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Abstract

Background: RNA-seq is a powerful and cost-effective technology for molecular diagnostics of cancer and other
diseases, and it can reach its full potential when coupled with validated clinical-grade informatics tools. Despite recent
advances in long-read sequencing, transcriptome assembly of short reads remains a useful and cost-effective
methodology for unveiling transcript-level rearrangements and novel isoforms. One of the major concerns for adopting
the proven de novo assembly approach for RNA-seq data in clinical settings has been the analysis turnaround time. To
address this concern, we have developed a targeted approach to expedite assembly and analysis of RNA-seq data.

Results: Here we present our Targeted Assembly Pipeline (TAP), which consists of four stages: 1) alignment-free gene-
level classification of RNA-seq reads using BioBloomTools, 2) de novo assembly of individual targets using Trans-ABySS,
3) alignment of assembled contigs to the reference genome and transcriptome with GMAP and BWA and 4) structural
and splicing variant detection using PAVFinder. We show that PAVFinder is a robust gene fusion detection tool when
compared to established methods such as Tophat-Fusion and deFuse on simulated data of 448 events. Using the
Leucegene acute myeloid leukemia (AML) RNA-seq data and a set of 580 COSMIC target genes, TAP identified a wide
range of hallmark molecular anomalies including gene fusions, tandem duplications, insertions and deletions in
agreement with published literature results. Moreover, also in this dataset, TAP captured AML-specific splicing variants
such as skipped exons and novel splice sites reported in studies elsewhere. Running time of TAP on 100–150 million
read pairs and a 580-gene set is one to 2 hours on a 48-core machine.

Conclusions: We demonstrated that TAP is a fast and robust RNA-seq variant detection pipeline that is potentially
amenable to clinical applications. TAP is available at http://www.bcgsc.ca/platform/bioinfo/software/pavfinder

Keywords: RNA-seq, Transcriptome assembly, Clinical genomics, Gene fusion, Alternative splicing, Internal tandem
duplication, Partial tandem duplication, Acute myeloid leukemia

Background
Advances in second-generation sequencing technologies
ushered in the modern era of personalized medicine [1].
In cancer, mutations revealed by clinical sequencing have
been shown to be vitally useful in achieving better subtype
classification, charting appropriate treatment regimens,
and identifying novel drug targets [2–4]. One of the
well-studied examples is acute myeloid leukemia (AML),
for which prognosis and treatment strategies depend on

the detection of a wide spectrum of mutations: FLT3 in-
ternal tandem application (ITD), MLL partial tandem du-
plication (PTD), NPM1 insertion, CEBPA insertion/
deletions (indels), and gene fusions PML-RARA, RUNX1--
RUNX1T and CBFB-MYH11, among others [5].
While the cost of sequencing has decreased dramatic-

ally since its introduction, translating whole-genome se-
quencing methods to the clinical domain remains a
challenge due to their sample amount and quality, cover-
age depth, and turnaround time requirements [6]. With
its lower cost and input sample requirements, and faster
turnaround times, RNA sequencing (RNA-seq) offers an
attractive alternative. Although in the research domain it
is primarily used to unveil altered gene expression levels,
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RNA-seq is increasingly used to capture expressed genomic
anomalies such as single nucleotide variants (SNVs) and ab-
errant transcript structures [7, 8].
Important sequence-based disease markers typically are

SNVs, but long-range rearrangements or structural variants
(SVs) are also being increasingly appreciated for their im-
portant roles in pathogenesis [9]. RNA-seq read sequences
allow SNVs and short indels to be readily identified, but SV
detection with short reads requires more complex analysis
and algorithms. Although the recent development of
long-read sequencing technologies has shown promise in
facilitating the reconstruction of full-length transcripts and
novel isoforms [10, 11], their application in clinical settings
remains to be fully explored and assessed for reliability and
throughput considerations.
Current state-of-the-art SV detection tools, such as

TopHat-Fusion [12] and deFuse [13], discover SVs through
interrogating alignments of reads to the reference genome,
but ambiguous alignments of short reads limit the sensitiv-
ity and specificity of these methods. De novo RNA-seq as-
sembly reconstructs long transcript sequences without
relying on alignments of reads to a reference genome, and
thus it is widely used in profiling transcriptomes of
non-model organisms, reconstructing transcript structures,
and detecting novel isoforms [14–18]. Because longer se-
quences tend to have lower alignment ambiguity than short
sequences, SV detection based on alignments of assembled
transcripts (instead of short reads) to a reference genome
have been shown to be successful in cancer studies [19, 20].
However, analysis of deeply sequenced human transcrip-
tomes remains very resource-intensive, and therefore may
not meet the constraints in the clinical domain.
An alternative to analyzing entire genomes or transcrip-

tomes is to focus on target gene sets (or gene panels) that
are most relevant for specific diseases [21, 22]. This is ef-
fective because for many diseases, in particular cancers,
there are many clinically relevant genes to help with dis-
ease classification or with the selection of treatment strat-
egies [23]. Here we propose a targeted approach on
RNA-seq data analysis called TAP (for Targeted Assem-
bly Pipeline) using de novo assembly for variant identifica-
tion. TAP offers functionality akin to using data from gene
panels, and offers the benefits of a robust sequencing
protocol coupled with the flexibility of selecting the genes
of interest after data generation, as the clinical question
might dictate.

Implementation
TAP detects SVs in four stages described below. It
also summarizes other pertinent information, such as
the extent of reconstruction of all the targeted genes, and a
compilation of all the reconstructed splice junctions (novel
or annotated), and their supporting read counts.

Alignment-free extraction of reads for gene targets
The first step of TAP (Fig. 1) is to classify and segregate
whole-sample RNA-seq reads into bins corresponding to
specific gene targets. Instead of using alignment-based ap-
proaches for this purpose, we chose to use a novel
multi-index Bloom filter data structure implemented
within BioBloomTools (BBT v2.1.0), which is able to
achieve sequence classification at comparable accuracy to
alignment-based methods, but in a much faster and
memory-efficient manner [24]. The inputs to this se-
quence extraction step are RNA-seq read pairs and tran-
script sequences of a list of target genes. BBT utilizes a set
of five spaced seeds with an allowed miss of two spaced
seeds (parameter -a) per k-mer frame evaluated. This al-
lows BBT to better tolerate sequencing errors and vari-
ants, and achieve high sensitivity whilst maintaining high
specificity. Further, it extracts read pairs when at least one
of the pairs is classified as hitting one of the target genes
(flag -i), capturing sequences that represent novel splice
variants and gene fusions.

De novo reconstruction of transcript sequences
Bins of read pairs belonging to individual genes are as-
sembled independently in parallel using Trans-ABySS
(v1.5.4) [14]. De novo assembly is used to reconstruct
variant breakpoint-spanning sequences from short reads,
and Trans-ABySS has been shown to be successful in
capturing such events in various genomic and transcrip-
tomic studies [25–33]. To reconstruct transcripts with a
range of expression levels and sequence complexity,
Trans-ABySS uses a set of overlap lengths (k-mer sizes).
Typically, a low k-mer size would be more sensitive to
read-to-read overlaps, helping reconstruct low expressed
transcripts, while a high k-mer size would be more spe-
cific to resolve low complexity sequences.

Alignment of assembled transcripts and extracted reads
Since transcriptomic rearrangements can be complicated
and may lead to erroneous alignments, alignments to both
reference genome and transcriptome are used in TAP to
increase accuracy and sensitivity. Assembled contig se-
quences are aligned to the reference genome and the ref-
erence transcriptome using GMAP (v2014-12-28) [34]
and the BWA-MEM algorithm of the BWA package
(v0.7.12) [35], respectively. Concurrently, extracted reads
are aligned to the assembled contigs to provide support
evidence and read counts of SV calls.

Detection of structural variants
As a key module within TAP, we developed PAVFinder
(Post Assembly Variant Finder, v0.4.2) to deduce variants
from the split or gapped alignments of contigs to the refer-
ences (Fig. 2a). Based on several criteria (Additional file 1:
Table S1, S2), such as the alignment orientation of chimeric
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sequence fragments, PAVFinder classifies events such as
gene fusions, read-throughs, ITDs, PTDs, indels and repeat
number changes. It also reports novel splicing events,
such as exon skipping, novel exons, novel introns,
retained introns, and novel splice donor and acceptor
sites by comparing contig-to-genome alignments to refer-
ence gene models (Fig. 2b).

Results
Assessment of the performance of BBT in sequence
classification
TAP analyses the sequences selected by BBT. To assess
BBT’s performance in sequence classification at different
sequencing depths, we simulated Illumina (San Diego,
CA) reads with depth of coverage ranging from 10×
(229,800 read pairs) to 100× (2,303,019 read pairs) in in-
crements of 10 using pIRS (v1.1.1) [36] from a gene set
composed of 580 COSMIC (v77) genes [37] (targets) and
an equal number of non-COSMIC genes randomly se-
lected from RefSeq [38]. The non-COSMIC genes were
included to mimic non-target genes in the transcriptome.
We chose to use pIRS over other RNA-seq simulators be-
cause of its simplicity to simulate different read depths
and its provision of read-origin information, which readily
enables calculation of classification accuracy. We com-
pared the performance of BBT on the COSMIC set against

alignment-based classification using BWA-MEM (v0.7.12)
to observe that BBT slightly outperformed BWA-MEM in
overall sensitivity (BBT 99.9% versus BWA-MEM 98.1%)
and both methods show comparable specificity (BBT 99.2%
versus BWA-MEM 99.9%) (Additional file 1: Figure S1).
However, on a per-gene basis, we found BBT to outperform
BWA-MEM in 115 genes, while BWA-MEM outperformed
BBT in 66 genes (the remaining 399 are in a virtual tie with
their F1 scores within one standard deviation of each other)
(Additional file 1: Figure S2). This trend is reverted for the
software parameterization used above when we increased
the substitution-error rate from 0.37% (default profile of the
experimental data) to 1% in the simulation step. For this un-
usually high error rate, BWA-MEM outperformed BBT in
303 genes, whereas BBT was superior in only 104. The ac-
tual overall difference in absolute performance metrics is,
however, negligible (within 0.1% in most coverage depths)
(Additional file 1: Figure S3). In terms of computation
performance, BBT runs faster than BWA-MEM, and
scales much better with increasing read depths
(Additional file 1: Figure S1).

Assessment of the performance of PAVFinder
We investigated the fusion-calling performance of PAVFin-
der in relation to sequencing depth, and compared that
with two well-established methods in the field [12, 13].

Fig. 1 TAP Pipeline. A Bloom filter is generated from reference transcript sequences of a target list and then applied on full transcritpome
RNA-seq sequences to extract gene-specific read pairs. Reads classified to each target are segregated into separate bins and assembled
using two k-mer values independently in parallel. Contigs from each k-mer assembly of each gene are merged and extracted reads are
aligned to them (r2c). Gene-level assemblies are combined into a single file and aligned to the genome (c2g) and transcriptome (c2t).
PAVFinder uses the c2g and c2t alignments together with contig sequences and annotation (reference sequences and gene models) to
identify structural variant and novel splicing events. r2c alignments are used for determining event support and coverage estimation
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From a published list of gene fusions reported from TCGA
RNA-seq experiments [39], 448 “tier-1” (highest level of
confidence in the study), inter-chromosomal, and in-frame
events with defined breakpoint locations were selected to
simulate a titration series consisting of varying sequencing
coverages (4× to 20×, increments of 2) of the breakpoint se-
quences (250 base pair (bp) mean simulation insert size, up-
stream and downstream of the breakpoint), mixed with
whole transcript reference sequences of the fusion genes
(803, discounting redundant gene partners) together with a
similar number (776) of randomly-selected non-fusion tran-
scripts as background at four different coverage depths (10×
to 40×, increments of 10) (Fig. 3a). We used pIRS [36] to
simulate 100 bp Illumina reads with a mean insert size of
250 bp for each coverage combination.
For benchmarking, only events with at least four

breakpoint-spanning reads were considered for com-
parison. A true positive is scored when partners in a
detected gene fusion event correspond to one of the
448 input gene pairs. In this experiment, PAVFinder
shows high sensitivity (about 95%) at fusion coverage
depth of 4×, and this performance reaches 100% at
higher fusion coverage depths. The false positive rate
remains less than 0.5% throughout the sequencing
coverage depths evaluated. When compared with the

other tools, PAVFinder has the highest sensitivity and speci-
ficity (Fig. 3b).

Assessment of the performance of TAP on real data
The Leucegene Project [40] made available 437 publicly ac-
cessible RNA-seq datasets analyzed in several published
studies [41–44]. We leveraged these data (Table 1) for
evaluating the performance of TAP due to the wide
spectrum of structural variants that are clinically-relevant
biomarkers offered by this disease. Using 580 COSMIC
cancer genes [37] as our target gene set, we examined fu-
sions and read-throughs of

� the core-binding factor (CBF) cohort [42], which
carries either the CBFB-MYH11 or RUNX1-
RUNX1T1 fusion;

� the NUP98-NSD1 cohort [43], which carries the
NUP98-NSD1 fusion; and

� the MLL fusion (MLL-F) cohort, which carries MLL
(a.k.a. KMT2A) fused with different partners [41].

We screened a multitude of samples for MLL-PTD as the
sample identities of the MLL-PTD cohort were not dis-
closed in any of the Leucegene publications. Furthermore,
we processed samples from a CEBPA cohort to assess

Fig. 2 PAVFinder detects both (a) structural rearrangements and (b) novel splicing variants. Numbers indicate reference transcript exon
numbers. Dotted red lines represent novel adjacencies (joining between non-adjacent transcript sequences) and red blocks represent
novel sequences. For splicing variants, canonical splice site motifs are indicated as they are checked for calling potential novel splicing
events. Dotted vertical lines depict algorithm for detecting novel splicing variants by aligning contig sequences against annotated
gene model
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TAP’s ability to detect short indels. For all the processed
samples, we also look for the important AML variants
FLT3-ITD and NPM1 insertion. Finally, we identified
several aberrant splicing events reported in the litera-
ture [45, 46] that have potential implications in AML,

and checked whether we can detect them in any of
the samples we analyzed.

Fusions
We processed 46 RNA-seq samples of the CBF cohort, of
which 26 carry the CBFB-MYH11 fusion (inv(16)), and 20
carry the RUNX1-RUNX1T1 fusion (t(8;21)). TAP was suc-
cessful in detecting all of the fusion events, in agreement
with the literature [30]. Two of the CBF-MYH11 cases
(03H095 and 12H042) do not have breakpoints at exon
boundaries: one presents four extra amino acids at the
junction, and the other has a breakpoint internal to the
MYH11 exon, both of which nevertheless produce in-frame
chimeric transcripts. The PAVFinder module was config-
ured by default to restrict fusion breakpoints to exon
boundaries. When this option was turned off, the
CBF-MYH11 fusion were identified and reported in TAP.
PAVFinder also detected the NUP98-NSD1 fusion in all
seven AML samples known to contain the fusion event.
We also processed 31 samples of the MLL-F cohort,

which contains MLL fusions involving different partners:
CASC5 (1), ENL (MLLT1, 4), ELL (3), GAS7 (1), SEPT9 (2),
MLLT (9), MLLT4 (8), MLLT6 (1) and MLLT10 (2) (num-
bers in brackets indicate number of samples in each case).
TAP could detect all nine types of MLL fusions in 30 out of
the 31 samples. The only sample we failed to detect any fu-
sion events was 04H080, which was reported to carry the
fusion MLL-MLLT3. It was noted in the publication that

Fig. 3 Simulation experiment to assess PAVFinder fusion calling performance in relation to sequencing coverage and other software. a. Design of
experiment: reads simulated from fusion breakpoints and corresponding reference transcript sequences at different read depths are combined to
simulate the titration series. b. Receiver Operating Characteristic (ROC) plots of PAVFinder, Tophat-Fusion [12], and deFuse [13] on 448 fusion
events reported on TCGA data [39]

Table 1 Leucegene AML samples analyzed in this study

Cohort Number of samples analyzed GEO Accession

core-binding factor (CBF) 46 GSE62190

GSE67039

GSE52656

NUP98-NSD1 7 GSE49642

GSE67039

GSE52656

MLL-fusion (MLL-F) 31 GSE52656

GSE49642

GSE67039

GSE52656

CEBPA 12 GSE67039

GSE52656

GSE49642

GSE62190

GSE66917

MLL-PTD 1 GSE67039
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the fusion was detected by only two reads. We note that the
sample contains only 23 million read pairs, only about a
quarter of the average size of the other samples. To trouble-
shoot, we ran the original tool that was used to detect the
fusion, TopHat-fusion [12], and still was unable to detect
the event.
To benchmark PAVFinder’s relative performance in gene

fusion detection, we also processed both the extracted and
entire read sets of all the CBF-MYH11, NUP98-NSD1, and
MLL-F cohorts with TopHat-Fusion [12] and deFuse [13].
Using mostly default parameters (Additional file 1: Table
S5), except with the requirement of at least four reads span-
ning a breakpoint, TopHat-Fusion failed to report eight
MLL-F and one CBF-MYH11 fusions in the reads extracted
by BBT. Using the entire read set did not change the re-
sults. In two CBF-MYH11 samples, deFuse failed to report
the correct fusion in the extracted read set as it had misa-
ligned the MYH11 segment to Nde1. Interestingly, this mis-
alignment was not observed when the entire read set was
used. In one MLL-F sample, deFuse failed to detect the
MLL fusion in both the extracted and the entire read sets.
The samples for which TopHat-Fusion and deFuse missed
calling the expected fusion events using the extracted reads
were not the same samples, suggesting that it is not the se-
quence extraction step that causes the false-negatives.
In addition to the signature AML events from the Leuce-

gene study, TAP reported further fusion calls. We assessed
these events for their validity by searching for previous re-
ports in the literature. Out of a total of 47 events, about half
of them (28) have been reported before (Additional file 1:
Figure S4). Notable cases include ETV6-NTRK3, a well-
known driver detected in various cancer types including
AML [47, 48], and TFG-ADGRG7, a known event reported
in healthy individuals [49]. Of the events without any publi-
cation reference, one of the partner genes is often found in
another fusion event reported in the literature. Examples in-
clude fusions involving DDX5, CXCR4, KLF2, and UBC. Fu-
sions in this last category usually exhibit low expression
levels, and are apparently promiscuous regarding their fu-
sion partners. Marincevic-Zuniga et al. [50] “blacklisted”
these genes, and filtered them out in their detection pipe-
line, suggesting that although these fusions may indeed be
bona fide, their biological significance is dubious or un-
known. Amid these “noise” events, however, one novel fu-
sion, PHKB-ATTC, is potentially promising (46 spanning
read support) and biologically functional (in-frame fusion
of the 5′ of PHKB to the 3’of ATTC), while another,
FCGR2C-FCGR2A, is most likely a false positive as a result
of mis-assembly due to extensive sequence similarity.
Read-throughs are chimeric transcripts resulting from

splicing of two adjacent genes on the same coding
strand. They have been found in both normal and neoplas-
tic tissues. An example is SLC45A3-ELK4, which has been
detected before in prostate cancer [51, 52]. Interestingly,

TAP detected this event in 21 of the Leucegene samples we
analyzed. Qin et al. [53] reported that this fusion regulates
cell proliferation by its transcript, not through a translated
protein. Its presence in AML suggests it may be more wide-
spread in other cancer types than previously thought.

FLT3-ITD
Four NUP98-NSD1, three CBF, and two CEBPA patients
were reported to carry a FLT3 ITD. TAP could detect these
events and additional alleles from the same samples (Add-
itional file 2: Table S3). In addition, TAP detected FLT3-
ITDs in 12 samples analyzed in this study (three from the
CBF-cohort, five from the MLL-F cohort, three from the
CEBPA cohort, and one from the MLL-PTD sample; see
the following paragraph for a description of the latter) that
were not reported previously to be positive for this event.
Given the fact that the un-reported events all reside in exon
14 (same as all reported cases), and are in-frame, it is highly
likely that they are true positives previously missed.

MLL-PTD
Because the 23 sample accessions of the MLL-PTD co-
hort [41] were not disclosed, we analyzed about 20 sam-
ples randomly selected from a list of 377 samples that
are not part of the three fusion or CEBPA cohorts (all
negative for MLL-PTD), and found one positive candi-
date. A breakpoint suggesting a tandem duplication of
exons 2 to 6, one of the most common MLL-PTD alleles in
AML [54], was detected in sample 09H106. Although we
cannot provide any precision metric due to missing infor-
mation, this single positive case nonetheless highlights
TAP’s ability to detect PTD events.

CEBPA indels and NPM1 insertion
TAP detected all the reported indels in 12 of the CEBPA
samples [44]. Though, these events may be often labeled
differently: for example, our pipeline may report them as
duplication (06H026) or repeat-expansion events (08H065),
instead of an insertion. In one CEBPA (08H082) and one
NUP98-NSD1 (11H027) samples, TAP was also able to de-
tect a 4 bp NPM1 insertion, an important AML biomarker,
in exon 12 where most reported mutations reside [55].

Novel splicing
Aberrant alternative splicing has been shown to be impli-
cated in AML development [45]. We interrogated the Leu-
cegene dataset for novel splicing events in the genes
ANPEP (a.k.a. CD13), NOTCH2, and FLT3, which have
been shown to express mis-spliced transcripts in AML pa-
tients [45, 46], and TAP detected the different aberrant spli-
cing patterns identified from these studies in various
samples (Table 2, Additional file 2: Table S5). Most of the
events involve single or multiple exon-skipping events, with
or without associated novel splice donor or acceptors. In
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addition to previously reported novel splicing events in
these genes, TAP identifies an additional 11 different novel
exon-skipping events in FLT3 and eight different novel
exon-skipping events in NOTCH2.

Computational resources and runtime
Using 580 COSMIC genes, TAP processed 100–150 mil-
lion RNA-seq read pairs within 2 hours using 32 threads
on a single Intel Xeon E5–2699 v3 2.30 GHz 36-core ma-
chine running CentOS 6. In comparison, TopHat-Fusion
and deFuse requires around 30 and 6 hours, respectively,
to process the same datasets (Additional file 1: Figure S5).

Discussion
We developed a bioinformatics pipeline, TAP, for analyzing
RNA-seq data in a targeted manner, such that anomalies of
hundreds of important cancer genes can be identified within
a couple of hours, making TAP highly feasible as an analysis
tool in clinical genomics applications.
Using COSMIC genes as an example, we demonstrated

that BBT is highly accurate and robust at classifying reads
with over 99.9% accuracy. Although Bloom filters in BBT
were constructed using only the reference sequences of
select target genes, BBT could still extract reads contain-
ing breakpoints of structural variants. This is particularly
useful in detecting gene fusions when one of the two part-
ner genes is unforeseen and thus missing in the target set.
An example of this is the promiscuous MLL fusions in
AML. We showed in this study that TAP was able to iden-
tify the various MLL fusions in the MLL-F Leucegene co-
hort even when all its partners are intentionally removed
from the target set.
De novo sequence assembly has been shown to be a useful

approach for detecting structural and splicing variants on
both genomic and transcriptomic datasets [25–27]. We
used AML datasets to demonstrate our pipeline’s
versatile ability to identify a diverse spectrum of re-
arrangements (gene fusions, ITDs, PTDs, indels, etc). To

assess PAVFinder performance in fusion calling, we simu-
lated sequences from a set of 448 TCGA fusions, and
showed that PAVFinder outperforms two widely used
methods based on an alignment-first approach in both
sensitivity and specificity. Based on the benchmarking
with real AML RNA-seq datasets from Leucegene, PAV-
Finder captured all the published events but one low
coverage event, whereas all other methods evaluated have
a number of events not detected. Assembly-based variant
detection also offers the advantage of detection of possibly
multiple breakpoint alleles of the same event with single
base pair resolution. This is evident in the fusion results of
all the Leucegene samples we processed (Additional file 2:
Table S4), where more than one breakpoint allele of the
same event can often be found within the same or among
different patients. As it has been reported that different
gene fusion products of the same two genes may poten-
tially confer different oncogenic potential [56], the ability
to accurately identify different gene fusion alleles could
potentially be informative for diagnostics. Another ex-
ample is FLT3-ITD, which exhibits variability in both length
and position, canonically located within exon 14. We
showed that PAVFinder was able to handle this variability.
Turnaround time is an important consideration in ap-

plying next-generation sequencing for clinical diagnostic
applications. With the cost of sequencing rapidly de-
creasing, the amount of data produced is also increasing
at a rate that potentially makes sequence analysis the
next bottleneck in result delivery. We demonstrated that
analyzing selected disease-relevant genes instead of the
entire transcriptome is a viable approach, and showed
that all the clinically-relevant structural variants in the
target genes can be detected with 100% sensitivity, yet
with a much more desirable turnaround time. A typical
assembly- or alignment-first variant analysis on an entire
transcriptome library of a typical sequencing depth
(100 M+ reads) currently takes overnight or longer to
finish. With a reduced yet comprehensive dataset (in the
context of selected targets), TAP can potentially be ex-
tended to additional types of RNA-seq analysis such as
SNV detection and expression profiling. Moreover, mul-
tiple tools for detecting the same kind of variants can be
applied as a complementary approach, and still be feas-
ible timewise because of a reduced data size.

Conclusions
We developed a bioinformatics pipeline, TAP, which as-
sembles and analyses RNA-seq data for detection struc-
tural and splicing variants. Applied on a targeted gene
set, TAP shows good performance with high sensitivity
and specificity with a quick turnaround time, making it
a good candidate for downstream analysis on clinical
sequencing.

Table 2 Previously identified aberrant splice events [45, 46]
detected in the Leucegene samples analyzed

Variant Number of positive samples

CD13-Va 27

CD13-Vc 53

NOTCH2-Va 54

NOTCH2-Vb 77

FLT3-Va 92

FLT3-Vb* 51

FLT3-Vc* 3

FLT3-Vb* – skipped exon 5 and 13-bp deletion at of exon 4 3′ end instead of
skipped exons 5 and 7 and partial deletions of exons 6 and 8
FLT3-Vc* – skipped exons 5,6,7 and 13-bp deletion of exon 4 at 3’end
and 76-bp deletion of exon 8 at 5′ end instead of 26-bp deletion of
exon 8 at 5′ end
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Availability and requirements
Project name: TAP.
Project home page: http://www.bcgsc.ca/platform/

bioinfo/software/pavfinder
Operating system(s): Linux.
Programming language: Python 2.7.
Other requirements: None.
License: BCCA (academic use).
Any restrictions to use by non-academics: None.

Additional files

Additional file 1: Figure S1. Read classification by Bloom-filter vs align-
ment. Figure S2. Per-gene comparison of classification performance by
BBT vs BWA-MEM. Figure S3. Effect of sequencing error rate on perform-
ance of read classification. Figure S4. Support level of gene fusions de-
tected in Leucegene samples. Figure S5. Benchmarking of TAP and other
fusion callers. Table S1. Alignment features used by PAVFinder for classi-
fying various types of transcriptomic structural variants. Table S2. Block-
vs-exon alignment characteristics used by PAVFinder to identify various
classes of novel splice variants. Table S3. Software and command lines
used in TAP and benchmark experiments. (PDF 1076 kb)

Additional file 2: Table S4. AML-relevant structural variants detected by
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