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Abstract

Background: Micro-RNAs (miRNAs) play a significant role in regulating gene expression under physiological and
pathological conditions such as cancers. However, it remains a challenging problem to discover the target
messenger RNAs (mRNAs) of a miRNA in a data driven fashion. On one hand, sequence-based methods for
predicting miRNA targets tend to make too many false positive calls. On the other hand, analyzing expression
correlation between miRNAs and mRNAs cannot establish whether relationship between a pair of correlated miRNA
and mRNA is causal.

Methods: In this study, we designed a deep learning model, referred to as miRNA causal deep net (mCADET),
which aims to explicitly represent two types of statistical relationships between miRNAs and mRNAs: correlation
resulting from confounded co-regulation and correlation as a result of causal regulation. The model utilizes a deep
neural network to simulate transcription mechanism that leads to co-expression of miRNA and mRNA, and, in
addition, it also contains directed edges from miRNAs to mRNAs to capture causal relationships among them.

Results: We trained the mCADET model using pan-cancer miRNA and mRNA data from The Cancer Genome Atlas
(TCGA) project to investigate mechanism of co-expression and causal interactions between miRNAs and mRNAs.
Quantitative analyses of the results indicate that the mCADET significantly outperforms conventional deep learning
models when modeling combined miRNA and mRNA expression data, indicating its superior capability of capturing
the high-order statistical structures in the data. Qualitative analysis of predicted targets of miRNAs indicate that
predictions by mCADET agree well with existing knowledge. Finally, the predictions by mCADET have a significantly
lower false discovery rate and better overall accuracy in comparison to sequence-based and correlation-based
methods when comparing to experimental results.

Conclusion: The mCADET model can simultaneously infer the states of cellular signaling system regulating co-expression
of miRNAs and mRNAs, while capturing their causal relationships in a data-driven fashion.
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Background
Regulated expression of miRNAs and their regulatory
functions
Micro-RNAs are a class of small RNAs, about 22 nucle-
otides in length and involved in post-transcriptional and
translation regulation of gene-expression either by direct
cleavage of mRNA or translational repression [1]. In the
last decade, studies show that the dysfunction/dysregula-
tion of certain miRNAs are involved in the development
and progression of many diseases. Particularly, the role
of miRNA in cancer has drawn attention in last decade.
Studies demonstrated that the dysregulation of miRNA
expression could lead to human cancers [2]. The mecha-
nisms include amplification or deletion of miRNA genes
[3], abnormal transcriptional control of miRNAs [4],
dysregulated epigenetic changes [5, 6] and deficiencies in
the miRNA biogenesis machinery [7]. The loss of tumor
suppressor miRNAs or overexpression of oncogenic
miRNAs can lead to breast cancer tumorigenesis or me-
tastasis [8, 9].
To gain a better understanding of the roles of miRNAs

in normal biological processes and in the development of
disease, it is important to accurately identify which genes
are targeted by each miRNA. Since it is infeasible to per-
form biological experiments for such a large number of
miRNAs, computational methods play an important role
in studying miRNA, and numerous computational
methods have been developed for predicting targets of
miRNAs. To predict the interaction between miRNA and
mRNA, many tools have been developed using different
algorithms [10–14], although two main approaches dom-
inate the field. One approach is the sequence-based
miRNA target prediction, which models the complemen-
tary sequence similarity between miRNA and mRNA and
structural stability of the putative duplex to predict
whether a mRNA is a target of a miRNA [12, 15–17]. Give
a miRNA sequence dataset (e.g., miRBase [18], StarBase
[11]), sequence-based models can be used to scan whole
mRNA transcriptome to predict potential targets. How-
ever, these methods have been shown to have a high rate
of false positives and false negatives [19]. This is mainly
because sequence similarity is not sufficient to predict the
folding of RNA duplexes and their interaction with the
proteins involved in miRNA-mediated regulation [19, 20].
Another common approach of studying miRNA and

mRNA relationship is the correlation-based miRNA tar-
get prediction. Based on miRNA and mRNA expression
data collected from a cohort of biological samples,
correlation-based methods search for anti-correlation re-
lationships between pairs of miRNA and mRNA as po-
tential regulator-target pairs. Different databases based
on correlation analyses are available, e.g., mirCox [21].
However, an anti-correlation between a pair of miRNA
and mRNA does not necessarily represent a causal

relationship. It is not uncommon that a signaling path-
way may simultaneously regulate expression of a miRNA
and a set of mRNAs, which may lead to confounded cor-
relation. As it is often said: correlation does not entail
causality. Thus more rigorous causal inference methods
are needed to infer the causal relationships between
miRNA and mRNA.
In this study, we present a novel method of studying

the statistical relationships between mRNAs and miR-
NAs by analyzing large-scale data from TCGA. Our
method integrates two complementary machine learning
frameworks: deep learning and causal inference. Our
model, referred to as miRNA causal deep net (mCA-
DET), consists of deep neural network that can capture
the transcriptomic machine that controls expression of
both miRNA and mRNAs to capture the statistical struc-
ture resulting from co-regulation, and, in addition, it in-
cludes directed edges from miRNA to mRNA to capture
the potential causal relationships between miRNA and
mRNA. We show that this integrative approach can
significantly outperform the sequence-based and
correlation-based methods in predicting targets of
miRNAs.

Methods
Data collection
The miRNA and mRNA expression data were obtained and
downloaded from TCGA consortium website (https://can-
cergenome.nih.gov/). For the breast cancer (BRCA), 1218
mRNA sequencing samples were downloaded with 20,531
mRNAs, and 1701 miRNA sequencing samples were down-
loaded with 1918 microRNAs, which includes duplicate and
triplicate samples. We further identified tumor samples with
both mRNA and miRNA measurements. We discretized
(binary) the expression data by comparing the expression
values of mRNA and miRNAs from tumor samples with
those from normal samples profiled by TCGA using the
3-fold change. Finally, we merged the miRNA and mRNA
dataset into a 757 ×22,449 (samples × combined miRNA
and mRNA) binary matrix for model training.
Several open-resource miRNA-target databases are

used in this paper including miRTarBase (an experimen-
tally validated database) [22], and miRDB (a sequence
based prediction database and the prediction tool used
is MirTarget V3) [23, 24]. TMREC [25] and TTRUST
[26] were used to look up the TF-miRNA and
TF-mRNA interactions separately to help find the com-
mon TF regulating both a particular miRNA and a par-
ticular mRNA.

Model
Model architecture
As we mentioned above, the high correlation doesn’t
guarantee the causality. The correlation between miRNA
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and mRNA could be a result of two types of regulations:
1) Transcriptions of a miRNA and a mRNA are regu-
lated by a common cellular signal (Fig. 1a), which can be
a common pathway or a common transcription factor
(TF). In other words, expressions of the miRNA and
mRNA are confounded by a common latent variable. 2)
Expression of a miRNA and a mRNA are regulated by
distinct cellular signals, but miRNA can causally regulate
the degradation of mRNA (Fig. 1a). To capture these
two types relationships, we designed a hybrid model,
which uses a deep autoencoder to capture the signals of
cellular signaling systems to explain the coregulation of
miRNAs and mRNAs and further includes causal edges
from miRNAs to mRNAs to capture the causal relation-
ships. The regulatory type between miRNAs and mRNAs
could be reflected by +/− sign of the predicted inter-
action value.
An autoencoder uses multiple layers of latent variables

(hidden nodes) to capture compositional statistical

structures in a distributed manner, such that each layer
captures the structure of different degrees of abstraction.
As shown in Fig. 1b, an autoencoder contains one visible
(input) layer and one or more hidden layers. To effi-
ciently train the autoencoder, we treat it as a series of
two-layered restricted Boltzmann machines (RBM)
stacked on top of each other [27]. The inference of the
states of hidden node and learning of model parameters
are performed by learning the RBM stacks in a
bottom-up fashion, which is followed by a global
optimization of generative parameters using the
back-propagation algorithm [28]. As shown in our previ-
ous studies [29, 30], autoencoders are capable of captur-
ing signals regulating gene expressions under different
settings. For example, the first hidden layer could repre-
sent the transcription factors (TFs).
To further capture the causal relationships between

miRNAs and mRNAs, we designed a deep belief network
(DBN) model containing directed edges from miRNA to

A C

B D

Fig. 1 Illustration of the mCADET model. a An example of the causal relationship between high correlated miRNA-mRNA pairs. The triangles
represent miRNAs. The pentagons represent mRNAs and the circles represent hidden regulators. b mCADET model with edges added from
observed miRNA (visible units) to observed mRNA (visible units) to reflect the regulatory role of miRNA on the expression of mRNA. c Semi-RBM
positive phase d Semi-RBM negative phase. Solid lines represent the update for miRNAs and dotted lines represent the update for mRNAs
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mRNAs. We pre-train the model by treating the ob-
served variables (miRNA and mRNA) and first hidden
layer above them as a semi-RBM. The semi-RBM be-
tween the first two layers allows the edges from miRNA
visible nodes to mRNA visible nodes to reflect the regu-
latory role of miRNA in gene expression. The layers
above the second layer still use the traditional RBMs as
shown in Fig. 1b. The followings show how the positive
phase and negative phase perform. Under this setting,
when the correlation between a pair of miRNA and
mRNA are competently explained by co-regulation or
causal edges, regularization techniques (discussed later)
potentially constrain the model to pick one dominant
mechanism to represent the correlation.

Semi-RBM positive phase
As shown in Fig. 1c, both miRNA and mRNA contribute
to the activation of hidden units in the first hidden layer.

P hjjvmrnamirnai ¼ 1
� � ¼ σ bj þ

Xn
i¼1

Wijvmrnamirnai

 !

where vmrna &mirnai represents the binary state of ith
visible unit of mRNA and miRNA; hj represents the state
of jth hidden unit; bj represents the bias for the jth hid-
den unit; Wij represents the weight between the ith vis-
ible unit of mRNA and miRNA and the jth hidden unit.

Semi-RBM negative phase
As shown in Fig. 1d, only the hidden units in the first
hidden layer contribute to the activation of the mRNA.
However, both the hidden units in the first hidden layer
and the mRNAs contribute to the activation of miRNAs.

Pr vmirna k ¼ 1jhð Þ ¼ σ amirna k þ
Xm
j¼1

Wkjh j

 !

Pr vmrna o ¼ 1jh; vmirnað Þ ¼ σ amrna o þ
Xm
j¼1

Wojh j þ
Xp
k¼1

πokvmirna k

 !

vmrnamirna ¼ cbind vmrna; vmirnað Þ
where vmirna _ k represents the kth visible unit of miRNA;
Wkj represents the weight between the kth visible unit of
miRNA and the jth hidden unit; amirna _ k represents the
bias for the kth visible unit of miRNA; vmrna _ o repre-
sents the oth visible unit of mRNA; amrna _ o represents
the bias for the oth visible unit of mRNA; Woj represents
the weight between oth visible unit of mRNA and the jth
hidden unit; πok represents the weight between oth vis-
ible unit of mRNA and the kth visible unit of miRNA.
cbind represents the combination of mRNA and miRNA
for the same sample.

Semi-RBM parameter update

Δwij ¼ ϵ < vmrnamirna ih j>data− < vmrnamirna ih j>model
� �

Δπok ¼ ϵ < vmrna ovmirna k>data− < vmrna ovmirna k>modelð Þ

More details of the algorithm and pseudo code for
training a traditional autoencoder were discussed in both
literature and our previous work [29, 30]. The backpro-
pagation process is the same as the standard one except
that we update the visible units of miRNA using the hid-
den units in the first hidden layer only, but use both hid-
den units in the first hidden layer and the visible units
of miRNA to update the visible units of mRNA.

Regularization
The number of miRNA and mRNA training samples is
limited compared with the dimension of miRNA and
mRNA features. Therefore, we applied the techniques of
regularization to the first two hidden layers to reduce
the risk of overfitting. When we train a traditional RBM
model, each hidden unit is fully connected to each ob-
served unit and a non-zero weight is usually assigned to
each pair of observed unit and hidden unit. However, in
the real cases of cellular regulatory mechanism, the
change in mRNA and miRNA expression is often in-
duced by a small number of biological components such
as TFs or pathways. This enables one to specify that only
a certain percent of hidden units have a high probability
to be set to 1 (“on”) by adding a penalization term to the
optimization function. In this model, regularization was
only added to the first hidden layer [31]. During the
RBM training within an autoencoder, the optimization
of the sparse RBM minimizes the negative log-likelihood
of the data with the addition of the regularization term
[32].

minimize θ½ �−
Xs

l¼1
log
Xn

j¼1
Pr vl; hljjθ
� �

þ λ
Xn

j¼1

j p−
1
s

Xs

l¼1
E½hlj vl�

�� ��2
where θ is the parameter vector [a, b, W]; s is the total
number of samples; n is the total number of hidden
units; λ is the regularization constant threshold and p is
a constant controlling the percent of hidden units hj to
be active (the sparseness of the hidden units hj). Effective
model selection was performed to select the best sparsity
threshold leading to the lowest cost function.

Model training
We trained models under several configurations. We
trained a deep belief network (DBN) model without
edges from miRNAs to mRNAs, the mCADET model
with edges from miRNAs to mRNAs but without
regularization, and the mCADET model with edges from
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miRNAs to mRNAs and with regularization (different
sparsity ratios), and finally a the mCADET model with
random permutation of miRNAs and mRNAs across tu-
mors where the statistical relationships between miR-
NAs and mRNAs were fully disrupted. We compared
the reconstruction errors for these models to choose the
best model. The reconstruction errors are the difference
between the raw input data and the reconstructed input
predicted from the model. The model with the best re-
construction error is chosen to conduct the evaluations
of biological representations.

Evaluations
We used the experimental results from miRTarBase [22] as
“gold standard” to evaluate the prediction by our models
and those by sequence-based and correlation-based
methods. The accuracies of regulatory miRNA-mRNA pairs
predicted by mCADET models were compared with ones
predicted by correlation-based and sequence-based analysis
separately. For the correlation analysis, we run pair-wise
linear regression on our dataset to identify pairs with statis-
tically significance, corrected by false discovery. For the
sequence-based analysis, we used the predicted
miRNA-mRNA interaction acquired from the miRDB data-
base [23]. Since it is difficult to assess the true negative rate,
we mainly concentrate on evaluating models’ capabilities in
identifying the true positives, i.e., the recall and positive pre-
dictive value (PPV) of each method.

recall ¼ TP
TP þ FN

;

PPV ¼ TP
TP þ FP

:

To test whether the PPVs for two methods are signifi-
cantly different from each other, we calculate the z-score
as follows,

z ¼ bp1− bp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1−p̂ð Þ 1

n1
þ 1
n2

� 	s ;

p̂ ¼ n1 bp1 þ n2 bp2
n1 þ n2

;

where p represents the PPV for mCADET-based ana-
lysis, correlation-based analysis and sequence-based ana-
lysis separately; n represents the number of predicted
mRNAs. The z value between mCADET versus
sequence-based model and the z value between mCA-
DET versus correlation-based analysis were calculated

separately. To quantitatively evaluate the difference be-
tween precision and recall for two groups, we calculated
the F1 score that evaluates weighted average of precision
and recall [33].

F1 Score ¼ 2 � Recall � Precisionð Þ
Recall þ Precisionð Þ

Finally, we also validated predicted mRNA-miRNA
pairs by checking the agreement with literatures.

Results
Model training
We first assessed the capability of models to capture
and represent statistical structures of data by compar-
ing the reconstruction errors of different models in a
series of cross-validation experiments. We compared
different DBN models with a fixed model architecture
with four hidden layers and each layer has 1500,
1000, 500, and 250 nodes respectively. The baseline
DBN is a DBN model without edges from miRNA to
mRNA; the Model1_semi_spa_0.2 is a mCADET
model that allows edges from miRNA to mRNA (i.e.,
the observed and first hidden layer forms a
semi-RBM) with a sparsity threshold 0.2; Model3_se-
mi_spa_0.1 is an mCADET model with edges from
miRNA to mRNA with a sparsity threshold 0.1. This
means that we added a penalty to the activation of
hidden units to allow 10% of the hidden units to be
active. The result shows that the model with edges
from miRNA to mRNA and with a sparsity threshold
0.2 has the lowest reconstruction error (Fig. 2 and
Table 1). The result (Table 1) shows that the model
allowing edges with a sparsity threshold 0.2 has the
lowest reconstruction error. Therefore, the result ana-
lysis from the perspective of biological knowledge
showed below is all based on this model.
The following interesting observations are noteworthy:

1) Adding causal edges between miRNA and mRNA im-
proves the capability of a model to capture the overall
statistical structures of data. Indicating that these poten-
tial causal edges enabled the model to capture the statis-
tical relationships between miRNA and mRNAs that
cannot be fully explained by co-regulation. 2) Right
amount of regularization enhances the capability of
model to capture the statistical structures. This is
reflected by the fact that model1_semi-spa_0.2 outper-
forms models without regularization (model2_semi_-
no_spa) and the model with too few parameters
(model3_semi_spa_0.1 that only allow 10% of the hidden
nodes to be active).
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Statistical evaluation of predicted miRNA-mRNA
interaction
In the deep learning model, the weights of the direct
edges from miRNAs to mRNAs reflect the strength of
interaction between miRNA and mRNA. Therefore, we
used the weights trained by the deep learning models to
perform the miRNA-mRNA interaction analysis. We
only keep the top 5% absolute weights for each miRNA
and get a corresponding mRNA list.
We compared the interactions predicted by the mCA-

DET with the ones predicted by the correlation-analysis
and the sequence-based analysis. As a concrete example,
we showed the results of different methods predicting
the targets of miR-374a, as shown in Fig. 3. Apparently,
sequenc-based methods predicted the largest number of
potential targets and very few of them match experimen-
tal results (PPV ~ 6%). In other words, majority of the
predicted targets by sequence-based approach is false
positive. Compared with the sequence-based method,
the correlation analysis returns less targets. It only finds
high correlations between the expression of mRNAs and
its regulating miRNAs. In this case, it found 2350
mRNAs with relatively high correlation scores with
miR-374a, which means that those mRNAs have higher
probability of interacting with miR-374a.
Compared both sequence-based and correlation-based

analyses, the number of targets predicted by the mCADET
is the smallest. However, the mCADET achieves the highest

PPV and best overall performance in comparison to the
other two approaches. By comparing the overlap rates be-
tween the predicted targets and the experimentally validated
targets, the mCADET performs the best as shown in Fig. 3
and Table. 2. In the light that computational predictions
eventually need to be experimentally validated, a high PPV
is a very desirable characteristics for prediction models. If
one interprets the results from Table 2 literally, close to half
(43%) of predicted target potentially can be verified by ex-
periments, whereas only 6 and 19% of predictions by
sequence-based and correlation-based can be verified. For
example, mRNA MTPN and WWP1 are false predicted by
sequence-based analysis, however, mCADET gave the inter-
action a small weight.
We used z-score to test the significant difference of PPVs

for each two analyses. After the calculation, the z value and
p-value between model-based analysis and correlation-based
analysis is 2.67 and 0.045 respectively. The z value and
p-value between model-based analysis and sequence-based
analysis is 3.25 and 0.038 respectively. Both of z scores are
bigger than 1.96 [34] and p-values are less than 0.05, which
shows that each of two groups is significantly different from
each other. We could also conclude from Table 2 that the
performance of our mCADET model is better than
sequenced-based and correlation-based model. Besides, the
sensitivity of the baseline DBN is 0.61 compared with the
mCADET 0.64 and the PPV of the baseline DBN is 0.28
compared with the mCADET 0.43.

Fig. 2 The reconstruction errors between real and reconstructed input for five models of different architectures. The y axis is the reconstruction
error and the x axis is the number of epochs. The dark blue, red, green, purple and light blue lines represent the baseline deep belief network,
mCADET with sparsity ratio 0.2, mCADET without regularization, mCADET with sparsity ratio 0.1 and mCADET with data permutation separately

Table 1 The reconstruction errors for experimentally validated miRNA-targets only

Models miR374a (414 targets) miR15b (265 targets) miR190 (428 targets)

Baseline_dbn 55.78 48.64 74.26

Model1_semi_spa_0.2 50.46 43.66 64.74

Model2_semi_no_spa 52.18 44.81 68.46

Model3_semi_spa_0.1 53.28 45.23 65.35

Permutation 61.23 67.25 95.45
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mCADET provides insights of different mechanisms for
correlation between miRNAs and mRNAs
As shown in previous sections, adding causal edges in
mCADET model can enhance the capability of the
model to capture the overall statistical.

Structures including both miRNAs and mRNAs. Com-
parison to experimentally validated targets indicates that
mCADET is more likely to capture the causal relation-
ships between miRNAs and mRNAs. We further exam-
ined the examples that strong correlations between
miRNAs and mRNAs are explained by different mecha-
nisms in the results learned from the mCADET model.
Correlation analysis assigns miR-125a and HYAL1 pair

a strong correlation value 0.78 with a p-value 0.03 and,
in the mCADET model, the two RNAs are strongly con-
nected to a common hidden node and the candidate
causal edge between them does not pass our selection
threshold. In other words, the model detected that the
two RNAs were regulated by a hidden regulator

Fig. 3 The Venn diagram of predicted targets of miR-374a for mCADET-based, correlation-based, sequence-based and experimentally validated
targets separately. The blue circle is the mCADET-based analysis. The purple circle is the correlation-based analysis. The light green circle is the
sequence-based analysis and the orange circle is the experimentally validated mRNA targets

Table 2 The sensitivity, positive predictive value (PPV) and F1
score of mCADET-based, sequence-based and correlation-based
prediction for miRNA-374a separately

miR-374a Sensitivity (recall) PPV (precision) F1

mCADET 0.64 0.43 0.51

Sequence- based 0.59 0.06 0.11

Correlation-based 0.76 0.19 0.30
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A B

Fig. 4 An example of the causality among hidden regulator, miRNA and mRNA inferred from mCADET. The triangles represent miRNAs. The
pentagons represent mRNAs and the circles represent hidden regulators. a The miR-125a and HYAL1 are co-regulated by a hidden
regulator. b A causal edge was found from miR-374a to CCND1 with separate hidden regulators

Fig. 5 Example of the interaction network of miRNA and mRNA in breast cancer tumors. The interactions between top 10 breast cancer related
miRNAs and their top 20 mRNA targets were plotted using the Cytoscape. The inner circle represented by green blocks is the miRNAs and the
outer circle represented by ten different colors is the top 20 mRNAs regulated by each miRNA respectively
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(potentially a common transcription factor), and there was
no strong causal relationship between the two RNAs as
shown in Fig. 4a. On the other hand, miR-374a and
CCND1 pair also shows a strong correlation, and mCA-
DET detected a strong direct edge from miR-374a to
CCND1 (as shown in Fig. 4b), indicating a direct regula-
tory mechanism which is supported by literature [35].

Interaction network of miRNA-targets
It is quite common that certain miRNAs share target
mRNAs and form a miRNA regulatory network. To test
whether the results of the mCADET can be used to search
for such networks. We identified top 20 mRNAs associated
with a miRNA and organized the miRNAs and mRNAs in a
plot shown in Fig. 5. Interestingly, our methods correctly
identified members of miRNA families (e.g., miR-146 s and
miR-374 s) sharing target mRNAs in a pure data-driven
fashion, without utilizing any knowledge of sequence simi-
larity among the members of the miRNA family [36]. This
provides additional evidence that our model can correctly
detect the causal relationships from distinct miRNAs and to
a common set of target mRNAs.
In addition to detect common targets of a miRNA

family, our model can also detect the common func-
tional impacts of distinct miRNAs. For example, our
model can detect that CCND1 is the shared target of
miR-17 and miR-20a [37]. More such relationships can
be found in a broader analysis of our results, which are
not shown in Fig. 5.

Literature-based evaluation of predicted miRNA-mRNA
interactions
Previous research has accumulated a rich body of know-
ledge of regulatory relationships between miRNAs and

important cancer drivers. We searched our results to iden-
tify predicted regulator miRNAs for certain common cancer
driver genes. Many of them are reported in the literature.
Table 3 lists examples of predicted mRNA-miRNA pairs val-
idated by literatures.

Discussion
MicroRNAs play a significant role in regulating gene expres-
sion under physiological and pathological conditions. In
particular, genomic alterations (amplification/deletion) of
miRNAs in cancers have significant impacts on cancer
development, disease progression, and therapy responses
[38–40]. Thus, revealing the functional impacts of miRNAs
in cancer will advance cancer biology. As shown in this re-
port, previous methods of identifying targets of miRNAs
have significant limitations. By combining deep learning and
causal inference, the reported mCADET model ac-hieved
significantly identifying targets of miRNAs. Particularly, the
improved PPV will convince cancer biologists to carry out
validation experiments with much high confidence, thus
helping to advance cancer biology.
The reported mCADET model is motivated by bio-

logical insights of the data related to miRNAs and
mRNAs. It combines the strength of deep learning
and causal inference in solving this important bio-
logical problem. The superior performance of the
model reflects the importance of integrating biological
insights with advance machine learning technology.
Possible future improvement of the model includes
(but not necessarily limited to) combining genomic
alteration data to map hidden nodes to concrete bio-
logical entities as we did in mining yeast gene expres-
sion data [31].

Table 3 Examples of predicted miRNA-mRNA pairs validated by literature

miRNAs Targes Function Reference

miR-146a/miR-146b EGFR Invasion and metastasis MiR-146a suppresses tumor growth and progression by targeting
EGFR pathway and in ap-ERK-dependent manner in castration-resistant
prostate cancer
MiR-146b-5p suppresses EGFR expression and reduces in vitro
migration and invasion of glioma

miR-335 SOX4 Metastasis progression miR-335 orchestrates cell proliferation, migration and differentiation in
human mesenchymal stem cells

miR-17 CCND1 Cell cycle, cellular proliferation The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle
transition

miR-20a CCND1 Cell cycle, cellular proliferation MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F
activity on cell cycle arrest during neuronal lineage differentiation of USSC

miR-374a/miR-374b WNT Cell metastasis MicroRNA-374a activates Wnt/ß-catenin signaling to promote breast
cancer metastasis
MicroRNA-374b Suppresses Proliferation and Promotes Apoptosis in T-cell
Lymphoblastic Lymphoma by Repressing AKT1 and Wnt-16

miR-374a/miR-374b PTEN Cellular proliferation,
survival and growth

MicroRNA-374a activates Wnt/ß-catenin signaling to promote breast
cancer metastasis
Increased miR-374b promotes cell proliferation and the production of
aberrant glycosylated lgA1 in B cells of lgA nephropathy

Chen and Lu BMC Medical Genomics 2018, 11(Suppl 6):116 Page 61 of 112



Conclusions
In this study, we investigated the utility of the mCADET
model to simultaneously infer the states of cellular sig-
naling system regulating co-expression of miRNAs and
mRNAs, while capturing their causal relationships in a
data-driven fashion. This model can be used by miRNA
researchers to systematically search for miRNAs that
play significant roles in cancers and understand their
disease mechanism which, we anticipate, will make
significant advances in cancer biology, beyond what are
reported here.
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