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Abstract

Background: With the enormous need for federated eco-system for holding global genomic and clinical data,
Global Alliance for Genomic and Health (GA4GH) has created an international website called beacon service which
allows a researcher to find out whether a specific dataset can be utilized to his or her research beforehand. This simple
webservice is quite useful as it allows queries like whether a certain position of a target chromosome has a specific
nucleotide. However, the increased integration of individuals genomic data into clinical practice and research raised
serious privacy concern. Though the answer of such queries are yes or no in Bacon network, it results in serious privacy
implication as demonstrated in a recent work from Shringarpure and Bustamante. In their attack model, the authors
demonstrated that with a limited number of queries, presence of an individual in any dataset can be determined.
Methods: We propose two lightweight algorithms (based on randomized response) which captures the efficacy
while preserving the privacy of the participants in a genomic beacon service. We also elaborate the strength and
weakness of the attack by explaining some of their statistical and mathematical models using real world genomic
database. We extend their experimental simulations for different adversarial assumptions and parameters.
Results: We experimentally evaluated the solutions on the original attack model with different parameters for better
understanding of the privacy and utility tradeoffs provided by these two methods. Also, the statistical analysis further
elaborates the different aspects of the prior attack which leads to a better risk management for the participants in a
beacon service.
Conclusions: The differentially private and lightweight solutions discussed here will make the attack much difficult
to succeed while maintaining the fundamental motivation of beacon database network.

Keywords: Bustamante attack, Genomic beacon service, GA4GH genomic beacon, Bustamante attack mitigation,
Human genomic data privacy, Re-identification attack

Background
Recent improvements on Genomic data sharing efforts
have led researchers and clinicians gaining access and
make comparisons across data from millions of individu-
als. Such development made it easier for genetic variant
interpretation and in some cases treatment of rare dis-
eases such as some special cancer types [1]. Most of the
big organisations i.e., Broad institute in the U.S., BGI in
china, Wellcome Trust Sanger in the UK etc. have an
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interest of making DNA data easier to access in order for
their researchers to treat patients one on one. However,
after twelve years of completion Human Genome project,
the tremendous growth of genomic data has exceeded the
containers build to hold such data. Genomic and clini-
cal data are generally still collected in either by disease,
institution or by country. More importantly, current data
sharing privacy requirements do not necessarily protect
individuals identity within and across institutions and
countries. Furthermore, data often stored in incompati-
ble file format and there are no standardized tools and
analytical methods are in place [1–3].
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With such tremendous needs for global genomic
and clinical data repository system, Global Alliance for
Genomic and Health (GA4GH) has created a federated
data ecosystems called Beacon data network, a way for
searching genomic data as simple as World Wide Web.
Since the project’s launch in the middle of 2015, the
beacon network has currently 23 different organizations
covering over 250 genomic datasets. The data sets served
through beacons can be queried individually or in aggre-
gate via the Beacon Network, a federated search engine
(http://www.beacon-network.org) [1]. Thus, the Beacon
Project aims to simplify data sharing through a web
service (beacon) that provides only allele-presence infor-
mation. Users can query institutional beacons for infor-
mation about genomic data available at the institution. For
example, an individual could ask the beacon web server
about a genome that has a specific nucleotide and the bea-
con would response either yes or no [4]. By providing only
allele-presence information, beacons were assumed safe
from attacks that require allele frequencies.
Although the beacon network has set up to share

data and protect patient privacy simultaneously, it could
potentially leak phenotype and membership informa-
tion of an individual [4]. There is currently no cap on
the number of queries a user can make in the Beacon
database. Recently, Shringarpure and Bustamante showed
that anonymous patients whose DNA data is shared via
beacon network can be re-identified [5]. If an attacker has
access to victims DNA, s/he can query different beacons
to see whether the victim is in the dataset. They further
demonstrated that it is possible to infer whether or not
the victim is affected by a certain condition or disease [5].
Therefore, the anonymous beacons are inherently inse-
cure and are open to re-identification attacks. For brevity,
we will denote the attack as Bustamante Attack through
the rest of the paper.
Very recently, some solutions [6, 7] have been proposed

based on different policies around the access of the bea-
con service. However, these solutions will disrupt the
quintessential feature of the proposed beacon service: that
is to provide faster access to genomic data and to give
open access to the research community. Different access
controls are highly necessary for human genomic data
access where phenotype or sensitive information about
the disease is disclosed. However, the beacon service only
provides us aggregate results of yes or no leading the
researcher to a decision regarding the dataset’s relatedness
to his or her research. Therefore, we propose two solu-
tions based on privacy-preserving techniques, which fit
well with the beacon service andmitigate the possibility of
identifying an individual from the dataset.
In this article, we explain the ‘Bustamante Attack’ [5]

on genomic beacon services and propose two privacy pre-
serving solutions. The contributions of this article can be

Fig. 1 Beacon architecture where researcher and data owners are
connected to the central beacon service

summarized in two folds: a) understanding the statisti-
cal formulations and soundness of the attack, b) analyze
lightweight privacy preserving solutions to mitigate the
attack. The main contributions of our work are as follows:

• We present the statistical and the mathematical
model of the attack in a simplified form. This helps us
to analyze different and more realistic parameters on
the original attack framework to exploit some
weakness and justify our solutions accordingly.

• We show the required steps for any data owner to
calculate the risk involved in sharing their genomic
data in a beacon service.

• We propose two easy to implement and lightweight
privacy preserving solutions which ensure the
applicability of the beacon service as well as the
privacy of the participants.

• We provide extensive experiments over synthetic
data (according to [5]) to show the privacy-utility
evaluation of our proposed methods which will help
the development of different privacy preserving
techniques on such attack model later on.

Beacon service for genomic data
A beacon is an online web search engine developed by the
Global Alliance for Genomic and Health (GA4GH), which
provides a way for genomic data owners and research
institutes to easily share genomic data while maintaining
patients privacy (Fig. 1). It is a genetic mutation shar-
ing platform that allows any user to query an institution’s
databases to determine whether these databases contain a
genetic variant of interest while keeping all other sequence
data obscured. A query in this search engine is defined
by three parameters: chromosome number, position in
that chromosome, and target nucleotide (A/T/G/C). A
beacon query answer is either true or false, denoting

http://www.beacon-network.org
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the presence of that nucleotide in that specific posi-
tion and target chromosome. In other words, it will only
answer yes/no for the questions like: Do you have any
genomes with an ‘A/T/G/C’ at some position ‘Y’, on spe-
cific chromosome ‘Z’. This allows a researcher to target
some specific dataset, which is relevant to his or her
research. This service also helps a clinician to check
whether a mutation found in one of her patients is also
present in others without actually having access to their
genomes [8].
Beacons are easy-to-implement techniques for sev-

eral large-scale organizations when it comes to sharing
genomic data. It also saves researchers a tremendous
amount of time for tracking down useful data for their
work as well [9, 10]. Unlike large centralized data repos-
itories, a beacon network is distributed across many
databases around the world and is virtually connected
through software interfaces allowing continuous autho-
rised access. This federated data ecosystem allows each
organization to control their legal data within their juris-
diction [1]. The shared Genomics API in the beacon
framework makes it easy to query all at once and ensures
that GA4GH team can quickly add new beacons to the
network.

Bustamante attack on beacon service
A recent study done by Shringarpure and Bustamante [5],
developed a likelihood-ratio test that uses only allele pres-
ence information to predict if the genome of an individual
is present or not in the beacon database.This study sug-
gested that beacons are susceptible to re-identification
attacks and thus can be subjugated to invade genetic
privacy. Since a beacon database includes data with
known phenotypes information such as cancer, autism or
other diseases, this re-identification also potentially dis-
close phenotype information about an individual whose
genomic data is present in the beacon [11]. Through sim-
ulations, they demonstrated that by making just 5000
queries, it was possible to identify someone and even their
relatives in a beacon consisting 1000 individuals. They
found that re-identification of an individual is possible
even with the sequencing errors and variant-calling differ-
ences. They also demonstrated that a beacon constructed
with 65 European individuals from the 1000 genome
projects, it is possible to detect membership in the beacon
with just 250 SNPs [5].
In this section, we briefly introduce the Bustamante

attack and analyze its statistical methods. The goal of this
attack is to know whether a genomic sequence g belongs
to a specific database with the help of the beacon service.
To answer this question they considered two hypothesis:

1. Null hypothesis H0: the query individual is not in the
beacon service.

2. Alternative hypothesis H1: the query individual is in
the beacon service.

To determine the correct one, the adversary is allowed
to query the beacon service with unlimited amount of
queries. The adversary queries specific locations where
the query individual has alternative allele to see whether
the beacon server also contains an individual with the
same allele values. Therefore, the responses of the beacon
service are a sequence x1, . . . , xn of yes or no. If we con-
sider yes and nowith ‘1’ and ‘0’ respectively, the the answer
sequence, R will be a binary vector. For example, if the
query individual is in the database, we will get yes (or 1) in
each query. However if there are some genome sequenc-
ing error, we might get some wrong answers as well. This
error is denoted by δ and also considered by the attack [5].
There is also another considerable case where multiple

individual have the same allele in the database. This is why
the attacker needs to leverage the likelihood ratio of both
the assumptions whether the the user is in the dataset or
not. For a database of N genome, the log of this likelihood
ratio can be computed for the response series R regarding
the hypotheses Hi as follows:

LHi(R) =
n∑

i=1
xi logP(xi = 1|Hi)+

(1 − xi) logP(xi = 0|Hi)

where, n is the number of queries and xi is the result from
the beacon. xi = 1 denotes the query is present in the
database which can come either from the target genome
or any of the other N − 1 genomes. xi is only 0 when the
query is not present in any of the N genomes.
In article [5], the authors using some simplifying

assumptions proved that if the query individual is in
the beacon database, R = x1, . . . , xn follows a Binomial
(n, 1 − DN ) distribution, otherwise R has a Binomial
(n, 1− δDN−1) distribution. Therefore, the hypothesis can
be rewritten as follows:

1. Null hypothesis H0: θ = θ0 = n(1 − DN ).
2. Alternative hypothesis H1: θ = θ1 = n(1 − δDN−1).

Therefore, we have:

LH0(R) =
n∑

i=1
xi log(1 − DN ) + (1 − xi) log(DN ) (1)

and for alternative hypothesis,

LH1(R) =
n∑

i=1
xi log(1− δDN−1)+ (1− xi) log(δDN−1)

(2)
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whereDN−1 is the probability that otherN −1 individuals
(all individual except the query individual) have not the
specified allele in the determined location.
Basically, the LHi(R) will maximize if the Hi hypothesis

is correct. Therefore, we compute � = LH0(R) − LH1(R)

and the � will declare which hypothesis is true.
The log of the likelihood-ratio statistics can be rewritten

from Eqs. 1 and 2 as,

� = LH0(R) − LH1(R)

= n log
(

DN
δDN−1

)
+ log

(
δDN−1(1 − DN )

DN (1 − δDN−1)

) n∑

i=1
xi

= nB + C
n∑

i=1
xi (3)

In any distribution, a threshold t can be fixed where the
null hypothesis will be rejected if � < t and accepted
otherwise. The attacker need to decide an appropriate
threshold for a specific beacon dataset before launch-
ing the attack. Suppose a false positive error α is given.
Regarding this value and the beacon statistical properties,
the threshold tα is determined such that Pr(�< tα|H0)=α.
From Eq. 3,

Pr
(
nB + C

∑n
i=1 xi < tα|H0

)
< α

Pr
(∑n

i=1 xi >
tα − nB

C
|H0

)
< α (C is negative)

Pr
(∑n

i=1 xi > t′α|H0
)

< α (4)

In the attack instead of calculating � and comparing it
to the threshold tα ,

∑n
i=1 xi is computed and compared

with t′α to make the decision. This threshold t′α is used
to decide whether the null or the alternative hypothesis is
correct. In other words whether the individual is present
in the beacon database or not will be dictated by this t′α .
To calculate this, the adversary sums the responses from
the beacon xi and retrieves

∑
xi. The null hypothesis is

rejected simply if
∑

xi > t′α which leads to a conclusion
that the query individual is present in the beacon and the
attack is successful.
To calculate theDN , the authors assumed that the adver-

sary has an idea about the distribution of the allele fre-
quencies on those query positions. Specifically, alternate
allele frequencies, f for all SNPs observed in the popu-
lation are claimed to be distributed as a β distribution
according to [5]. Here, f ∼ β(a′, b′), where a = a′ + 1
and b = b′ + 1, and (a′, b′) can be precomputed from the
genomic dataset in which the beacon service is running.
Thus, the adversary needs n ∼ Na′+1 queries to make his
or her decision whether the target individual is present in
the database. The value DN can be approximated as,

DN ≈ �(a + b)
�(b)(2N + a + b)a

(5)

To see the details of deriving and proving the above
formula see [5]. We will need this t′α and DN for fur-
ther analysis in the upcoming section as these parameters
dictate the attack.

Methods
In this section, we provide an analysis of Eqs. 4 and 5 to
calculate t′α before describing our privacy preserving solu-
tions and experimental results. This analysis allows the
beacon service providers and data owners to calculate the
risk involved while sharing their beacon data.

Risk analysis of a beacon service
In this section, we evaluated t′α in greater depth for analyz-
ing the risk involved for a specific beacon dataset. Given
N samples and n number of queries, this analysis will help
us to determine the number of correct answers that can
be returned without identifying the victim.
In other words, as t′α directly effects the decision bound-

ary of the correctness of null or alternative hypothesis,
its better to theoretically ratify its value on a specific set-
ting. We simulated this on some real life human genomic
databases like 1000 Genomes Project, SSMP [12] and
GoNL [13] for better understanding.
According to central limit theorem the value

Re = 1
n

∑n
i=1 xi follows normal distribution

N
(
1 − DN , DN (1−DN )

n

)
.

The threshold t′α can then be calculated from Eq. 4 as
follows:

Pr
(∑n

i=1 xi > t′α|H0
) = α

⇒ Pr
(
1
n

∑n
i=1 xi >

t′α
n

|H0

)
= α

⇒ Pr(Re > t′′α|H0) = α

where t′′α = t′α
n . We know that Re follows the

N
(
1 − DN , DN (1−DN )

n

)
distribution where θ0 = 1 − DN

and variance σ 2
0 = DN (1−DN )

n . Therefore, Re−θ0
σ0

has stan-
dard normal distribution, N (0, 1). Suppose we want to
have a α = 0.05 false positive probability then,

Pr
(
Re − θ0

σ0
>

t′′α − θ0
σ0

)
= 0.05 (6)

According to the normal cumulative table and given the
fact that Re−θ0

σ0
follows standard normal distribution, we

have,
t′′α−θ0

σ0
= 1.65 ⇒ t′′α = 1.65σ0 + θ0

⇒ t′α = n(1.65σ0 + θ0) = n
(
1.65

√
DN (1−DN )√

n + θ0
)

Table 1 shows the computation of the t′α for α = 0.05
in different beacon databases constructed from real life
genomic datasets according to [5].
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Table 1 Evaluating the threshold t′0.05 for three different databases with δ = 10−3 mismatch error

Beacon database Number of records N a′ b′ DN t′α
1k Genomes Phase 1 1092 0.0735 1.0096 0.0005594974767507827 1826

1kGenomesPhase1Affymetrix 1074 0.6483 1.2876 1.5352703647724165e-05 99084

GoNL 498 0.1131 0.8574 0.0009412979457329326 1005

SSMP 100 0.1848 0.8500 0.00403048895537907 234

Simulation 2000 0.1178793 1.1188360 0.00022374264418961542 4900

The threshold t′α indicates the number of yes that an
adversary requires to conclude that the query individual is
within the dataset. For example in Table 1, the experimen-
tal results show that for ‘1k Genomes Phase 1’ dataset with
1092 individuals, the adversary needs 1826 yes answers of
queries to infer that the victim is present in the dataset.
Any quantity less than 1826 yes answers (with mismatch
rate δ = 10−3) will conclude that the individual is not
present.
The relationship between null and alternative hypothe-

sis along with the threshold are showed in Fig. 2. In Fig. 2,
the black and the green lines represent the outputs dis-
tributions. If the null hypothesis is true, then the outputs
follows black line and the outputs follows the green line
if the alternative hypothesis holds. Three other real world
datasets were tested and depicted in the Additional file 1.
However, regardless of the risk analysis of a specific

dataset with the outlined equations, the beacon service
still needs privacy preserving mechanisms. The neces-
sity of such methods are amplified due to the fact that

these beacons are designed to support thousands of pub-
lic queries. Though the simplified equations above can
enlighten a data owner about the sensitivity of the under-
lying data, the data owner still needs some methods,
which we will present in the next section, to protect the
privacy of the individuals.

Proposedmethods
In this section, we propose two privacy preserving meth-
ods which are similar in nature. However the probability
of different outputs from these two methods are different.
The methods are:

1. Method 1: Eliminating random positions.
2. Method 2: Biased randomized response.

Both of these methods introduce inaccurate results to
hide the presence of any individual in a beacon web ser-
vice. Due to this inaccuracy, these methods destroy some
utility of the beacon service as the underlying data will
be perturbed. Hence, we need to devise methods that

Fig. 2 Risk analysis of data in any genomic dataset. The green line represents the responds of the beacon service when the query individual being in
beacon database while the black one represents them not being there. The red line denotes the t′α
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give incorrect answers (false positives or negatives) as less
as possible. A false positive is answering yes when the
query result is no. Similarly, a false negative is answer-
ing no when the query result is yes. In “Results” section,
we experimentally evaluate these two methods in terms of
data privacy and utility.

Eliminating randompositions
In this method, the data owners apply Algorithm 1 to out-
put their data to the beacon service provider. The output
of Algorithm 1 will infuse inaccuracies in the result from
the original data with the help of a driving factor bias. For
example, if data owner has a dataset D then this method
will transform it to a D′ where there will be some false
positives and negatives with respect to bias, b.

Algorithm 1: Eliminating Random Positions
Data: query, dataset, bias b
Result: Yes/No
random_value ← RandomValue(0,1);
true_result ← CheckPresence(dataset,query);
if random_value ≤ b/100 then

return true_result;
else

return ! true_result; // wrong answer

In Algorithm 1, for higher bias value, we will get higher
accuracy and for lower bias value, we will get lower accu-
racy. For example, if the bias value is 50, we will obtain
answers with a probability of 50% false positives and neg-
atives. We further analyzed different bias value for this
algorithm in “Results” section.

Biased randomized response
Randomized response [14] was proposed in 1965 by
Warner as a statistical tool to remove potential bias and
add a probabilistic noise to the answers. For example,
data owners transform D → D′ with respect to certain
probability. In the original method, the person who has
been asked a private question flips a coin. If it is tail then
s/he answers truthfully. Otherwise, for head, s/he flips the
coin again and responds truthfully for tail and provides
opposite answer for head.
In a beacon service, we incorporated this method as

beacon queries are considered private and their answers
are in binary (yes or no) form. For example, a typical
query inquires about the presence of a major and minor
allele in a specific position of a chromosome. Algorithm 2
can transform the raw data according to the randomized
response method and this transformed data can be used
further to answer queries.

However, answering queries in this fashion will induce
some error and the utility of the beacon services will be at
question. Thus, we experimented on a biased randomized
response where this 1/2 probability is modified for better
utility or true results in Algorithm 2.
In Algorithm 2, we changed the dichotomous behaviour

of general randomized response with a control variable
named bias. Similar to Algorithm 1, a higher bias will give
more accurate result and will provide less privacy on the
data. We showed the analysis for different bias values in
“Results” section.
However, there is a similarity between both the algo-

rithms. Algorithm 1 returns true answer with probability
b given b ∈[ 0, 1], while Algorithm 2 returns true answer
with probability 1− (1− b)2. Therefore, Algorithm 2 with
bias b2 will be same as Algorithm 1 having bias b1 =
2b2 − b22 where b1, b2 ∈[ 0, 1].

Algorithm 2: Biased Randomized Response
Data: query, dataset, bias b
Result: Yes/No
random_value ← RandomValue(0,1);
true_result ← CheckPresence(dataset,query);
if random_value ≤ b/100 then

return true_result;
else

random_value ← RandomValue(0,1);
if random_value ≤ b then

return true_result;
else

return ! true_result; // wrong answer

Theorem 1 1 The response from Algorithm 2 is

|ln
(

1
(1 − b)2

− 1
)

| differentially private.

Proof Lets fix a respondent and a randomized device
(i.e., coin flip) with bias b and range [0, 1]. For a ‘Yes’
answer from this respondent, we get

P(Response = Yes|Truth = Yes) = b + (1 − b)b
P(Response = Yes|Truth = No) = (1 − b)2

Thus for ‘Yes’ answer we have,

P(Response = Yes|Truth = Yes)
P(Response = Yes|Truth = No)

= b + (1 − b)b
(1 − b)2

= 1 − (1 − b)2

(1 − b)2
= 1

(1 − b)2
− 1
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Similarly for a ‘No’ answer we have,

P(Response = No|Truth = No)
P(Response = No|Truth = Yes)

= 1
(1 − b)2

− 1

Since, both the probabilities are bounded by 1
(1−b)2 − 1,

Algorithm 2 satisfies |ln
(

1
(1−b)2 − 1

)
| differentially

privacy.

For example, if the randomized device is a regular coin
then we have bias b = 1

2 in range [0, 1]. Thus the mech-

anism would be |ln
(

1
(1− 1

2 )2
− 1

)
| = |ln(3)| differentially

private [15].

Results
In this section, we evaluated both the methods according
to the proposed attack [5]. We used similar experimental
setup according to the original paper to directly bench-
mark our solution to the attack scenario. We also changed
some of their population size and other parameters in
order to do further analysis.

Original results
The original simulation [5] were experimented on a sam-
ple of 1000 individuals containing 500,000 SNPs which we
doubled to 1,000,000 SNPs. Alternate allele frequencies of
these SNPs were sampled from binomial distribution for a
standard neutral model under the assumption of a popula-
tion size of 20,000 individuals. Then the query beacon was
constructed having 1000 individuals (from 20,000). We
also considered higher beacon size with 1200, 1500, 2000
individuals. Then the log likelihood ratio tests (LRT) to
confirm the hypothesis were done assuming,

• 400 individuals from the beacon.
• 400 individuals not from the beacon.

The comparison between both setups are also shown in
Table 2.
The outcome of the attack in our setting is depicted in

Fig. 3 where the power of the log-likelihood ratio tests
(LRT) are on Y axis while the X axis shows the number of
SNPs queried by any adversary. The figure demonstrates
that the proposed attack has more than 95% power to
detect whether an individual is present in the beacon of

Table 2 Parameter consideration in our experiment and the
original paper [5] (1k=1000)

Parameter name Original paper [5] Our setup

Population size 10k 20k

SNPs considered 500k 1,000k

Beacon size 1k 1k, 1.2k, 1.5k, 2k

1000 individuals with just 5000 SNP queries. This result
also supports the claim of the original paper [5].
As Eq. 5 shows the dependency between the LRT out-

puts and the beacon size (number of individuals, N), we
further analyzed the attack for a different number of N.
We show the power of the attack for different beacon size
N = {1000, 1500, 2000} in Fig. 4.
In the Additional file 1, we include the analysis for dif-

ferent genome sequencing error rate and re-identifying
the relatives of those 400 individuals. For example, the
relatedness (φ) can be defined as twins, parent-offspring,
siblings, cousins etc., where φ = {1, 0.5, 0.25, 0.125}. As
twins share the same genomic sequence, the LRT tests
should be similar and conclusive after 5000 queries.

Our results
According to the test framework, we evaluated our pro-
posed methods. We employed our privacy preserving
mechanisms to perturb the original answer and then eval-
uated the performance of our techniques.
Figures 5 and 6, show the results of Algorithm 1 and 2.

As expected from the privacy-utility relation, we see
that more accurate answer results in less privacy as the
LRT powers keep rising for bias 90 (90% accuracy) after
300,000 queries. That is even with only 10% errors, the
adversary needs more than 300,000 queries to determine
the presence of an individual in the beacon database.

Accuracy analysis
As mentioned previously, there is a need for a method
which will induce errors to provide the privacy of the indi-
viduals’ present in a beacon service. Both of our methods
add random errors to the beacon database where these
errors can be defined as false positives and negatives. In
this context, false positives are those where the beacon
service answered yes regardless of the fact that there was
no existence of that data. False negatives are those where
the beacon answered false to a true answer. Accuracy is
defined as,

accuracy = NTP + NTN
NTP + NTN + NFP + NFN

Figure 7 shows the calculation of the accuracy for both
of our methods. It is clear from the figure that both
methods with a higher bias provide more accurate result.
This allows the corresponding data owner to decide the
amount of utility they want to provide with respect to the
privacy of the individuals.
We also showmultiple levels of privacy achieved for dif-

ferent accuracy of the beacon data. Figure 8 shows the
different LRT powers for different accuracy of the data
in 300,000 queries. As higher LRT powers defines better
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Fig. 3 Power (LRT) of re-identification attacks of individuals on beacons constructed with 1000 individuals on our experimental setting without any
privacy preserving mechanism

assumptions from the adversary, we can model it as the
privacy loss where utility can be defined as the accu-
racy aforementioned. It is noteworthy that, higher utility
results in higher privacy loss as we can see with 98%
accuracy we have LRT power as 1 where 75% accuracy
has 0.22.

Discussion
In this section, we discuss few issues regarding the original
attack and the applicability of our solutions.

Different bias on tiered access control
One clear indication from GA4GH and the research com-
munity on this privacy issue of genomic beacon service is
implementing an access control over this sensitive infor-
mation [1, 7]. Multiple layers of access control have been
proposed where a different level of users will have dif-
ferent privileges over the beacon service. This kind of
hierarchy in accessing a service is often named as ‘tiered
access control’. The applicability of this model in beacon
service is already proposed in a recent study [6].

Fig. 4 Power (LRT) of re-identification attacks on beacons constructed with different number of individuals. We show the results of the attack for 3
different beacon database size (1000,1200,1500)
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Fig. 5 Effect of method 1 on the power of the attack on beacon database considering different bias

Our solution methods fit the tiered access control as
we have different levels of privacy guarantee for different
bias value. Higher bias leading to higher accuracy might
be granted to a more trusted user where a public user
might only get the lowest utility with high privacy over the
beacon data. This will ensure the utility that the beacon
promises while not revealing the presence of an individual.

Statistical inference attack
There are two different ways we can incorporate our
methods on a beacon service. First, by using them while
answering queries in real time and secondly, using them
to preprocess the database beforehand to answer queries.
In our analysis, we use the algorithms to preprocess the
database due to the statistical inference attack. If we use

Fig. 6 Effect of method 2 on the power of the attack on beacon database considering different bias
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Fig. 7 Accuracy of both methods with different bias (50, 75, 90)
consideration

the algorithms in real time, then an adversary might aver-
age the outputs of a specific query and obtain the original
output.

Different allele frequency assumptions
The original attack scenario assumes that the allele fre-
quency of the dataset follows a beta distribution [5]. How-
ever, in real life, an adversary can find the specific allele
frequency of any position from a public database. This
enables the adversary to launch more powerful attacks
against the beacon service. It is noteworthy that iDASH
2016 competition [16] presented the problem under this
formulation [17, 18].
However, in this paper we also assume that the adver-

sary has limited background knowledge and s/he does not
have access to specific frequencies of each position. More
rigorous privacy guarantee like differential privacy [15]
can be provided against a stronger adversary.

Related work
Genomic privacy has recently gained significant con-
cern among the general public and research community.

Fig. 8 Privacy-Utility curve for different accuracy on X-axis and their
corresponding LRT powers for 300,000 queries

De-identification is a common practice in research and
clinical practice to protect genomic privacy and confiden-
tiality of the participants. Normally, privacy is achieved
by anonymizing a person’s identity while sharing genomic
related data. Since the de-identified genomic data are typi-
cally published with additional metadata and anonymized
quasi-identifiers information, these pieces of informa-
tion can be used to re-identify an unknown genome and
thus disclosing the identity of the participant. Significant
research has been done so far in this area. Below are some
of the recent works related to re-identification attacks in
genomic and health-related data.
In the recent study, Sweeney et al. [19] showed that

participants in the Personal Genome Project (PGP) can
be easily identified based on their demographics without
even using any genomic information. They also stressed
that 84 to 97% of the participants are correctly identified
by linking the demographics to publicly available records
such voter list and the name hidden in the attached
documents.
Gymrek et al. [20], showed that a person’s identity can be

exposed via surname inference by profiling short tandem
repeat on the Y-chromosome and querying recreational
genomic genealogy databases. In their study, they showed
that by scanning two largest Y-chromosome genealogical
websites, 10–14% US white male individuals are sub-
ject to surname inference attack. Moreover, when the
attacker gains access to that target DNA sample, they can
simply search available genomic databases with sensitive
attributes (e.g., drug abuse). Hence, the person’s identity
with attributes can be easily found.
In recent study [21], Gitschier showed that a sur-

name of an individual participating in HapMap database
can be inferred by the combination of information from
genealogical registries and a haplotype analysis of the Y-
chromosome collected for the HapMap Project. In [22],
the authors presented an attack that involves the asso-
ciation of DNA sequences to personal names, through
diagnosis codes.
Zhou et al. [23] studied the privacy risks of releas-

ing aggregate genomic data and showed that individuals
participating in such research study can be easily iden-
tified and for some cases, their DNA sequences can be
fully recovered. They have proposed a risk-scale sys-
tem to classify aggregate data and a guide for their
release.
Homer et al. [24] proved it is possible to detect the

presence of an individual in a complex genomic DNA
mixture even when the mixture contains only trace quan-
tities of his or her DNA.They showed that an individual
participating publicly released GenomeWide Association
Study (GWAS) can be easily identified by his/her known
genotypes and analysing the allele frequencies of a large
number of SNPs.
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Wang et al. [25] showed a higher risk that individu-
als can actually be identified from a relatively small set
of statistics such as those routinely published in GWAS
papers. Their first attack is the extension of homer’s attack
and showed that the presence of an individual in the case
group can be determined based upon the pairwise corre-
lation among as few as a couple of hundred SNPs. The sec-
ond attack can lead to a complete disclosure of hundreds
of the participants’ SNPs, by analyzing the information
derived from the published statistics.
In another study, Malin and Sweeney in [26] introduced

re-Identification of Data in Trails (REIDIT) algorithms
which link individuals genomic data to the publicly avail-
able records. They showed that it is possible to identify
a person by looking at the unique features in patient-
location visit in a distributed healthcare environment.
Other than these, there are multiple surveys avail-

able which summarizes and demonstrates some other
attacks [27, 28].

Conclusion
Bustamante attack on beacon service presents a privacy
problem of sharing genomic data publicly and demon-
strates the need for further research to achieve genomic
data privacy. In this paper, we analyzed Bustamante attack
and provided a method to calculate the risk involved in
sharing the genomic data. We proposed two simple pri-
vacy preserving solutions: eliminating random positions
and biased randomized response. Our lightweight privacy
preserving solutions ensure a good trade-off between data
privacy and utility. Experimental results demonstrate that
given higher bias, both the methods are able to provide
high data utility.

Additional file

Additional file 1: Contains further analysis on the attack and the solution
mechanisms. (PDF 334 kb)
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