643-651.

26. Flatt T: Survival costs of reproduction in Drosophila. Exp Gerontol 2011,
46:369-375.

27. Tu MP, Tatar M: Juvenile diet restriction and the aging and reproduction
of adult Drosophila melanogaster. Aging Cell 2003, 2:327-333.

28.  Subhi AL, Diegelman P, Porter CW, Tang B, Lu ZJ, Markham GD, Kruger WD:
Methylthioadenosine phosphorylase regulates ornithine decarboxylase by
production of downstream metabolites. J Biol Chem 2003, 278:49868-49873.

29.  Chattopadhyay MK, Tabor CW, Tabor H: Methylthioadenosine and
polyamine biosynthesis in a Saccharomyces cerevisiae meuldelta
mutant. Biochem Biophys Res Commun 2006, 343:203-207.

30.  Min KJ, Flatt T, Kulaots |, Tatar M: Counting calories in Drosophila diet
restriction. Exp Gerontol 2007, 42:247-251.

31. Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD: Dietary composition
specifies consumption, obesity, and lifespan in Drosophila melanogaster.
Aging Cell 2008, 7:478-490.

32. Tatar M, Bartke A, Antebi A: The endocrine regulation of aging by
insulin-like signals. Science 2003, 299:1346-1351.

33. Flatt T, Kawecki TJ: Juvenile hormone as a regulator of the trade-off
between reproduction and life span in Drosophila melanogaster.
Evolution 2007, 61:1980-1991.

34. Toivonen JM, Partridge L: Endocrine regulation of aging and reproduction
in Drosophila. Mol Cell Endocrinol 2009, 299:39-50.

35. Rees WD, Wilson FA, Maloney CA: Sulfur amino acid metabolism in
pregnancy: the impact of methionine in the maternal diet. J Nutr 2006,
136:17015-1705S.

36. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC: Dietary
protein restriction of pregnant rats induces and folic acid
supplementation prevents epigenetic modification of hepatic gene
expression in the offspring. J Nutr 2005, 135:1382-1386.

37. Stubbs AK, Wheelhouse NM, Lomax MA, Hazlerigg DG: Nutrient-hormone
interaction in the ovine liver: methionine supply selectively modulates
growth hormone-induced IGF-I gene expression. J Endocrinol 2002,
174:335-341.

38. Tesseraud S, Bigot K, Taouis M: Amino acid availability regulates S6K1 and
protein synthesis in avian insulin-insensitive QM7 myoblasts. FEBS Lett
2003, 540:176-180.

39.  Avila MA, Garcia-Trevijano ER, Lu SC, Corrales FJ, Mato JM: Methylthioadenosine.
Int J Biochem Cell Biol 2004, 36:2125-2130.

40. Flatt T: Ageing: Diet and longevity in the balance. Nature 2009, 462:939-990.

doi:10.1186/512929-014-0064-4

Cite this article as: Chou et al: ADI1, a methionine salvage pathway
enzyme, is required for Drosophila fecundity. Journal of Biomedical
Science 2014 21:64.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Fly strains
	Western blotting
	Food conditions
	Fecundity assay
	Targeted metabolites analysis

	Results
	The generation of Drosophila adi1 mutants
	Dadi1 mutant females displayed a fecundity defect under dietary restriction
	The enzymatic activity of Dadi1 is required for the regulation of fly fecundity
	Methionine supply suppressed the fecundity defect in Dadi1 mutant females
	Metabolites of MTA cycle were altered in Dadi1 mutant ovaries

	Discussion
	Drosophila ADI1 is involved in MTA cycle
	Drosophila fecundity is regulated by DADI1 through the alteration of methionine balance
	The metabolites of methionine metabolism are affected by DADI1
	The relationship of reproduction and longevity is uncoupled in Dadi1 mutant allele

	Conclusions
	Competing interest
	Authors’ contributions
	Acknowledgements
	Author details
	References

