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Abstract

Background: The proto-oncogene KRAS performs an essential function in normal tissue signaling, and the mutation
of KRAS gene is a key step in the development of many cancers. Somatic KRAS mutations are often detected in
patients with solid and non-solid tumors, whereas germline KRAS mutations are implicated in patients with the
Noonan syndrome, cardio-facio-cutaneous (CFC) syndrome and Costello syndrome. The deletion of chromosome
10q22.3-q23.2 is a rare cytogenetic abnormality, which often leads to distinct facial appearance and delays in speech
and global development.

Case presentation: Herein, we report the case of a 4-year-old boy diagnosed with juvenile myelomonocytic leukemia.
The boy also had syndromic features, such as speech and motor developmental delay, multiple congenital malformations,
including distinct facial features, club feet, and cryptorchidism. Using whole-exome sequencing, we identified a pathogenic
mutation in KRAS [c.34G > A, p.Gly12Ser] isolated from peripheral blood DNA. Sanger sequencing confirmed the wild-type
sequence in the parents and patient’s salivary cell DNA indicating its somatic state. A 7311-kb deletion in 10q22.3-q23.2 was
also revealed by chromosomal microarray analysis, which was later proved as a germline de novo variant.

Conclusion: Juvenile myelomonocytic leukemia in the patient was attributed to a somatic KRAS mutation, whereas the
syndromic features of the patient were considered a consequence of germline chromosome 10q22.3-q23.2 deletion.
Genetic testing for patients with complicated phenotypes can be valuable in detecting multiple pathogenic variants.
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Background
KRAS, as a member of the RAS gene family, encodes the
cellular homolog of a transforming gene from the Kirsten
rat sarcoma virus, which plays a vital role in normal tissue
signaling, including proliferation, differentiation, and

senescence. Germline or somatic mutations of KRAS
are implicated in several human diseases like the Noonan
syndrome [1], cardio-facio-cutaneous (CFC) syndrome [2],
and Costello syndrome [3], as well as in different types of
solid and non-solid tumor [4, 5]. KRAS is considered one of
the most activated oncogenes, with 17% to 25 of all human
tumors harboring an activating KRAS mutation [6].
Deletions of chromosome 10q22.3-q23.2, including

that of the BMPR1A gene, have been associated with
dysmorphic facies, developmental delay, and multiple
congenital anomalies [7]. Recurrent deletions in this
region derived from nonallelic homologous recombination
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(NAHR) between two well-defined low-copy repeats (LCRs)
[8]. Larger deletions encompassing the PTEN gene could
lead to the development of a more severe phenotype with
infantile/juvenile polyposis and macrocephaly [9].
Herein, we report concurrent somatic KRAS mutation

and germline chromosome 10q22.3-q23.2 deletion in a
patient with juvenile myelomonocytic leukemia, devel-
opmental delay, and multiple congenital malforma-
tions, including distinct facial features, club feet, and
cryptorchidism.

Case presentation
A 4-year-old boy was referred to our hospital because
of respiratory tract infection, splenomegaly, and
thrombocytopenia. The mother was 26-year-old, and
the father was 31-year-old; both were of Chinese origin,
non-consanguineous and healthy. The patient had two
healthy sisters. The prenatal history was unremarkable,
and the patient was born via a normal delivery at term.
His birth weight was 3000 g, height 50 cm, and occipito-
frontal circumference 36 cm. Family history did not show
any congenital malformations.
On admission, the patient showed distinct facial fea-

tures, including low nasal bridge, prominent epicanthic
fold, hypertelorism, and low-set ears (Fig. 1). Enlargement
of the liver and spleen was also observed. Furthermore, he
had congenital bilateral club feet and cryptorchidism, as
well as delayed speech and motor development. A routine
blood test indicated an abnormal increase of white blood
cell count and hypochromic anemia. As a common symp-
tom of JMML patients, anemia occurs when bone marrow

is overcrowded by leukemia cells. Bone marrow aspiration
smear revealed trilineage myelodysplasia and decreased
platelet production from megakaryocyte. The diagnosis of
juvenile myelomonocytic leukemia (JMML) was based on
the fulfilling these criteria: (1) absence of Philadelphia
chromosome or BCR/ABL fusion gene; (2) peripheral
blood monocytosis > 1× 109/L (peripheral blood monocyte
count: 9.2×109/L, peripheral blood lymphocyte count:
8.2×109/L); (3) less than 20% blasts (including promono-
cytes) in the blood and bone marrow; (4) immature granu-
locytes and nucleated red cells in the peripheral blood; (5)
white blood cell count > 10×109/L (peripheral white blood
cell count: 23.9 × 109/L); (6) splenomegaly. The patient
died before chemotherapy could be started and bone mar-
row transplantation performed due to severe infection.
The CARE guidelines were followed in reporting this case.

Whole-exome sequencing and chromosomal microarray
analysis
Patient’s peripheral blood DNA was subjected to
whole-exome sequencing to screen for causal variants.
Briefly, 3 μg DNA was sheared to create fragments of
150–200 bp in size. An adaptor-ligated library was pre-
pared using the paired-end sequencing library prep kit
(Agilent Technologies, Santa Clara, CA, USA) and both
the coding exons and flanking intronic regions were
enriched with SureSelect XT Human All Exon V5 (Agilent
Technologies). Then, clusters were generated by isothermal
bridge amplification with an Illumina cBot station, and
sequencing was performed with an Illumina HiSeq
2500 System (Illumina, San Diego, CA, USA). The

Fig. 1 Facial feature (a) and club feet (b) of the patient. The somatic KRAS mutation on twelfth codon (arrow marked) of the patient and diseases
caused by neighboring condon mutations are shown (c)
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Burrows Wheeler Alignment tool (BWA) v0.2.10 was
employed for sequencing data alignment to the Human
Reference Genome (NCBI build 37, hg 19). All data
were assessed using FastQC (version 0.11.2) for quality.
In addition, all single-nucleotide variants (SNVs) and
indels were saved in VCF format and uploaded to
Ingenuity Variant Analysis (Ingenuity Systems, Redwood
City, CA, USA) for biological analysis and interpretation.
Chromosomal microarray analysis (CMA) was performed
using SurePrint G3 customized array (Agilent Technologies,
Santa Clara, CA, USA). Previously validated platform
settings were consistently utilized for CNV detection
and filtering. CNVs within the size range 2–400 kb
were detected via CMA and were further confirmed by
manual inspection.
Using WES, we detected a heterozygous missense

mutation (c.34G > A, p.Gly12Ser) in the KRAS gene in
DNA extracted from peripheral blood of the patient,
which could be categorized as pathogenic (Fig. 1).
Sanger sequencing was applied to confirm the missense
mutation. Further analyses of the parental blood sample and
patient’s buccal swab sample revealed that the KRAS muta-
tion was absent, which indicated the presence of a somatic
mutation. A pathogenic deletion encompassing 7311 kb
(arr[GRch37] 10q22.3q23.2 (81628905_88940359)× 1)
was detected by CMA from the proband but not from
his parents. The deleted region involved the OMIM
genes, including NRG3, CDHR1, RGR, LDB3, BMPR1A,
and GLUD1.

Discussion and conclusions
JMML is a rare, clonal myeloproliferative/myelodysplastic
disorder in children, accounting for 2–3% of the child-
hood hematological malignancies, which is characterized
by overproduction of myelomonocytic cells that infiltrate
hematopoietic and non-hematopoietic tissues [10].
Approximately 90% of the patients carry either somatic
or germline mutations of PTPN11, KRAS, NRAS, CBL,
or NF1 in their leukemic cells [11]. In an earlier study,
Matsuda et al. detected a somatic KRAS mutation in
unrelated patients with JMML [12], two of the eleven
patients carried the same G12S mutation as in our patient.
A somatic mutation in the twelfth codon of KRAS was also
reported in patients with nevus sebaceous tumors (G12D,
G12 V) [13], the Schimmelpenning-Feuerstein-Mims
syndrome (G12D) [14], RAS-associated autoimmune
leukoproliferative disorder (G12D) [15], lung cancer
(G12C) [16], and bladder cancer (G12R) [17]. Germline
KRAS mutations contribute to a range of diseases or
syndromes, grouped as RASopathy, which exhibit numerous
overlapping phenotypic features involving multiple systems
and organs due to common underlying Ras/MAPK pathway
dysregulation. RASopathy-related syndromes, such as the
Noonan syndrome, CFC syndrome, and Costello syndrome,

can be detected in patients with germline mutations in the
KRAS gene rather than with somatic mutations. Thus, in
our study, the somatic G12S mutation detected in patient’s
peripheral blood DNA, which was later confirmed to be
absent from his parents and buccal swab, was considered a
critical factor for the development of his JMML phenotype
independent of his other symptoms.
Sporadic cases have been reported to show improve-

ment over 2–4 year period without chemotherapy or
hematopoietic cell transplantation (HCT) [12]. The
majority of JMML patients ultimately require HCT for
cure [18]. This option was promptly offered to any
child with PTPN11, KRAS, or NF1mutated JMML and
to majority of those with NRAS mutations, curing more
than 50% of affected children [19].
In addition, genetic and phenotypic heterogeneity has

been reported in RASopathy-related syndromes. The
occurrence of a pathogenic mutation in the same codon
was previously reported, but different clinical diagnoses
were established in the individuals studied [2, 20].
Zenker et al. noted that patients diagnosed with Costello
syndrome may later develop features of CFC syndrome
[3]. Bertola et al. reported the case of a patient with K5E
mutation, who was initially diagnosed with the Noonan
syndrome, but later the Costello syndrome was confirmed
as the final diagnosis [21]. Apart from JMML, the existing
phenotypes in our patient, such as multiple malformations,
including dysmorphic facial features, cryptorchidism, club
feet on both sides, and developmental delay, were
inconsistent with those of any of the RASopathy-related
syndrome characteristics. The principal feature by which
the Noonan syndrome is manifested is congenital heart
defects, such as pulmonary valvular stenosis, septal defects
or hypertrophic cardiomyopathy, short stature, pectus
excavatum, impaired blood clotting, and characteristic
facial features [1]. The CFC syndrome is characterized by
distinctive facial appearance, sparse and curly scalp hair,
ichthyosis, heart malformations, delayed growth, and foot
abnormalities [22]. On the other hand, the Costello syn-
drome is featured by global delayed development, distinct-
ive facial features, heart abnormalities, unusually flexible
joints, and loose folds of extra skin, especially on the
hands and feet [23]. The phenotypic discrepancy strongly
suggests the possibility of another disease or syndrome
caused by a second genomic event.
The CMA, which was subsequently conducted, revealed

a 10q22.3-q23.2 deletion that was also categorized as
pathogenic. In an earlier examination, similar deletions on
the long arm of chromosome 10 were reported in six
patients, four of which were with mild dysmorphic
features and developmental delay [24]. A wide range of
cognitive and behavioral phenotypes has been established
in multiple family members having this deletion [25]. For
example, Van Bon et al. has reviewed 15 cases with

Yao et al. BMC Medical Genomics  (2018) 11:60 Page 3 of 6



Ta
b
le

1
C
lin
ic
al
Fe
at
ur
e
of

Pa
tie
nt
s
W
ith

D
el
et
io
n
in

81
.6
–8
8.
9m

b
on

C
hr
om

os
om

e
10

Pa
tie
nt

1
2

3
4

5
6

7
8

9
10

Sh
or
t
st
au
re
*

–
–

–
–

–
–

+
+

–
–

D
ev
el
op

m
en

ta
l

de
la
y

+
+

+
+

–
+

+
+

+
+

A
us
tis
m

+
–

+
–

–
–

–
–

–
–

Sp
ee
ch

de
la
y

+
N
A

+
+

–
+

–
–

+
+

O
FC

P9
7

P9
7

N
A

N
A

N
A

M
ac
ro
ce
ph

al
y

P1
0

P2
P8
4

P5
0

C
ar
di
ac

de
fe
ct

N
A

N
A

PD
A

–
–

–
–

A
VS
D

–
–

Re
fe
re
nc
e

Ba
lc
iu
ni
en

e
et

al
.[
20
07
]

Ba
lc
iu
ni
en

e
et

al
.

[2
00
7]

A
lli
m
an

et
al
.

[2
01
0]

A
lli
m
an

et
al
.

[2
01
0]

A
lli
m
an

et
al
.

[2
01
0]

A
lli
m
an

et
al
.

[2
01
0]

Va
n
Bo

n
et

al
.

[2
01
1]

Va
n
Bo

n
et

al
.

[2
01
1]

Va
n
Bo

n
et

al
.

[2
01
1]

O
ur

ca
se

D
ys
m
or
ph

si
m
s

an
d
co
ng

en
ita
l

an
om

al
ie
s

M
in
or

fe
at
ur
es

Ve
nt
ric
ul
ar

st
ru
ct
ur
al

ab
no

rm
al
iti
es

M
ic
ro
gn

at
hi
a

H
ig
h-
ar
ch
ed

pa
la
te

Th
in

up
pe

r
lip

W
id
e
sp
ac
ed

ey
es

A
ra
ch
no

da
ct
yl
y

Jo
in
t

hy
pe

re
xt
en

si
bi
lit
y

H
yp
ot
on

ia
H
ig
h
pa
la
te

W
id
e
sp
ac
ed

ey
es

ea
rlo

be
cr
ea
se
s

Pr
og

na
th
ic

m
an
di
bl
e

Re
ct
al
bl
ee
di
ng

C
lu
bf
ee
t

H
ea
rin

g
lo
ss

W
id
e
sp
ac
ed

ey
es

Lo
w
se
t
ea
rs

M
ild

hy
po

to
ni
a

Sm
al
le
ar
s

W
id
e
sp
ac
ed

ey
es

Sm
al
lm

ou
th

Re
tr
og

na
th
ia

M
ild

hy
po

to
ni
a

Pt
os
is

Lo
w

se
t
sm

al
l

ea
rs

H
yp
ot
el
or
is
m

Br
oa
d
th
um

bs
Br
oa
d
ha
llu
xe
s

Br
ea
st
ap
la
si
a

Te
le
ca
nt
hu

s
Lo
w

se
t
ea
rs

H
yp
er
te
lo
ris
m

A
nt
er
ve
re
d

na
re
s

Fl
at

na
sa
lb

rid
ge

La
rg
e
m
ou

th

Lo
w

se
t
ea
rs

H
yp
er
te
lo
ris
m

Ra
di
ou

ln
ar

sy
no

st
os
is

Sc
ol
io
si
s

Ky
ph

os
is

Pe
ct
us

ex
ca
va
tu
m

C
af
é-
au
-la
it
sp
ot
s

C
lu
bf
ee
t

Lo
w

se
t
ea
rs

Fl
at

na
sa
lb

rid
ge

W
id
e
sp
ac
ed

ey
es

A
de

no
id

hy
pe

rt
ro
ph

y

A
VS
D
at
ria

lv
en

tr
ic
ul
ar

se
pt
al

de
fe
ct
,O

FC
oc
ci
pi
to
-f
ro
nt
al

ci
rc
um

fe
re
nc
e,

PD
A
pa

te
nt

du
ct
us

ar
te
rio

su
s

*S
ho

rt
st
at
ur
e:

<
10

th
ce
nt
ile

Yao et al. BMC Medical Genomics  (2018) 11:60 Page 4 of 6



10q22.3-q23 deletion or duplication [7] and found that all
of the patients showed developmental delay, but their dys-
morphisms and congenital anomalies differed consider-
ably. The 10q22.3-q23.2 region is characterized by a
complex set of low-copy repeats (LCRs) which can give
rise to various genomic changes mediated by nonallelic
homologous recombination (NAHR). The longer sequence
approximately 7 Mb) between the LCRs in this region
contributes to the lower frequency of recurrent 10q22.3q23
deletion than that of other recurrent deletions or duplica-
tion syndromes [25].
Two candidate genes, BMPR1A and GRID1, in the

deleted region have been suggested to be related with
cardiac defects. Deletion of BMPR1A was found to
disrupt the cardiac morphogenesis in mice, resulting in
various cardiac defects [26]. A previous meta-analysis
of genome-wide association data proposed GRID1 as a
candidate gene responsible for the thickness of the left
ventricle wall [27]. In our case, nine patients had identical
breakpoints (Table 1). Cardiac defects were detected only
in two patients, whereas developmental delay (9/10) and
dysmorphic facial features (9/10) were manifested in most
of the patients. Clinical heterogeneity might also be the
reason for the low frequency of 10q22.3q23.2 deletions
due to the mild phenotype established in some individuals
with this deletion or miscarriages in severe individuals
during pregnancy [25].
Molecular testing reveals the underlying genetic vari-

ant and thus substantially increases the effectiveness of
diagnosis of rare diseases [28]. Furthermore, diagnostic
whole-exome sequencing provides opportunities for
gaining insights into the relationships between specific
multi-locus genomic variations and diseases. Multiple
molecular diagnoses by whole-exome sequencing were
successfully performed in 4.9% of the patients in a large
cohort study. The concurrent pathogenic variants in
patients with multiple or ambiguous symptoms partially
explained the availability of an intersectant or overlapping
phenotype, which contributed to a more convincing mo-
lecular diagnosis than that based only on a single outcome
[29]. Concurrent pathogenic single-nucleotide and copy
number variants are more difficult to detect due to the
limitation of the single testing strategy. As CNV detection
were progressively optimized by analyzing whole genome
exome sequencing or whole sequencing data [30, 31],
genetic testing for complicated diseases, especially those
with overlapping phenotype, will be more valuable while
detecting multiple pathogenic variants.
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