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Defining housekeeping genes suitable for

RNA-seq analysis of the human allograft
kidney biopsy tissue
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Abstract

Background: RNA-seq is poised to play a major role in the management of kidney transplant patients. Rigorous
definition of housekeeping genes (HKG) is essential for further progress in this field. Using single genes or a limited
set HKG is inherently problematic since their expression might be altered by specific diseases in the patients being
studied.

Methods: To generate a HKG set specific for kidney transplantation, we performed RNA-sequencing from renal
allograft biopsies collected in a variety of clinical settings. Various normalization methods were applied to identify
transcripts that had a coefficient of variation of expression that was below the 2nd percentile across all samples,
and the corresponding genes were designated as housekeeping genes. Comparison with transcriptomic data from
the Gene Expression Omnibus (GEO) database, pathway analysis and molecular biological functions were utilized to
validate the housekeeping genes set.

Results: We have developed a bioinformatics solution to this problem by using nine different normalization methods to
derive large HKG gene sets from a RNA-seq data set of 47,611 transcripts derived from 30 biopsies. These biopsies were
collected in a variety of clinical settings, including normal function, acute rejection, interstitial nephritis, interstitial fibrosis/
tubular atrophy and polyomavirus nephropathy. Transcripts with coefficient of variation below the 2nd percentile were
designated as HKG, and validated by showing their virtual absence in diseased allograft derived transcriptomic data sets
available in the GEO. Pathway analysis indicated a role for these genes in maintenance of cell morphology, pyrimidine
metabolism, and intracellular protein signaling.

Conclusions: Utilization of these objectively defined HKG data sets will guard against errors resulting from focusing on
individual genes like 18S RNA, actin & tubulin, which do not maintain constant expression across the known spectrum of
renal allograft pathology.
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Background
During the last decade, remarkable advances have been
achieved in clinical medicine by the application of DNA
microarray technology. Molecular signatures relevant to
the diagnosis, prognosis and therapy have been discovered
for numerous diseases [1–3]. In recent years, RNA-
sequencing (RNA-seq) has been recognized as an attract-
ive alternate technology for the same purpose. Compared
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to microarrays, RNA-seq provides a more comprehensive
profiling of the transcriptome, with better quantitation,
over a wider dynamic range, while allowing single base
resolution, and detection of isoforms, RNA editing events,
microRNAs and long noncoding RNAs [4–6]. The tech-
nology has been refined sufficiently to allow mRNA profil-
ing of single cells. Challenges among the application of
RNA-seq in clinical medicine include the need for an
experimental design that includes sufficient numbers of
biologic and technical replicates, and implementation of a
mathematically valid bioinformatics pipeline to mine the
large volume of data generated at a reasonable cost [7, 8].
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The application of RNA-seq to the allograft kidney
is at a very rudimentary stage. Rigorous definition of
housekeeping genes (HKG) is essential for further
progress in this field. HKG can be defined as genes
ubiquitously expressed in all tissue compartments and
cell-types regardless of their developmental stage,
physiological condition and exposure to external stim-
uli [9]. HKG used in traditional clinical studies and
classical biology experiments include 18S RNA, 28S
RNA, tubulins, beta-actins, and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). However, it is
known that the expression of these genes is not con-
stant through the cell cycle, and is further altered in
response to injurious stimuli. Indeed 18 s RNA Is one
of the biomarkers associated with acute rejection [10].
Actin is upregulated in chronic allograft dysfunction
[11]. Tubulin is targeted by Colchicine, a drug used
in patients with gout: it inhibits microtubule
polymerization by binding to tubulin and block mi-
tosis by acting as a ‘spindle poison’ [12]. These exam-
ples illustrate how use of single genes or a limited set
HKG can be inherently problematic.
One potential solution to the problem is to use bio-

informatics techniques and derive large HKG data sets
for evaluation of high throughput gene expression data.
This will ensure that alteration of a small number of
genes due to experimental conditions does not unfavor-
ably affect the overall data analysis. Accordingly, this
study has developed HKG gene sets appropriate for as-
sessment of differential gene expression using nine dif-
ferent nine normalization methods that include library
size, total counts (TC), upper quartile (UQ), Median,
Quantile, trimmed mean of M -values (TMM), reads per
kilobase million (RPKM), transcripts per kilobase million
(TPM) and DESeq. HKG lists are offered that are spe-
cific to particular normalization paradigms. In addition,
there is a universal set of 42 housekeeping transcripts
that are common to all nine individual analyses.
Methods
Clinical material
This study was approved by the University of Pittsburgh
IRB (protocol # 10110393). Formalin fixed paraffin em-
bedded renal allograft biopsies (n = 25) were derived
from recipients diagnosed with acute tubular injury
(ATI; n = 5), T cell-mediated rejection (TCMR; n = 5),
interstitial fibrosis and tubular atrophy (IFTA; n = 5),
and BK virus-associated nephropathy (BKVN; n = 5), as
well as recipients with stable allograft function (STA;
n = 5). Five native kidney biopsies with interstitial neph-
ritis (ISN; n = 5) were also studied. The clinical and
pathology parameters pertinent to these specimens have
been published previously [13].
RNA sequencing
RNA was extracted from 1 cubic mm pieces of formalin
fixed paraffin embedded biopsy tissue using the Invitro-
gen PureLink™ FFPE RNA Isolation Kit (Catalog num-
ber: K156002), which includes a melting buffer to
remove paraffin and a Proteinase K digestion step.
cDNA libraries were constructed from 100 ng total RNA
obtained using the Ion Ampliseq Transcriptome Human
Gene Expression Kit from Life Technologies (Cat#
A26325) and the manufacturers recommended protocol.
Ampliseq Transcriptome analysis was performed by
PrimBio Research Institute LLC, Exton, PA, USA, using
an Ion Proton sequencer Ion Proton P1 chips, IonXpress
barcodes, and Torrrent_Suite 5.0.4 software according to
the manufacturer’s instructions. Briefly, Library Amp
Primers were employed to amplify the purified cDNA li-
brary by PCR, and the yield and size of distribution of
each library was run on Agilent 2100 Bioanalyzer.
Approximately 100 pM of pooled barcoded libraries
were used for templating using the Life Technologies
Ion Chef Kit. Raw sequence files (fastq) were aligned to
the human transcriptome (hg19) reference sequences in
StrandNGS software. Gene and transcript annotations
were retrieved from the Ensembl database to generate
aligned SAM files, which were filtered on read quality
(> 15), alignment score (≥90), match count (≤1) and
mapping quality (≥25). RNA-seq quality control data on
these biopsies has been published has been published
[14]. RNA purity assessed by the A260/A280 ratio
ranged from 1.87 to 2.0. RNA fragments of greater than
200 nucleotides in length comprised greater than 30% of
the total RNA concentration. The mean sequence length
in this RNA-Seq data set ranged from 66 to 117 nucleo-
tides. Greater than 98.5% of the reads aligned to the
human transcriptome with accuracy rates of greater than
97%. Our data has been submitted to the GEO database
(GSE120495).

Definition of HKG/normalization methods
The term HKG has been conceived to refer to genes re-
sponsible for maintenance of fundamental cellular func-
tion. These genes are ubiquitously expressed at
approximately the same level in all cell-types regardless
of developmental stage, physiological condition and
presence of external stimuli [9, 15]. In this study, genes
with expression coefficients of variance (CV) corre-
sponding to the 2nd percentile across all 30 samples
were assigned to the HKG category as has been sug-
gested in the literature [16]. In a dataset of 47,613 genes
this corresponded to 952 genes with the lowest CV. CV
was calculated as the ratio of the standard deviation
(SD) σ to the arithmetical mean μ of each gene.
Comparison of RNA-seq expression values across mul-

tiple samples requires normalization of data. Several
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normalization algorithms have been described in the lit-
erature, and we explored nine different methods,
namely, library size, TC, UQ, Median, Quantile, RPKM,
TPM, TMM and DESeq. Briefly, library size refers to the
number of reads that aligned to the human genome. TC
refers to transcript counts that remained after removing
genes with an expression value of zero in all samples.
The UQ scaling factor was calculated as a ratio of the
75th percentile of counts for each sample divided by the
mean 75th percentile in all 30 samples [17]. The median
scaling factor was obtained in the same manner using
the 50th percentile [18]. Quantile normalization was im-
plemented in R software using the “normalizeQuantiles()
” function in the EBSeq package (Bioconductor version
3.6). This method sorts the test and reference distribu-
tions and proceeds to assign the highest value in latter
to the highest value in the former [19]. The RPKM
method attempts to normalize first for sequencing depth
(per million reads) and then gene length (expressed in
kilobases) [20]. TPM normalization proceeds in the re-
verse order: first, the raw read counts are divided by the
length of the gene in kilobases, and then divided by the
“per million” scaling factor [21]. TMM normalization
was performed using the “calcNormFactors()” function
in the edgeR package. The TMM method calculates a
scaling factor based on a weighted trimmed mean of log
gene expression ratios based on the assumption that
most genes are not differentially expressed. Weights are
assigned to account for the fact that genes with larger
RNA-seq counts have lower variance, and data from
both the upper and lower ends are trimmed prior to de-
riving a scaling factor for the sample library size [22]. Fi-
nally, DESeq normalization was implemented in DESeq
package by calling the “estimateSizeFactors()” and “size-
Factors()” functions, which are also based on the hypoth-
esis that most genes in the RNA-seq are not
differentially expressed [23]. The performance of differ-
ent normalization methods on our dataset was com-
pared by calculating the bias and variance of genes in
each HKG set [24]. The following formulae were used
for the calculation of bias and variance, respectively:

Biasi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In these formulae, the Kij represents the normalized
read counts for ith gene from the jth sample, where the
�Ki: is the mean value of normalized read counts of each
gene across 30 samples.
Validation of HKG using published datasets
It was reasoned that genes classified HKG in this study
would have minimal representation in lists of genes
known to be differentially expressed in disease states
that affect the kidney. Accordingly, we sought overlaps
between the HKG dataset, and published gene sets
derived from biopsy with T-cell mediated rejection, anti-
body mediated rejection, polyomavirus nephropathy, and
chronic allograft damage [25–28]. Probe sets used to
define disease associated genes in these studies were ex-
tracted from the NCBI GEO (Gene Expression Omni-
bus) database, and the corresponding gene and
transcript annotations were obtained from the Ensembl
database. Overlaps between gene lists of interest were
defined by the “Compare” tool available in IPA® (Ingenu-
ity Pathway Analysis) software (QIAGEN Biotechnology,
Venlo, Netherlands). IPA core analysis was used to de-
fine the top-ranked canonical pathways and molecular
functions associated with HKGs. A flow diagram of the
steps used to identify and validate HKG in this study is
presented as Fig. 1.

Results
Identification of housekeeping genes
The mean number of reads with a quality score > Q30
obtained from the 30 biopsies ranged from 19 to 28 mil-
lion, and yielded a total of 57,738 distinct reads that
aligned to the hg19 human reference genome. After re-
moving genes with an extracted expression value of zero
in all biopsies, 47,613 transcripts remained for further
consideration. Nine different HKG sets were created,
one for each normalization method. Individual HKG
expression accounted for only a small percentage of the
total transcription activity in the samples. This is sug-
gested by our calculation of expression ratios that repre-
sent mean normalized transcript counts of individual
genes expressed as a proportion of the maximal tran-
script read count in the entire sample set. The numerical
value of these expression ratios was less than < 0.05% for
> 70% of the HKGs. (Table 1). The median coefficient of
variation associated with most normalization methods
was comparable (~ 0.3) except for the RPKM and TC
methods where it was substantially higher (0.66 & 0.43
respectively) (Fig. 2a). The bias and variance of gene ex-
pression measurements was also the highest for these
same two normalization methods (Table 1) indicating
that the other methods tested by us provide much better
data normalization. Similar results were obtained if CVs
were calculated for the 42 HKG common to all
normalization methods (Fig. 2b).

Validation of housekeeping genes
By definition, HKG maintain basic cellular functions and
their expression does should not change in different



Fig. 1 Flow diagram of the steps used to identify and validate HKG genes in this study
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disease states. This prediction was verified using public
datasets for 4 common pathologic conditions in the kid-
ney, namely, TCMR, antibody mediated rejection
(ABMR), BKVN and chronic allograft injury manifesting
as IFTA (Table 2). None of the 952 genes identified as
HKG in this study were differentially expressed in hu-
man allograft biopsies with TCMR. For the gene lists as-
sociated with the remaining biopsy-diagnoses, an
overlap of no more than 3 genes was seen with our
HKG lists. This is remarkable since Gene Expression
Omnibus data used in these comparisons was derived
from more than 1000 biopsies.
Table 1 Summary of HKG Datasets Defined in This Study Using 9 D

Normalization
methods

Expression ratio*

0–0.01 (%) 0.01–0.05 (%) 0.05–0.20 (%) 0.20–0.40 (%

TC 396 (41.60) 473 (49.68) 78 (8.19) 1 (0.11)

UQ 216 (22.69) 612 (64.29) 115 (12.08) 3 (0.32)

Median 157 (16.49) 643 (67.54) 142 (14.92) 7 (0.74)

Quantile 125 (13.13) 655 (68.80) 161 (16.91) 6 (0.63)

TMM 236 (24.79) 599 (62.92) 108 (11.34) 4 (0.42)

DESeq 231 (24.26) 610 (64.08) 104 (10.89) 4 (0.42)

TPM 157 (16.49) 643 (67.54) 142 (14.92) 7 (0.74)

RPKM 603 (63.34) 319 (33.51) 26 (2.73) 2 (0.21)

Lib_size 202 (21.22) 617 (64.81) 123 (12.92) 7 (0.74)

Abbreviations: TC total counts, UQ upper quantile, TMM trimmed mean of M-values
kilobase million, RPKM reads per kilobase per million mapped reads, Lib_size library
*The expression ratio of each housekeeping gene was calculated by its mean norm
**The bias and variance of each normalization method was calculated by the formu
As an alternate approach to validating the HKG data-
sets obtained in this study, we compared the constituent
genes with HKG lists defined by other investigators
using varied technical approaches including expressed
sequence tags, DNA microarray, RNA-seq, and mas-
sively parallel signature sequencing (Table 3) [29–35].
HKG derived from sequencing based technologies gave
the largest number of genes (279 to 656) in common
with our own RNA-seq derived gene list. There were
fewer (80 to 117) genes shared with microarray
technology-based lists. It is apparent that HKG gene
identification can be affected by both the normalization
ifferent Normalization Methods

Bias** Variance**

) 0.40–0.60 (%) 0.60–0.80 (%) 0.80–1.0 (%)

1 (0.11) 0 (0) 3 (0.32) 0.74 0.55

4 (0.42) 1 (0.11) 1 (0.11) 0.45 0.21

2 (0.21) 0 (0) 1 (0.11) 0.45 0.22

3 (0.32) 1 (0.11) 1 (0.11) 0.42 0.18

4 (0.42) 0 (0) 1 (0.11) 0.47 0.23

2 (0.21) 0 (0) 1 (0.11) 0.43 0.19

2 (0.21) 0 (0) 1 (0.11) 0.45 0.22

0 (0) 0 (0) 2 (0.21) 1.04 1.03

2 (0.21) 0 (0) 1 (0.11) 0.43 0.20

, DESeq a differential expression package implemented in R, TPM transcripts per
size
alized read divided by the maximum reads in its corresponding HKG set
lae



Fig. 2 Box plots showing the median, first quartile, third quartile, and
range of CV (coefficient of variance) for all 952 HKG defined by nine
different normalization algorithms (a) and for the subset of 42 HKG
common to all nine normalization methods (b) . a The median values
(range) of CV in 952 HKGs defined by RPKM and TC are 0.67 (0.65–0.69)
and 0.44 (0.41–0.45), respectively; whereas the mean values of CV
defined by UQ, Median, Quantile, TMM, DESeq, TPM and Library size are
0.31 (0.28–0.33), 0.29 (0.27–0.31), 0.29 (0.26–0.31), 0.31 (0.29–0.33), 0.30
(0.27–0.32), 0.29 (0.27–0.31), 0.29 (0.26–0.31), respectively. b The median
values (range) of CV in 42 common HKGs defined by RPKM and TC are
0.67 (0.65–0.69) and 0.43 (0.42–0.45), respectively; whereas the mean
values of CV defined by UQ, Median, Quantile, TMM, DESeq, TPM and
Library size are 0.28 (0.26–0.31), 0.25 (0.23–0.28), 0.25 (0.22–0.29), 0.26
(0.24–0.30), 0.25 (0.22–0.29), 0.25 (0.23–0.28), 0.25 (0.22–0.28), respectively.
TC: total counts; UQ: upper quartile; TMM: trimmed mean of M-values;
TPM: transcripts per kilobase million; RPKM: reads per kilobase per
million mapped reads; e (see Materials and Methods section for details)
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method used as well as the technology applied to meas-
ure gene expression. The type of tissue analyzed is also
an important variable. Whereas all our samples repre-
sent the allograft kidney, the aforementioned prior stud-
ies included multiple organs in their analysis. Thus,
different HKG gene sets can be equally valid depending
on the clinical setting and sample set being investigated.
Pathway analyses
Ingenuity pathway analysis was performed on 42 genes
common to 9 HKG sets derived from different
normalization methods. The Entrez gene names and mo-
lecular functions of these genes are listed in Table 4.
The majority are involved in chromatin, core promoter,
DNA, mRNA, protein, or ATP binding, while others
represent ubiquitous enzymes belonging to the protein
kinase, phosphatase, protease, ligase, ATPase or GTPase
family. Physiologic functions mediated by these house-
keeping genes included regulation of the cell cycle, cell
to cell signaling, post-translational modifications, cell
morphology, cell movement, molecular transport, and
lipid or nucleic acid metabolism (Figs. 3 and 4, Table 5).
The top 4 canonical pathways identified all involved
de novo or salvage pathways of pyrimidine biosynthesis,
including pyrimidine ribonucleotides interconversion, pyr-
imidine ribonucleotides de novo biosynthesis, and pyrimi-
dine deoxyribonucleotides de novo biosynthesis. Notably,
less than 5% of the genes in these pathways met the criter-
ion for being classified as a housekeeping gene. The ma-
jority of the remaining canonical pathways were related to
protein signaling mediated by the protein kinase A, p38
MAPK, RhoA, CREB, ERK/MAPK, Eif4, p70S6K, IL-12,
glucocorticoid receptor, estrogen receptor, or progester-
one receptor pathways.

Discussion
The primary purpose of this study was to identify HKG
appropriate for analyzing RNA-seq data derived from hu-
man renal allograft biopsies. It is expected that RNA-seq
technology will be increasingly applied to discover mo-
lecular signatures relevant to the diagnosis, prognosis and
therapy of diseases that commonly afflict kidney trans-
plant recipients. The work performed has identified 9
HKG sets using different normalization methods and the
question arises which gene set is most applicable to the
analysis of gene expression data derived from renal allo-
graft biopsies. Zyprych-Walczak et al. [36] analyzed tran-
scripts from mammary epithelial cell lines, B-cells, and
blood or bone marrow samples from patients with acute
myeloid leukemia. They compared six normalization algo-
rithms with respect to sensitivity, specificity, classification
errors, and generation of diagnostic plots, and found that
bias and variance were appropriate indices to compare the
performance of different normalization methods.
Application of this principle to our data indicates
normalization using only the TC or RPKM methods
is not advisable. The other normalization methods
give essentially comparable results, although the
quantiles method is nominally better than all the
others that were tested. The basic idea behind RPKM
is to normalize the reads first by total reads and then
by gene length. Previous studies have confirmed the



Table 2 Overlapsa Between Gene Expression Datasets Derived from Diseased Allograft Kidney & HKG Defined in This Study

Reference #Biopsies #of DE
transcripts

Biopsy
Diagnosis

Normalization method Used to Define HKG

TC (%) UQ (%) Median (%) Quantile (%) TMM (%) DESeq (%) TPM (%) RPKM (%) Lib_siz (%)

[25] 703 453 ABMR 2(0.40) 2(0.44) 2(0.44) 2(0.44) 1(0.22) 2(0.44) 2(0.44) 8(1.77) 1(0.22)

[26] 708 82 TCMR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

[27] 168 206 BKVN 3(1.46) 5(2.43) 3(1.46) 3(1.46) 3(1.46) 3(1.46) 3(1.46) 3(1.46) 3(1.46)

[28] 204 82 Chronic
allograft
damage

1(1.22) 1(1.22) 2(2.44) 2(2.44) 1(1.22) 1(1.22) 2(2.44) 1(1.22) 2(2.44)

Abbreviations: ABMR antibody mediated rejection, DE differentially expressed, TCMR T-cell mediated rejection, BKVN polyomavirus nephropathy, For other
abbreviations, see legend to Table 1
aThe total number of overlapping genes with the specified datasets is enumerated
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suboptimal performance of this method [17, 37, 38]. Inter-
estingly, better performance was seen with TPM which
differs from RPKM only in that normalization for gene
length precedes correction for total reads. This reversal in
the order of operations led to relatively uniform transcript
counts in all 30 biopsies. However, in one prior study both
TC and RPKM led to unsatisfactory results [39]. Two
prior investigations noted that the quantile method is as-
sociated with lower variance in observed gene expression
data, but there is a tradeoff that results in the introduction
of some bias [19, 40]. Another study reported that DESeq
method is the best for the normalization [39].
Our assessment of the published literature is that no

single normalization method can be universally recom-
mended for all data sets. HKG lists vary depending on
Table 3 Comparison of Published housekeeping genes with HKG D

Study #samples #HKG #Tissues/cells
studied

Technique Normalization
method

Hou

TC

(4) 142 1789 79 Microarray NAb 94
(5.2

(5) 18 2403 18 Microarray NA 110
(4.5

(6) 42 1522 42 Microarray NA 89
(5.8

(6) NA 15,050 32 sequencing_MPSS TPM 516
(3.4

(7) 2502 6909 18 Sequencing_EST NA 398
(5.7

(8) NA 12,714 19 sequencing_EST NA 583
(4.5

(9) NA 7896 32 RNA-Seq RPKM 514
(6.5

(10) 16 3804 16 RNA-Seq RPKM 279
(7.3

Abbreviations: EST expressed sequence tags, HKG housekeeping genes, MPSS
rejection, DE differentially expressed, TCMR T-cell mediated rejection, PVAN po
legend to Table 1
aThe total number (%) of overlapping genes with the specified datasets is enum
column 3
bThe normalization methods in these references were not mentioned, but the
Quantile normalization
study design, tissues analyzed, sequencing technology,
normalization methods, as well as criteria and tools for
housekeeping gene selection [41, 42]. Data distribution
and analytic plans can influence the choice of
normalization method: e.g. if most genes have low expres-
sion, upper quantile rather than median normalization
should be preferred. On the other hand, if differential ex-
pression is to be performed by the DESeq program, the
normalization algorithm incorporated in the software
can work directly with unnormalized RNA-seq counts.
Finally, we suggest that when working with renal allo-
graft biopsies, the problem of choosing the right
HKG set can be circumvented by using the list of 42
genes (Table 4) that is common to gene sets derived
by 9 different algorithms.
atasets Defined in This Study

sekeeping Gene Set Stratified by Normalization Methoda

(%) UQ
(%)

Median
(%)

Quantile
(%)

TMM
(%)

DESeq
(%)

TPM
(%)

RPKM
(%)

Lib_siz
(%)

5)
91
(5.09)

115
(6.43)

111
(6.20)

92
(5.14)

89
(4.97)

115
(6.43)

76
(4.25)

96
(5.37)

8)
145
(6.03)

158
(6.58)

161
(6.70)

132
(5.49)

124
(5.16)

158
(6.58)

103
(4.29)

133
(5.53)

4)
112
(7.36)

117
(7.69)

115
(7.56)

87
(5.72)

88
(5.78)

117
(7.69)

80
(5.26)

92
(6.04)

3)
578
(3.84)

566
(3.76)

581
(3.86)

550
(3.65)

559
(3.71)

566
(3.76)

489
(3.25)

559
(3.71)

6)
542
(7.84)

533
(7.71)

551
(7.98)

463
(6.70)

458
(6.63)

533
(7.71)

369
(5.34)

471
(6.82)

9)
627
(4.93)

642
(5.05)

656
(5.16)

610
(4.80)

620
(4.88)

642
(5.05)

546
(4.29)

628
(4.94)

1)
628
(7.95)

654
(8.28)

656
(8.31)

601
(7.61)

594
(7.52)

654
(8.28)

441
(5.59)

615
(7.79)

3)
361
(9.49)

372
(9.78)

379
(9.96)

317
(8.33)

315
(8.28)

372
(9.78)

212
(5.57)

329
(8.64)

Massively parallel signature sequencing, ABMR antibody mediated
lyomavirus nephropathy, NA not available; for other abbreviations, see

erated. Percentage calculations are based on the total number of HKG in

most common method used for microarray data is



Table 4 Housekeeping Genes (n = 42) Common to All Normalization Methods

Entrez Gene ID Transcripts Entrez Gene Name Molecular function

51,433 ANAPC5 anaphase promoting complex subunit 5 protein phosphatase binding

25,906 ANAPC15 anaphase promoting complex subunit 15 anaphase-promoting complex

10,620 ARID3B AT-rich interaction domain 3B transcription regulator

285,598 ARL10 ADP ribosylation factor like GTPase 10 small GTPase mediated signal transduction

6311 ATXN2 ataxin 2 epidermal growth factor receptor binding

57,020 C16orf62 chromosome 16 open reading frame 62 protein binding

132,200 C3orf49 chromosome 3 open reading frame 49 unknown

55,749 CCAR1 cell division cycle and apoptosis regulator 1 core promoter binding

202,243 CCDC125 coiled-coil domain containing 125 regulation of cell motility

60,492 CCDC90B coiled-coil domain containing 90B protein binding

55,743 CHFR checkpoint with forkhead and ring finger domains E3 ubiquitin-protein ligase

207,063 DHRSX dehydrogenase/reductase X-linked oxidoreductase activity

83,786 FRMD8 FERM domain containing 8 protein binding

26,088 GGA1 golgi associated, gamma adaptin ear containing, ARF
binding protein 1

cellular protein metabolic process

26,091 HERC4 HECT and RLD domain containing E3 ubiquitin protein
ligase 4

transferase activity; ubiquitin-protein ligase activity

8569 MKNK1 MAP kinase interacting serine/threonine kinase 1 ATP binding; calcium-dependent protein serine/threo
nine kinase activity

4678 NASP nuclear autoantigenic sperm protein histone binding; Hsp90 protein binding;

4833 NME4 NME/NM23 nucleoside diphosphate kinase 4 ubiquitous enzymes

55,611 OTUB1 OTU deubiquitinase, ubiquitin aldehyde binding 1 NEDD8-specific protease activity

11,243|100,527,963 PMF1/PMF1-BGLAP polyamine modulated factor 1 leucine zipper domain binding

5431 POLR2B RNA polymerase II subunit B chromatin binding

11,128 POLR3A RNA polymerase III subunit A chromatin binding

84,197 POMK protein-O-mannose kinase ATP binding; carbohydrate kinase activity

379,025 PSMA3-AS1 PSMA3 antisense RNA 1 unknown

5784 PTPN14 protein tyrosine phosphatase, non-receptor type 14 hydrolase activity; phosphatase activity

51,735 RAPGEF6 Rap guanine nucleotide exchange factor 6 GTP-dependent protein binding

5966 REL REL proto-oncogene, NF-kB subunit chromatin binding; DNA binding

8568 RRP1 ribosomal RNA processing 1 RNA binding

146,923 RUNDC1 RUN domain containing 1 GTPase activator activity; Rab GTPase binding

55,095 SAMD4B sterile alpha motif domain containing 4B mRNA binding;

22,950 SLC4A1AP solute carrier family 4 member 1 adaptor protein mRNA binding; protein binding

7871 SLMAP sarcolemma associated protein protein binding

50,485 SMARCAL1 SWI/SNF related, matrix associated, actin dependent
regulator of chromatin, subfamily a like 1

ATP binding; DNA-dependent ATPase activity

9342 SNAP29 synaptosome associated protein 29 protein binding; SNAP receptor activity

23,020 SNRNP200 small nuclear ribonucleoprotein U5 subunit 200 ATP binding; ATP-dependent helicase activity

6827 SUPT4H1 SPT4 homolog, DSIF elongation factor subunit metal ion binding; protein binding

25,771 TBC1D22A TBC1 domain family member 22A 14–3-3 protein binding; GTPase activator activity

440,944 THUMPD3-AS1 THUMPD3 antisense RNA 1 unknown

100,506,779 TSPOAP1-AS1 TSPOAP1 antisense RNA 1 unknown

10,844 TUBGCP2 tubulin gamma complex associated protein 2 gamma-tubulin binding

23,038 WDTC1 WD and tetratricopeptide repeats 1 enzyme inhibitor activity

27,300 ZNF544 zinc finger protein 544 DNA binding; metal ion binding
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Fig. 3 Canonical pathways identified by IPA core analysis as over-represented amongst 42 HKG common to 9 different data normalization methods.
Pathways meeting statistical confidence thresholds preset in IPA are identified on the Y-axis (−log10 p = 1.3, right-tailed Fisher’s exact test). The lower
X-axis and the line diagram display the proportion of total genes in the specified pathway that meet the cutoff criteria for identification

Wang et al. BMC Medical Genomics           (2019) 12:86 Page 8 of 11
The HKG proposed in this study have been vali-
dated with reference to publicly available external
gene expression datasets obtained on an independent
platform, namely, the Affymetrix DNA microarray
analysis system. These latter datasets were derived
from kidney transplant biopsies with TCMR, ABMR,
BKVN or i-IFTA. A second observation that validates
our HKG gene lists is that these share up to 656
genes with other RNA-seq derived gene lists in the
literature. Finally, our IPA analysis is consistent with
the proposed housekeeping function of these genes,
and is concordant with putative cellular and biologic
functions of other HKG reported in the literature.
These reported functions include RNA processing,
RNA splicing, DNA repair and mRNA metabolic pro-
cesses [43], cell morphology and signaling, defense/
apoptosis, ribosomal protein signaling/communication,
Fig. 4 Top 20 physiologic functions associated with 42 HKG common to a
statistical confidence thresholds (−log10 p = 1.3, right-tailed Fisher’s exact te
structure/motility [44, 45], and biogenesis of nucleo-
tides/amino acids and protein localization [35]. It is
to be noted that some genes such as GAPHD and
beta actin (ACTB), which are widely used in bio-
logical experiments as housekeeping controls, do not
appear in our HKG set [46–48]. Likewise, our gene
list does not include 8 genes that have been suggested
to be suitable as a reference set for studies of the
non-transplanted kidney [49].

Conclusion
In summary, we have developed several different
HKG gene lists applicable to RNA-seq data derived
from for human allograft kidney biopsies and proc-
essed by a variety of normalization methods. We have
also assembled a universal set of 42 HKG that can be
used without regard to the actual normalization
ll biopsies and normalization methods. Physiological functions meeting
st)



Table 5 Canonical Pathways identified by IPA software for 42 Housekeeping Genes Common to All Normalization Methods

Ingenuity Canonical Pathways -log(p-value) Ratio Molecules

Pyrimidine Ribonucleotides Interconversion 2.58 0.0444 NME4,SMARCAL1

Pyrimidine Ribonucleotides De Novo Biosynthesis 2.55 0.0426 NME4,SMARCAL1

Salvage Pathways of Pyrimidine Ribonucleotides 1.95 0.0211 NME4,POMK

Pyrimidine Deoxyribonucleotides De Novo Biosynthesis I 1.42 0.0435 NME4

Nucleotide Excision Repair Pathway 1.24 0.0286 POLR2B

Assembly of RNA Polymerase II Complex 1.09 0.02 POLR2B

Pyridoxal 5′-phosphate Salvage Pathway 0.983 0.0154 POMK

Mitotic Roles of Polo-Like Kinase 0.977 0.0152 ANAPC5

Protein Kinase A Signaling 0.836 0.005 PTPN14,ANAPC5

Androgen Signaling 0.767 0.00901 POLR2B

p38 MAPK Signaling 0.736 0.00833 MKNK1

RhoA Signaling 0.723 0.00806 RAPGEF6

Estrogen Receptor Signaling 0.711 0.00781 POLR2B

Hereditary Breast Cancer Signaling 0.665 0.00694 POLR2B

IL-12 Signaling and Production in Macrophages 0.66 0.00685 REL

Regulation of eIF4 and p70S6K Signaling 0.632 0.00637 MKNK1

CREB Signaling in Neurons 0.568 0.00538 POLR2B

RAR Activation 0.56 0.00526 REL

ERK/MAPK Signaling 0.541 0.005 MKNK1

Systemic Lupus Erythematosus Signaling 0.499 0.00444 SNRNP200

Huntington’s Disease Signaling 0.461 0.004 POLR2B

Protein Ubiquitination Pathway 0.441 0.00377 ANAPC5

Glucocorticoid Receptor Signaling 0.358 0.00295 POLR2B

Axonal Guidance Signaling 0.27 0.00221 MKNK1
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procedure used. The study is limited by the small
number of biopsies studied and use of formalin fixed
paraffin embedded tissue, which may not be optimal
to detect genes expressed at low abundance. However,
low abundance genes have high variance and are not
good candidates for the HKG designation. Import-
antly, the general bioinformatics approach that we
have outlined is applicable to define HKG for RNA-
seq datasets of any size and RNA quality for trans-
plantation of all organs. Appropriate normalization of
samples with a comprehensive set of HKG provides a
mechanism to correct for batch effects, which can be
a significant obstacle in the implementation of RNA-
seq as a monitoring tool in the transplant clinic.
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