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Abstract

Background: Using high-dimensional penalized regression we studied genome-wide DNA-methylation in bone
biopsies of 80 postmenopausal women in relation to their bone mineral density (BMD). The women showed BMD
varying from severely osteoporotic to normal. Global gene expression data from the same individuals was available,
and since DNA-methylation often affects gene expression, the overall aim of this paper was to include both of these
omics data sets into an integrated analysis.

Methods: The classical penalized regression uses one penalty, but we incorporated individual penalties for each of
the DNA-methylation sites. These individual penalties were guided by the strength of association between
DNA-methylations and gene transcript levels. DNA-methylations that were highly associated to one or more
transcripts got lower penalties and were therefore favored compared to DNA-methylations showing less association
to expression. Because of the complex pathways and interactions among genes, we investigated both the association
between DNA-methylations and their corresponding cis gene, as well as the association between DNA-methylations
and trans-located genes. Two integrating penalized methods were used: first, an adaptive group-regularized ridge
regression, and secondly, variable selection was performed through a modified version of the weighted lasso.

Results: When information from gene expressions was integrated, predictive performance was considerably
improved, in terms of predictive mean square error, compared to classical penalized regression without data
integration. We found a 14.7% improvement in the ridge regression case and a 17% improvement for the lasso case.
Our version of the weighted lasso with data integration found a list of 22 interesting methylation sites. Several
corresponded to genes that are known to be important in bone formation. Using BMD as response and these 22
methylation sites as covariates, least square regression analyses resulted in R? = 0.726, comparable to an average
R? = 0.438 for 10000 randomly selected groups of DNA-methylations with group size 22.

Conclusions: Two recent types of penalized regression methods were adapted to integrate DNA-methylation and
their association to gene expression in the analysis of bone mineral density. In both cases predictions clearly benefit
from including the additional information on gene expressions.

Keywords: Bone, DNA-methylation, Gene expression, Individual penalties, Integration, Lasso, Ridge regression

*Correspondence: tonje.lien@rr-research.no

"University of Oslo, Department of Mathematics, P.O Box 1053, 0316 Oslo,
Norway

Full list of author information is available at the end of the article

- © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
( B.oMed Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-018-0341-2&domain=pdf
http://orcid.org/0000-0003-3331-4201
mailto: tonje.lien@rr-research.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lien et al. BMC Medical Genomics (2018) 11:24

Background

Poor bone health and low bone mineral density (BMD)
lead to reduction in bone mechanical strength. BMD is
commonly used in clinical practice as a surrogate mea-
sure of bone strength. Osteoporosis (OP) is diagnosed
when the bone mineral density is more than 2.5 standard
deviations below that of a young adult (30-40 years old),
healthy women reference population [1]. In the Western
world, more than 40% of women over 50 years experience
OP and low energy fractures, and the highest rates are
found in the Scandinavian countries [2].

The number of publications describing DNA-
methylation in bone cells is limited, but the understanding
of its importance is rapidly increasing. DNA-methylation
is an important factor in the development and function
of bone cells, and therefore also in skeletal disease char-
acteristics [3, 4]. In this paper we explore the impact of
genome-wide DNA-methylations on BMD further.

In the present study of 80 postmenopausal women
(50-84 years), we have measured both global DNA-
methylation and global RNA transcripts obtained from
the same bone biopsies. Combining this information can
give us additional strength in the functional analysis
of DNA-methylation. The relationship between DNA-
methylation and gene expression is complex [5-7]. While
increased methylation in promoter regions tends to
reduce transcription, probably by inhibition of transcrip-
tion factor binding, increased methylation within the
transcribed part of DNA often increases transcription,
probably due to reduced use of spurious intergenic pro-
moters [8]. Also, binding of transcription factors to a pro-
moter region may promote or inhibit DNA-methylation
depending on the properties of that factor. In addition,
cellular functions are largely influenced by networks and
complex pathways involving several genes, also on other
chromosomes, which again have both positive and nega-
tive influence.

This paper aims to identify genome-wide DNA-
methylation sites explaining the variation in BMD in
postmenopausal women, while integrating the association
between each CpG site and gene expression using a com-
mon set of bone biopsies. We assume that methylations
strongly associated with transcripts are most relevant in
regulation of bone mineral density. This assumption is
based on results from several recent studies: We earlier
studied bone DNA methylations in the 100 genes rep-
resenting transcripts most significantly associated with
BMD [9]. These DNA methylations were significantly cor-
related to several of the 100 transcripts. We have also
showed, that methylation of the bone SOST promoter
is associated with reduced level of its protein sclerostin,
an important bone anabolic inhibitor [10]. Furthermore,
Del Real et al. [11] performed global DNA methyla-
tion and transcription analysis of human mesenchymal
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stem cells (hMSCs), the precursors of osteoblasts, from
femoral heads of women undergoing hip replacement
due to fractures using controls with hip osteoarthritis.
The authors identified differentially methylated loci sit-
uated in genomic regions with enhancer activity, being
associated with differentially expressed genes/transcript
levels enriched in pathways related to hMSC growth and
osteoblast differentiation.

We fit a multivariate regression model using BMD as
response and genome-wide DNA-methylations as covari-
ates. The number of covariates is much greater than the
number of individuals, so ordinary linear regression does
not give a unique solution, and it follows that penalized
regression methods, also known as shrinkage or regular-
ization methods, are needed. We include gene expression
data in the analysis, by allowing for individual penalties
in the regression, and let the gene transcript levels guide
these penalties. Both cis (DNA-methylation and tran-
script from the same gene) and trans (DNA-methylation
and transcript from different genes) associations are
investigated. We point out that we study associations, and
that such effects may be causal, but do not necessary need
to be. Only in the case when a change in one variable
causes a corresponding change in the other variable, can
the effect be called causal.

One of the most used penalized regression methods
is ridge regression [12]. This method does not assume
the quite strong assumption of sparsity, in the sense that
only a fairly small number of covariates has an effect
on the response variable. It follows that ridge regression
includes all covariates in the final model. A ridge regres-
sion method which allows for individual penalties is the
adaptive group-regularized ridge regression [13]. This is
a generic method, which allows for ranked penalties for
groups of covariates. We used this method by dividing
the methylation sites into groups based on their associa-
tion to gene transcript levels. We show that this method
improves the predictive ability compared to the classical
ridge regression in which the external information from
gene expressions is not included.

Typically, two aspects are important when fitting a
regression model. First a model should be able to pre-
dict future data, secondly it should be interpretable [14].
A large number of covariates may complicate the inter-
pretation, especially when the number of covariates p is
larger than the number of individuals #. By doing dimen-
sion reduction we can get a shortlist of the most important
variables. Using this approach, assuming sparsity, we can
use the highly popular lasso method [15]. For our dataset
it does not give as good prediction as ridge regression,
but the resulting short list of genes is easier to inter-
pret. Within this lasso framework, the weighted lasso
with data integration allows for individual penalties based
on external information [16]. We extend this method
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further to suit our particular data types. Using this mod-
ified method, we improve predictive performance, com-
pared to the classical lasso, where gene expression is not
integrated.

This paper is organized as follows: In the method
section we first present an overview of the data, next
in the section “Quantifying the strength of association
between DNA-methylation and gene expression” we
present how we test for a significant association between
each DNA-methylation and the gene transcript levels,
and how we find the p-values adjusted for multiple test-
ing. The adjusted p-values are our measure of association
between DNA-methylation and gene expression. In the
section “Penalized regression using penalty multipliers’,
the essential concept of individual penalties in penal-
ized regression is presented. In our penalized regression,
with bone mineral density as response, each covariate
(hence DNA-methylation) gets an individual penalty. The
relationship between these individual penalties and the
adjusted p-values are described in the section “Mapping
the penalty multipliers to the adjusted p-values” Lastly, in
the sections “Adaptive group-regularized ridge regression”
and “Extensions to the weighted lasso with data integration ’;
we present the details in the generic adaptive group-
regularized ridge regression method [13], and the exten-
sions to weighted lasso with data integration to fit to our
integration setting. The functional enrichment analysis is
described in the section “Functional enrichment analysis”.
Section “Results” presents the results from the two meth-
ods and their consensus, and lastly we discuss in the
section “Discussion’, the methodology and the biological
findings in this study.

Methods

Cohort description

Postmenopausal ethnic Norwegian women were consec-
utively recruited at Lovisenberg Diakonale Hospital, the
Out-patient Clinic, in Oslo. The survey was performed
in 2004-2010. The women showed BMD varying from
severely osteoporotic to normal and did not have other
diseases or medication known to affect the skeleton.
Extensive clinical and biochemical information on this
cohort are available in [17].

Trans-ilical bone biopsies were obtained in 80 women,
the largest cohort of today, and global transcripts and
DNA-methylation levels were measured from the same
samples. Total RNA was subjected to analysis on HG-
U133 plus 2.0 chips (Affymetrix, Santa Clara, CA),
and 18428 transcripts were studied after filtering those
expressed at low levels. For more details, see [17].
DNA-methylation mapping was performed using the Illu-
mina Infinium HumanMethylation450 BeadChip, which
is designed to provide coverage throughout gene regions,
as shown in Additional file 1: Figure S5. To determine the
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quantitative measurement of methylation for each CpG
(beta values), the data was prepared in BeadStudio (Illu-
mina). Quality checks were followed by BeadStudio and
minfi [18], together with preprocessing, and lastly normal-
ization by a beta-mixture quantile normalization method
(BMIQ), which is used to correct for probe design bias
in Ilumina Infinium 450k DNA methylation data [19].
Based on gene symbols from Illumina, we match methyla-
tion sites and genes, and use only those methylation sites
where we find a match in our dataset of transcripts, leav-
ing us with a total of 220866 DNA-methylation sites. Next
follows a detailed description of the statistical methods, as
shown in the flowchart in Fig. 1.

Quantifying the strength of association between
DNA-methylation and gene expression

When investigating the association between each DNA-
methylation and gene transcripts, we look at two sce-
narios, first each DNA-methylation against all possible
gene transcripts in the analysis, and secondly each DNA-
methylation against only the cis related genes. In both
cases, we quantify the strength of an association by using
the utility test called the “global test” [20]. The null
hypothesis is that there’s no association between gene
expressions and DNA-methylation, and the alternative
hypothesis is that one or more gene transcript levels are
associated with the DNA-methylation level. This test is
valid for both high-dimensional data (p > n) as well as
the case where there are more individuals than covari-
ates. The association between DNA-methylations and
gene expressions can be both positive and negative. See
Additional file 2 for more details. We performed tests
for each DNA-methylation, and got a corresponding
p-value p; for j = 1,...,p. Since a large number of tests
is performed, we adjust for multiple testing by controlling
the false discovery rate (FDR) [21]. We use the adjusted
p-value, called the g-value g;, as a measure of the
strength of the association between the particular DNA-
methylation and the gene expressions. Moreover, we inter-
pret low values of gj, as a strong association.

Penalized regression using penalty multipliers

We fit a multivariate linear regression, using BMD as
response and DNA-methylations as covariates. For each
individual i, the BMD is noted y; and DNA-methylation
X; = (xil, .. ,xip) T, where i = 1,...,n. Without loss of
generality, let the data be centered such that the inter-
cept in the regression is equal to zero. Since we have
more covariates than observations, we will use penalized
regression. The regression coefficients § = (/31, cees ﬁp)T
are then estimated by minimizing the residual sum of
squares together with a restriction on the coefficients
Zle] (8j) < s. In ridge regression J (8;) = 7 and in
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Outline of strategy and results

DATA:
80 women with data on: BMD, 18428 transcripts and 220866 DNA-methylation sites.

(we have included only the CpGs with a matched transcript, and vice versa)

4

STATISTICAL ANALYSIS:
Finding the adjusted p-values after testing for

association between each DNA methylation and gene transcripts
(using R package globaltest)

Fitting a penalized regression using BMD as response and DNA-methylations as covariates,
allowing for individual penalties A;, based on the adjusted p-values.

/

Adaptive group-regularized ridge regression
(using R package grRidge)

4

RESULTS:
14.7% improvement in terms of pMSE,

through individual penalties

not integrating gene expression data

Extended version of weighted lasso with data integration

compared to ridge regression without integrating gene transcripts

Fig. 1 Outline of strategy and results. An overview of the statistical methods and the following results for each of the two methods adaptive
group-regularized ridge regression and our version of the weighted lasso with data integration. The results are presented by change in predictive
mean square error (pMSE) as described in the section “Results”, when comparing these two methods to ridge regression and lasso, respectively, thus

(using R package gimnet)

4

RESULTS :

17% improvement in terms of pMSE,
compared to lasso without integrating gene transcripts
through individual penalties

Shortlist of 22 DNA-methylations with R?=0.73,

compared to an average R?=0.44 for random groups with size 22.

the lasso J (8) = |8;jl. This optimization is equivalent to
minimizing the penalized sum of squares

80 2 p
> (n—xIB) +2)7(8). (1)
i=1 j=1

over all B, using one common penalty parameter 1. Alter-
natively, one can allow for multiple penalties, as described
in several papers [22-25]. When allowing for individ-
ual penalties per covariate we replace the penalty term
A Zlej (Bj) in (1) by Zle AiJ (B;)- The larger the differ-
ence between the smallest and largest A, the more favored
certain covariates become. We write

A=x-1, 2)

where /; > 0 is a penalty multiplier and will be defined
in the next section. Note that it is possible, and some-
times desirable, to have equal A; within a group of
covariates. The optimization of the weighted penalty
regression can, after some scaling of the data, be rewrit-
ten as the optimization of the classical penalty regression
without multiple penalty terms. For more details, see
Additional file 2: Additional materials.

Mapping the penalty multipliers to the adjusted p-values
To link the adjusted p-values g, described in the
section “Quantifying the strength of association between
DNA-methylation and gene expression’, with the penalty
multiplier /; we need some function on the form /; =
h(g;). The general idea for such a function is that it
must reflect the possible minimum and maximum penalty
weight, and the relative penalty between the covariates. A
simple example is

1, gi<c
hg) = o, q; S
for some threshold ¢ which reflects the significance level.
This is the same as excluding the non-significant covari-
ates from the analysis. We use two more appropriate and
sophisticated versions of /(-), which do not exclude any of
the covariates from the initial analysis. For the function to
be meaningful it should

be a monotone transformation of the g-values,

favor the covariates to a degree determined by the

data itself,

e result in centered /;, with mean equal to 1, to ease the
interpretation,

e letall /; = 1if the external data does not carry any
information with predictive value, meaning that the
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external data is excluded and we end up with the
classical penalized methods.

The next two sections explain in detail the construction
of such a function in the two cases, adaptive group-
regularized ridge regression [13], and our extended ver-
sion of the weighted lasso with data integration.

Adaptive group-regularized ridge regression

The Bayesian formulation of ridge regression consid-
ers a prior for the ;s where they are independent and
Gaussian distributed with mean zero and variance 72.
Then the penalty parameter A is proportional to the
inverse of this variance. In the adaptive group-regularized
ridge regression, first presented in [13], the covariates are
divided into groups, and group penalties are introduced,
such that all coefficients belonging to a group g have the
same Gaussian prior with variance rgz. In our case, the
covariates were grouped based on the mentioned g-values
from the “global test’, such that the covariates with the
lowest adjusted p-values, the favored covariates, will be in
group 1 and so on. We chose the group sizes, such that
they reflect the interpretation of the g-values [13]. In total,
there were 100 groups, where the first group had size 10
(the most relevant covariates), and the following groups
had increasing group size, as shown in Additional file 3:
Figure S6. The last group (with the highest g-values) was
the largest group.

The variance for each group g, rgz, is estimated by
an empirical Bayes approach. The group-specific penalty
multiplier for the covariates within group g is then [, =
K/ fgz, where K calibrates such that the mean of the inverse
penalty multipliers were equal to 1. To enforce mono-
tonicity, the penalty multipliers were calibrated using
weighted isotonic regression [26], such that [; < ... <
lg. After including the penalty multipliers and estimat-
ing the resulting updated B, the procedure was iterated by
calculating new empirical Bayes estimates, until the cross-
validated sum of squares was not improving. This method
is implemented in the R package GRridge [13].

Extensions to the weighted lasso with data integration
The weighted lasso with data integration in [16], was pre-
sented with a penalty on the form A; = A; = Ah (nj) =
Aln;|%, where n; was some measure of importance calcu-
lated from additional data, and where ¢ > 0 controlled
the range of the penalty multipliers. The larger the «
the more difference between favored covariates and unfa-
vored ones. In [16], the optimal combination of A and «
was found using a 2-dimensional 10-fold cross validation
(CV). This procedure could be time consuming, and the
two parameters are influenced by each other and poten-
tially unstable. Compared to our approach they did not
consider g-values as an input.
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In our modified version, we used a mapping with a
sigmoid shape

1

S0 = I e

forx € (—1,1),

with g-values as input, linearly transformed such that they
range from -1 to 1, where xg is the inflection point, and
o again defines the range of the penalty multipliers. See
Fig. 2 for different examples of xy and «. Please note that
the argument x here is not to be confused with the covari-
ates x;;. This mapping reflects the interpretation of the
g-values: the smallest g-value will be less penalized, and
after some significance threshold the penalties increase to
a higher level where they stabilize. A natural choice for
inflection point is to relate it to FDR equal to 10%. For the
method of [16], one needs to carefully select the 7; terms
since they affect the model fitting directly. In our case,
the sigmoid shape is more robust, since it smooths the g-
values and is therefore more stable for extreme outliers.
Another advantage is that one can also use a priority list
as input, then in terms of ranks (1,2, .. .).

Next, to find the A;, we calibrated all /; to have mean
equal to one, and used the optimal A found from classical
lasso. Then the overall penalty in the weighted penalties
case is the same as in the classical case, which has two
benefits. First we do not need a 2-dimensional CV, since
a alone is optimized using CV with the previously cal-
culated A found from classical lasso. Secondly, it eases
the interpretation since all /; < 1 are favored compared
to the classical penalized regression, and vice versa. The
resulting function for each penalty multiplier becomes

i =KxS§ (q/’-*,a) , (3)

where q;‘ = 2g; — 1, the g-values linearly transformed
to the interval from -1 to 1, and K is the normalization
constant. We used the R package glmnet [27], which has
penalty weights as argument and performs the calculations
as explained in Additional file 2: Additional meterials.

Functional enrichment analysis

To analyze our results from the lasso, we used the Core
Expression Analysis function in the Ingenuity Pathway
Analysis software (IPA, QIAGEN Redwood City, www.
giagen.com/ingenuity) to identify overrepresented path-
ways, upstream regulators or diseases in our dataset. The
available molecules and relationships in the IPA Knowl-
edge Base for mammal (humans, mouse or rat) were con-
sidered, filtering to relationships experimentally observed,
directly or indirectly. P-values were calculated using the
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standard right-tailed Fisher exact test within IPA as part
of the analysis.

Results

Results from the multivariate regression while integrating
the associations between DNA-methylation and global
gene expression

We quantify the relationship between global bone gene
expression and global bone DNA-methylation by looking
at two different scenarios. First we considered the associ-
ation between each DNA-methylation and all transcripts.
Next, we considered the association between each DNA
methylation and only their cis transcripts, as described
in the section “DNA-methylation and cis transcripts” For
the first scenario, the distribution of raw p-values from
the “global test” is shown in Additional file 4: Figure S7.
There are 3830 DNA-methylations significantly associ-
ated with global transcripts at FDR = 1%. Using these
multiple test corrected p-values, the g-values, we fitted the
adaptive group-regularized ridge regression, to get an ini-
tial impression of the importance of including the external
data. To find a shortlist of the most important variables,
we then fitted our version of the weighted lasso with data
integration. We validated the methods using predictive
mean square error (pMSE), by leave one out CV, which in
turn leaves one sample out when training the models, and
then runs the fitted model on each test sample left out.

Adaptive group-regularized ridge regression

The adaptive group-regularized ridge regression allows
for one penalty per group of covariates. The DNA-
methylations were therefore divided into 100 groups
based on the g-values, representing their strength of asso-
ciation with the gene transcripts. Using these groups, we
found the resulting group penalty multipliers (see section
“Adaptive group-regularized ridge regression”), and the
updated /Ai . The method was then repeated, and converged
after three iterations, where the current 8 did not improve
in terms of cross validated sum of squares.

The resulting monotonically increasing group penalty
multipliers are shown in the left panel in Fig. 3. The
74 first groups (which corresponded to the 32487 DNA-
methylations with the lowest g-values) were estimated
to have equal and lowest penalty weight 0.071. For the
consecutive groups the penalty multipliers increased to
higher values, and after 13 groups (in total 46266 DNA-
methylations) the penalty multipliers stabilized at the
highest value 706.73. The last 14 groups (in total 142113
DNA-methylations) got equally high penalty. The high-
est penalty was relatively large meaning that, in practice,
the data showed that these DNA-methylations could be
excluded from the model.

After validating the performance, we saw an improve-
ment in pMSE from 2.070 (classical ridge regression)
to 1.766 (adaptive group-regularized ridge regression),
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which was a 14.7% improvement. This means that the
strength of association between each DNA-methylation
and gene transcripts gave important information.

The extended weighted lasso with data integration

Next, we fitted the extended weighted lasso with data inte-
gration and obtained a shortlist of the most important
DNA-methylations, which both explained BMD and were
correlated to gene expression.

We calculated the optimal A from the classical lasso,
using 10-fold cross validation. Next the penalty multipliers
l;, described in Eq. (3), were calculated for a grid of o val-
ues from 0 to 50 in steps of 5. For each « the 10-fold cross
validated sum of squares error was determined. The opti-
mal «, which gave the lowest cross validated error, became
10. The resulting number of variables selected where 22.
In the validation step, our version of the weighted lasso
gave then a pMSR = 2.184, which is an improvement com-
pared to the classical lasso which gave a pMSR = 2.630.
This corresponded to a 17% improvement.

Consensus in results from ridge regression and lasso

Adaptive group-regularized ridge regression and our
version of weighted lasso with data integration both
improved the predictive error after including the informa-
tion given by gene expression. The shape of the penalty
multipliers, shown in Fig. 3, shows the impact of the infor-
mation given by the g-values from the “global test” A
straight horizontal line would have implied no informa-
tion in the g-values, which was clearly not the case here.
We found the same type of shape for the two methods.
The Spearman correlation between the penalty multi-
pliers from the two methods was as high as 0.85. In
the adaptive group-regularized ridge regression, the only
restriction on the shape was monotonicity. Most of the
significant g-values were indeed favored. Our weighted
lasso with data integration, was by definition a sigmoid
curve with inflection point placed at the g-value = 0.1.
This variable selection method also showed that the
g-values do carry information. Figure 4 shows the
correspondence between 3,» and /;, for all j. The largest

group-regularized ridge
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Fig. 4 Thgrelationship between the lambda multipliers and the fitted regression coefficients. Distribution of the penalty multipliers versus the
resulting B from adaptive group-regularized ridge regression (left) and our weighted lasso with data integration (right)
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coefficients had small penalty, as expected. But there
were some estimated coefficients with higher penalties
that were still strongly present in the final model. This
showed that both the individual penalties and the pre-
dictive importance (the size of initial B) played a role
in the fitting of both methods. Looking at both these
different approaches strengthens our impression of the
importance of including gene transcripts in the analysis
through penalty multipliers.

The 22 DNA-methylation sites and the calculated effect on
BMD

In our weighted lasso with data integration, which per-
formed variable selection, 22 DNA-methylations were
selected. The 22 selected DNA-methylations corre-
sponded to 22 different genes. In Additional file 5:
Table S1 we see those selected DNA-methylations, the
corresponding regression coefficient, and information
about the localization of the CpGs. The degree of vari-
ation in BMD explained by these 22 DNA-methylations,
was calculated by an ordinary least squares regression,
using BMD as response and all the 22 DNA-methylations
as covariates, resulting in a R> = 0.726. Such a large
number of DNA-methylations can possibly explain a large
proportion of BMD just by chance, so we compared it
to the R? for 10000 randomly selected groups of DNA-
methylations with group size 22. On average, the random
groups had R? = 0.438, clearly lower than the 22 DNA-
methylations selected by the lasso regression. None of the
random groups had R? as large as 0.726.

Additional file 6: Table S2 shows that these DNA-
methylations are involved in different biological func-
tions. In this list are transcription factors (ZNF529, NFIA,
TFEC, SPI1, MKL1), which have general and probably
unique roles in most cells. They represent a link to other
genes on the list involved in metabolism (Aldehyde dehy-
drogenase) that are already strongly implicated as highly
associated with BMD [17]. In addition, Destrin, Proto-
cadherin 9 and Dysferlin are known to be important for
osteoblasts and/or osteocytes, which are bone anabolic
or stress sensing cells, respectively [28—-31]. Maybe most
notable, 7 genes are specially linked to osteoblast func-
tions and BMD, or generate a bone phenotype when aber-
rantly expressed (ADAMTS2, COL11A2, TFEC, DOCKS5,
PTPN11, ANXA2, DSTN). The results from the Ingenu-
ity Pathway Analysis in Additional file 7: Table S3, show
that several general functions and pathways might be
affected by DNA-methylation in these 22 genes, which are
discussed in the last part of the next section.

DNA-methylation and cis transcripts

As mentioned earlier, we also looked at the association
between each DNA-methylation site and their cis gene
expression. Additional file 8: Figure S8 shows the resulting
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p-values from the “global test” when testing each methy-
lation against only their cis related transcripts. There
were 981 methylations with significant association at a
FDR = 1%. Using the adjusted p-values from these type of
“global tests”, we saw little or no improvement in the pre-
dictive performance. For the adaptive group-regularized
ridge regression we got a pMSE = 2.04, which was a
small improvement compared to the classical Ridge with
pMSE = 2.07. When fitting our weighted lasso with data
integration, the optimal o became 0 such thatall ; = 1,
which means that the external data did not improve the
prediction.

Discussion

Summary of the statistical approach

The present paper studies the association between bone
mineral density (BMD) and global DNA-methylation
using penalized regression. Since DNA-methylation
may affect gene expression, transcripts for the same
individuals were integrated into the analysis by use of
individual penalties for each DNA-methylation. The
DNA-methylations which were strongly associated to
global gene expression, got a lower penalty than the DNA-
methylations with weaker associations to gene expression.
The degree to which these associations lead to differen-
tiated penalties, was determined by the data. The pre-
dicted mean square error was thereafter considerably
improved.

Discussing the statistical significance of the 22 CpGs found
In our list of 22 selected CpGs, the most familiar path-
way belonging to bone metabolism (e.g. Wnt signaling and
TGEFp signaling) did not come up, and this may be due
to the variable selection procedure in lasso. If covariates
are strongly correlated, e.g. variables existing in networks,
lasso tends to select only one out of several highly corre-
lated variables [14], and the variable selection can there-
fore result in different short lists [32—34]. Our list of 22
DNA-methylations is the most important one, but there
may also be other lists with bordering predictive value.

We investigated the possible difference between cis
associations versus global association, and only saw
improvements in the predictions after integrating infor-
mation from global associations. When cis related genes
were considered, no (or a small) improvement in the pre-
dictions was detected. The lack of improved predictive
performance in the cis analysis was somewhat surprising,
and may be related to the complex networks behind the
machinery of gene expression. Thus, genes further down
in the pathways could be more correlated, and therefore
the trans-effects will be more visible when using penalty
weights. This indicates that strong associations between
DNA-methylations and genes at other positions in the
genome, could be of importance.



Lien et al. BMC Medical Genomics (2018) 11:24

Robustness of hyper parameters

Our results were robust against the choice of the hyper
parameters in the models. For our weighted lasso with
data integration, the inflection point in the sigmoid func-
tion is a hyper parameter and was chosen based on the
biological interpretation, and put equal to 0.1. We also
tried other choices, still having the same interpretation as
a significance check point, and the results and pMSE were
not markedly changed. In the adaptive group-regularized
ridge regression different choices of group sizes were
applied, but made no notable changes to the predicted
mean square error. Additionally, if we randomly permuted
our calculated penalty weights, the integrated methods
performed similar to the classical regression methods, in
other words the external randomized information is not
improving the prediction and therefore discarded.

Discussing our and similar methods

A hot topic of discussion is whether or not to standard-
ize the covariates in penalized regression [35]. If we
standardize, the idea of one common penalty is more
appropriate, while on the other hand rescaling the data
may remove some of the (differential) signal and may
lead to instabilities of variables for which the sample
variances are small. Standardization is equivalent to
introducing a penalty multiplier that is proportional to
the variance in the unstandardized setting [35]. So if
one chooses to standardize, the type of standardization
(the weights) will influence the results, because some
covariates may be relatively more favored than others. If
the original covariates have similar range and variance,
it could be best not to standardize. DNA-methylation
levels are relative measures, where all values lie between
0 (no DNA-methylation) and 1 (all methylated). These
DNA-methylation levels are therefore already on the
same scale and thus comparable, so we have chosen not
to standardize.

There are several methods allowing for individual and
groupwise penalties. The weights used in adaptive lasso
are simply [; = 1/ ﬁ/L, where B,L is the estimate from the
classical lasso, and X is again selected by cross validation
[22]. Here, the covariates, which lasso finds important
in the initial run, are given a lower penalty in the second
step. Tai and Pan [24], used groups of covariates, and
a Ag for each group g is found by cross validation, for
g = 1,...,G. This means that a G-dimensional cross
validation is needed. For large G this is computationally
too demanding to solve. In that case, they suggested to
use Ay = Alg, and let [, be the group mean of the original,
not shrunken coefficients, similar to adaptive lasso. To
our knowledge, [16] was the first to introduce weights
based on external data. If the external data set possesses
important information, the data integrated weights will
strengthen the prediction, regardless of the results from
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the classical lasso. In [23], they build upon this and use
p-values corrected for multiple testing as a basis. But
in that paper they focus on dividing the covariates into
two groups, where the first group should not be sub-
ject to selection and are given weights small enough to
ensure their inclusion in the model. An alternative to
the mentioned group penalty methods is the group lasso
[36], where instead the external data is used to group the
covariates, and a ridge penalty is forced on the groups.

Biological relevance of the 22 selected CpG sites in relation
to bone

The human genome DNA methylation pattern is chang-
ing throughout life, from conception to old age [37, 38].
These changes preserve our epigenetic heritage and are
important for e.g. regulating tissue differentiation [39].
The present material offers a unique opportunity to study
the correlation between DNA methylation and gene
expression associated with a common phenotype with
strong genetic disposition - BMD. In addition, we extract
differentially methylated CpGs between healthy com-
pared to osteoporotic postmenopausal women by doing
a robust genome-wide analysis. To document specific
functions related to the 22 bone associated methylations
discovered in this study, will require experiments per-
formed in bone cell cultures and/or in gene modified
animals. We present below their functional assignment in
bone as it is known from the literature.

Using Ingenuity Pathway Analysis software, we iden-
tified the top canonical pathways related to our list of
CpG sites, shown in Additional file 7: Table S3. The most
familiar pathways in relation to bone metabolism (like
the Wnt or TGFB signaling pathways) are not among
the significant results in IPA. However, osteoimmunol-
ogy is now an established field and bone metabolism
has been shown to be affected, e.g. via CD28 receptor
signaling on T-cells, which in turn affects Wnt signaling
in bone cells [40]. Thus, identification of “CD28 Sig-
naling in T Helper Cells” as the top canonical pathway
may indicate that this pathway is more important for
bone metabolism than previously understood. The top
ranked upstream regulator ERG (ETS Transcription
Factor) may act on BMD via regulation of mesenchymal
cell differentiation in cooperation with TGF-g [41]. It
is also worth noting that we have identified miR-16-5p,
second ranked among upstream regulators, to be among
the mature bone miRNAs most significantly correlated
to BMD (unpublished). Cancer appeared as top ranked
among related diseases and disorders. Uncontrolled
cell growth may involve a vast variety of epigenetic
aberrations resulting in e.g. alterations of intracellu-
lar signaling related to a number of different diseases,
probably also affecting bone metabolism. Hematological
and Immunological Disease ranked second and third,
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respectively, reflecting the importance of blood/immune
cells in bone metabolism as mentioned above.

Conclusions

Overall, in our version of the weighted lasso with data
integration and the adaptive group-regularized ridge
regression, the key advantages are that both methods
allow for ordered penalty terms and thus a tentative
ranking of the covariates or groups of covariates. Both
methods let the data decide upon the range of the weights
and thus the relevance of the external data, by either
an additional parameter « or by iterations. In addition,
the penalty parameter is defined by A; = Al; where A is
fixed to be the optimal value from the classical penalized
regression without integration, which makes the com-
putations faster and more stable. Improved predictive
performance was found for both methods after inte-
grating gene expression data. We also conclude that the
presented selection method, the weighted lasso with data
integration, is successful in detecting DNA-methylations
that are related to BMD, verifying genes that are known
to be bone related, and moreover, detecting novel tran-
scripts of potential importance for bone metabolism and
osteoporosis. The overall impact from this paper is how
adaptation and improved integrative methodology, enable
us to delineate the association between DNA-methylation
and gene expression in the analysis of BMD.

Additional files

Additional file 1: Figure S5. Infinium HumanMethylation450 BeadChip
provides a broad coverage throughout gene regions, as well as CpG
islands, shelves and shores, as graphically visualized in this reprint from
[42]. Abbreviations; TSS: transcription start site. TSS1500: 200-1500 bases
upstream of the TSS. TSS200: 0-200 bases upstream of the TSS. UTR:
untranslated region. 5'UTR: Within the 5’ untranslated region, between the
TSS and the ATG start site. Body: Between the ATG and stop codon;
irrespective of the presence of introns, exons, TSS, or promoters. 3'UTR:
Between the stop codon and poly A signal. A CpG island is based on UCSC
criteria: CG content > 50%, length > 200 bps, and a ratio > 0.6 of observed
number of CpG dinucleotides to the expected number. Shore: 0-2 kb from
island. Shelf: 2—4 kb from island. N: upstream (5') of CpG island. S:
downstream (3) of CpG island. (PNG 218 kb)

Additional file 2: Additional materials. Section 1: More on optimizing
individual penalties in penalized regression. Section 2: More on the “global
test” [20]. (PDF 131 kb)

Additional file 3: Figure S6. The groups sizes in adaptive group-
regularized ridge regression. The DNA-methylation sites were divided into
100 groups based on the g-values from the global test (as explained in
“Quantifying the strength of association between DNA-methylation and
gene expression” section), where group one is the group with the smallest
g-values. The number of DNA-methylation sites in the first group is 10, and
then the group sizes increases more and more. Group number 100 is the
largest group with the highest g-values. (PDF 5 kb)

Additional file 4: Figure S7. Distribution of p-values. The distribution of
p-values from the “global test”, when testing for association between each
DNA-methylation against all transcripts. (PDF 9 kb)

Additional file 5: Table S1. The 22 identified CpGs selected by our
weighted Lasso with data integration, together with their annotation. The
first columns give the corresponding gene symbol and lllumina ID. Next

Page 10 of 11

follows the estimated regression coefficient B from the optimal fitted
model. The locations are described by CHR (chromosome) and Mapinfo
(base pair position on the chromosome). The annotations are described by
Probe SNPs (single nucleotide polymorphisms) Probe SNPs 10 (one SNP
within 10 base pairs of the CpG site), Ucsc refgene group (see Additional
file 1: Figure S5 for more details). Relation to ucsc CpG island (where the
label Island is a region with high frequency of CpG sites, N Shore or S Shore
are neighboring region 5" or 3'to CpG island, N Shelf or S Shelf are
neighboring region 5" or 3" to CpG shore), DMR (differentially methylated
regions), Enhancer (region of DNA that binds proteins to regulate
transcription of a gene), Regulatory feature group (Promoter Associated or
unclassified) and DHS (DNase | hypersensitive sites are regions where the
chromatin has lost its condensed structure, exposing the DNA and making
it extra accessible to DNAse cleavage). No mark means no available
information. Information is taken from lllumina. (XLSX 48 kb)

Additional file 6: Table S2. The 22 identified CpGs selected by our
weighted Lasso with data integration, together with information about
their function and relation to bone. The functions are found using the
web-site www.genecards.org, unless referred to by citation. No mark
means no relevant information. (XLSX 34 kb)

Additional file 7: Table S3. Ingenuity Pathway Analysis. Summary from
Ingenuity Pathway Analysis (www.ingenuity.com) on the 22 selected
methylation sites from our weighted Lasso with data integration.

(XLSX 40 kb)

Additional file 8: Figure S8. Distribution of p-values. The distribution of
p-values from the “global test”, when testing for association between each
DNA-methylation against the cis related transcripts (meaning that the
DNA-methylation and transcript are from the same gene). (PDF 9 kb)
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