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Abstract

Background: Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict
clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions,
these methods are not designed to address single-patient transcriptome analyses. We previously developed and
validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for
personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover
concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-
regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems.

Results: We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to
uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a
comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas
(HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background
noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the
simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates).
Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped
with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses.

Conclusion: The greater performance of MixEnrich presents an advantage over previous methods to meet the
promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
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Background
Technologies, such as RNA-Seq, provide precise, timely,
and cost-effective quantification of whole genome ex-
pression [1]. However, analytic tools remain underdevel-
oped for providing personal transcriptome profiling and
individualized biological interpretation. Conventional
transcriptome methods have been designed to uncover
common mRNA and pathway signatures across a large
cohort of patients, overlooking signals that differentiate
one patient from another [2, 3]. The analysis of dynamic
transcriptomes of a single subject has the potential to
capture and inform gene expression changes reflective of
personal physiological modifications, disease progres-
sion, and response to therapies in ways that genetic in-
formation cannot. Indeed, the majority of disorders with
complex inheritance results from a combination of gen-
etic risks and environmental factors unique to each pa-
tient that dynamically influence the course of disease.
These dynamic biological changes that are genome X
environment interactions between two conditions can be
measured at the transcriptome level; however, current
cohort-based statistics, which average signals across pa-
tients, are not applicable for the analysis of personal
transcriptome dynamics [4]. Although in vitro assays
were used to assess dynamic gene expression changes to
predict experimental outcomes and disease progression
at the patient level, these analyses remain limited and
biased as they only assess a handful of gene candidates
pertaining to known pathways [5]. However, scaling-up
these assays and analyses to measure whole genome ex-
pression changes of a single subject (e.g., before and
after treatment) has the advantage to unbiasedly discover
dysregulated pathways unique to each individual.
Recognizing the limitations of conventional methods,

we recently designed and validated in different disease
contexts the N-of-1-pathways, which is a novel frame-
work for single-subject transcriptome analysis based on
a pair of samples (e.g., healthy and tumor, before and
after therapy) from the same individual [6–10]. N-of-1-
pathways relies on three principles: (1) the sole unit of
observation is a single patient (case and control); (2)
gene-level information are aggregated into gene sets
(pathways); and (3) pathway results are summarized into
personal biological profiling for clinical interpretation.
Two methods under N-of-1-pathways framework were
developed, N-of-1-pathways Wilcoxon (Wilcoxon) [6–8]
using a Wilcoxon signed-rank test [11] and the N-of-1-
pathways Mahalanobis distance (MD) [10, 12] using a
statistical distance from a model of equal expression.
The N-of-1-pathways Wilcoxon and MD analyze the dy-
namic change of mRNA expression and uncover dysreg-
ulated pathways (gene sets) from single-subject paired
samples. The use of gene sets derived from gene ontol-
ogy [13] provides computational advantage by reducing

data dimension while providing mechanistic interpret-
ation [14, 15]. While both methods have shown promise
in single-subject transcriptome analysis, they were not
designed to identify pathways (gene sets) with both up-
regulated and down-regulated mRNA expressions and,
therefore, take into account only concordantly dysregu-
lated mRNAs within a pathway. In addition, Wilcoxon
and MD are both self-contained methods [16] analyzing
only mRNAs within a gene set and do not account for
background noise due to technical and experimental ar-
tifacts [17–19].
To address the shortcomings of the current single-

subject transcriptome analysis methods, we developed a
novel approach within the N-of-1-pathways framework:
N-of-1-pathways MixEnrich (MixEnrich) using a mixture
model (mixture of two distributions: dysregulated vs. un-
altered mRNAs) followed by a competitive-based [16] en-
richment test. Self-contained (non-competitive) methods
use exclusively the gene expression values of a gene set,
while competitive methods utilize the entire transcriptome
as a background [16]. MixEnrich is designed to cluster all
mRNAs expression into two groups, unaltered and dys-
regulated (including up- and down-regulated), using mix-
ture modeling [20]. Then pathways enriched with
bidirectionally dysregulated mRNAs are identified using
Fisher’s exact test [21]. Notably, this method builds on the
work of Piccolo and his colleagues who have successfully
applied mixture modeling in single samples for a different
problem: to identify expressed vs. non-expressed mRNAs
[22]. To test the performance of N-of-1-pathways MixEn-
rich in comparison to the only other single-subject paired-
sample gene set tests (Wilcoxon and MD), we performed
a simulation study and validation case study. We show
that MixEnrich outperforms Wilcoxon and MD under
various scenarios of simulated dysregulated pathways.
This synthetic result was validated in a case study using
head and neck squamous cell carcinomas (HNSCCs)
RNA-Seq dataset, where MixEnrich uncovered biological
relevant dysregulated pathways.

Methods
Datasets
Transcriptome datasets (Table 1)
An RNA-Seq dataset of 55 normal lung tissue samples

from The Cancer Genome Atlas (TCGA) [23] was used
to estimate expression means for each mRNA in the
simulation study. To validate N-of-1-pathways MixEn-
rich, we used another RNA-Seq dataset derived from
paired samples of head and neck squamous cell carcin-
omas (HNSCCs) patients [24].

Knowledge-base dataset
In the HNSCCs case study, gene sets were defined using
Gene Ontology Biological Process, GO-BP [13, 25]. The
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GO-BP dataset was retrieved in June 2015 using the
org.Hs.eg.db package from Bioconductor [26]. Note, the
two terms ‘GO-BP’ and ‘pathway’ are interchangeably
used in this present study.

An Overview of the methodology of N-of-1-pathways
MixEnrich
We propose a novel method, MixEnrich, under the
framework of N-of-1-pathways. MixEnrich identifies
dysregulated pathways by: (1) clustering mRNAs as un-
altered and dysregulated mRNAs and (2) detecting gene
sets enriched with dysregulated genes. We named this
two-stage procedure MixEnrich for Mixture model clus-
tering followed by an Enrichment analysis. As illustrated
in Fig. 1, from a pair of transcriptome derived from a
single subject, we constructed a mixture model by mod-
eling the absolute value of log2 transformed fold changes
for all mRNAs as a mixture of two distributions: a distri-
bution of dysregulated mRNAs and a distribution of
non-dysregulated (unaltered) mRNA expression. We
then performed a Fisher’s Exact Test (FET) to determine
the over-representation of dysregulated mRNAs (both
directions) in each pathway [21].

Clustering using the mixture model
For each mRNA, we calculated its absolute value of log2
transformed fold change, |log2FC|, as |log2(E2/E1)|,
where E1 is the expression level of this mRNA in condi-
tion 1 (e.g., normal tissue) and E2 is the expression level
in condition 2 (e.g., tumor tissue). Under the mixture
model, each mRNA is assumed to belong to a cluster k
(unaltered mRNA or dysregulated mRNA) with a prior
probability πk. The cluster membership of each mRNA
is a Bernoulli trial (Eq. 1).

πk ¼ p Zi ¼ kð Þ;
X2
k¼1

πk ¼ 1 i ¼ 1;⋯;G; k ¼ 1; 2

ð1Þ

where Zi is a latent variable and G is the total num-
ber of mRNAs in the transcriptome. An mRNA for a
gene index i is a member of cluster k when Zi is
equal to k. We use xi to represent |log2FCi|, and in
cluster k, the absolute value of log fold change, xi fol-
lows a certain distribution whose parameters need to
be estimated. For simplicity, we assumed that the dis-
tribution of xi in each cluster followed a normal

Table 1 Dataset description

Dataset and Study Dataset I:
Simulation study

Dataset II:
Validation case study 1

Dataset III:
Validation case study 2

Type Healthy lung tissues Head and Neck squamous cell carcinomas Breast invasive carcinoma

Source TCGA TCGA TCGA

Date March 2013 May 2015 October 2016

Platform Illumina RNA-Seq V.2 Illumina RNA-Seq V.2 Illumina RNA-Seq V.2

Genes mapped 20,502 20,501 20,501

Patients

Total 55 45 pairs 112 pairs

Healthy 55 45 112

Tumor not applicable 45 112

URL https://tcga-data.nci.nih.gov https://tcga-data.nci.nih.gov https://tcga-data.nci.nih.gov

Fig. 1 The outline of MixEnrich. Single-subject paired transcriptomes (e.g., healthy and tumor, left panel) are used as the input for the clustering procedure
(middle panel). The mixture model clusters all mRNAs of the subject into two groups, determining dysregulated mRNAs. The dysregulated mRNAs are then
tested for enrichment into pathways using a Fisher’s Exact Test. FC = fold change; |log2FC| = the absolute value of log2 transformed fold-change; DEG =
differentially expressed mRNAs; FET = Fisher’s Exact Test
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distribution, whose probability density function is de-
noted as φ (Eq. 2).

p xijzi ¼ kð Þ ¼ φ xijμk ; σ2k
� �

i ¼ 1;⋯;G; k ¼ 1; 2

ð2Þ

Here μk andσk are the mean and standard deviation of
the normal distribution for the cluster k. The marginal
distribution of X can be obtained by the sum of two
weighted normal distributions, hence providing the
(discrete) mixture model (Eq. 3).

p xið Þ ¼
X2
k¼1

πkφ xijμk ; σ2
k

� �
i ¼ 1;⋯;G ð3Þ

The estimation of the parameters of the mixture
model is implemented by maximum likelihood using an
Expectation-Maximization (EM) algorithm [27]. The
likelihood that each mRNA belongs to one cluster or the
other is assessed by the posterior probability using Bayes
rule (Eq. 4).

p zi ¼ kjxi; μ1; σ1; μ2; σ2ð Þ ¼ πkϕ xi; jμk ; σ2k
� �

X2

j¼1
πjϕ xijμj; σ2j

� �
ð4Þ

We defined an mRNA as dysregulated when its poster-
ior probability of belonging to the dysregulated cluster is
above 0.5, where the dysregulated cluster is defined as
the cluster with the larger mean.

Enrichment of the dysregulated mRNAs
After assigning mRNAs to clusters, a Fisher’s Exact Test
(FET) was applied to detect the gene sets (pathways)
enriched with dysregulated mRNAs [21]. Assume one
pathway consists of M mRNAs among which d mRNAs
are dysregulated; while the entire genome consists of N
mRNAs among which D mRNAs are dysregulated (sum-
marized by a contingency table, Table 2). By this con-
struction, pathway dysregulation is determined relative
to the dysregulation of the entire transcriptome as the
background. Since different pathways may not be inde-
pendent due to overlapping mRNAs between them, the
p-values resulting from FETs were adjusted for multiple
hypothesis testing using the approach developed by

Benjamini and Yekutieli [28] that accounts for correlated
p-values.

Performance evaluation of the three single-subject
methods by simulation
Generation of the simulated dataset
Single-subject paired RNA-Seq data were simulated to
evaluate the performance of three N-of-1-pathways
methods: MixEnrich, Wilcoxon, and MD. It has been
shown, for biological replicates collected from different
subjects, that a negative binomial distribution [29, 30]
models the distribution of RNA-Seq read counts more
adequately than a Poisson distribution [31, 32], as the
negative binomial distribution accounts for the overdis-
persion (biological variation) of mRNA expression. How-
ever, the overdispersion is assumed to be negligible
under N-of-1-pathways framework since it analyzes the
paired samples from the same tissue of the same individ-
ual [33]. Therefore, the Poisson distribution is employed
to simulate ‘virtual patients’ with various scenarios of
dysregulation.
By varying six simulation parameters listed in Table 3,

we investigated 107,640 different scenarios of pathway
dysregulation. Specifically, for each scenario, we simu-
lated 100 ‘virtual patients’. Each virtual patient has one
dysregulated pathway and one unaltered pathway with
the same size. The simulation process is as follows:

1) Estimate the expression mean for every mRNA, g,
from 55 RNA-Seq normal lung samples downloaded
from TCGA (Table 1).

2) Generate a pair of expression values, Yg1 and Yg2, for
each mRNA g in two conditions (normal vs. tumor)
using Poisson distribution, Poisson (λg).

Y g1 e Poisson λg
� �

Y g2 e Poisson λg
� �

3) Generate a dysregulated pathway:
a) Randomly sample a proportion (bg.dPct) of

mRNAs, in the second transcriptome (tumor),
without replacement, and then replace their
values by their corresponding values in the first
transcriptome (normal) multiplied by a fold
change (bg.FC).

b) Designate the target pathway by randomly
sampling mRNAs (the number of sampled
mRNAs = p.S) from the transcriptome without
replacement.

c) Randomly sample mRNAs (the number of
sampled mRNAs = p.S × p.dPct) from the target
pathway without replacement, and designate the
sampled mRNAs as dysregulated.

Table 2 Contingency table for Fisher’s Exact Test

dysregulated mRNAs unaltered mRNAs Row sums

mRNAs in target
pathway

d M – d M

mRNAs not in
target pathway

D - d N - M - D + d N-M

Column sums D N - D N
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d) Among the designated dysregulated mRNAs in
the target pathway, randomly assign a proportion
(p.upPct) of these mRNAs as up-regulated. The
rest of the designated dysregulated mRNAs are
assigned as down-regulated.

e) For the up-regulated mRNAs in the target path-
way, replace their values in the second sample
(tumor) by their corresponding values in the first
sample (normal) multiplied by a fold change
(p.FC); for the down-regulated mRNAs in the tar-
get pathway, replace their values in the second
sample (tumor) by their corresponding values in
the first sample (normal) divided by a fold change
(p.FC);

f ) Generate an unaltered pathway: randomly sample
a proportion (bg.dPct) of mRNAs without
replacement, and then assign these mRNAs to
the non-dysregulated pathway.

g) Repeat Steps 1 – 4 100 times to simulate 100
virtual patients under the given scenario.

Comparing the performance of MixEnrich with Wilcoxon
and MD
Using the simulated datasets, we compared the proposed
method N-of-1-pathways MixEnrich with two other
single-subject methods: N-of-1-pathways Wilcoxon [6]
and MD [9]. We evaluated the performance of the three
methods by the following measurements:

Area under the ROC Curve (AUC)
For each scenario of pathway dysregulation, we calcu-
lated an Area Under the receiver operating characteristic
Curve (AUC) value as follows: Each scenario corre-
sponds to 100 ‘virtual patients’, and each ‘virtual patient’
possesses one dysregulated pathway and one unaltered
pathway. At a given p-value threshold, among the 100
dysregulated pathways (p.dPct > 0), those identified as
dysregulated are true positives (TP) and those identified
as unaltered are false negatives (FN). Similarly, among
the 100 unaltered pathways (p.dPct = 0), those identified
as unaltered are true negatives (TN) and those identified
as dysregulated are false positives (FP). We calculated
the true positive rate (TPR, or sensitivity) and false

positive rate (FPR, or Type I error rate) by equation 5
and equation 6:

TPR ¼ TP
TP þ FN

ð5Þ

FPR ¼ FP
FP þ TN

ð6Þ

Receive Operating Characteristic (ROC) curves were
generated by plotting FPR against TPR at various p-
value thresholds. Areas under the ROC curves (AUCs)
were computed approximately using Riemann sum in R.

Area above the 95% contour curve (AAC95%)
We investigated the interaction effect of two simulation
parameters, p.S and p.dPct, on method performance. A
contour plot was used to present the joint impact on
AUCs induced by the two parameters, p.S and p.dPct,
while fixing the other four simulation parameters listed
in Table 3. Each point on the contour plot corresponds
to an AUC value of a particular scenario of pathway dys-
regulation. Then the Area Above the 95% contour Curve
(AAC95%) was calculated as an overall measure of
method accuracy when the two simulation parameters
vary simultaneously. Specifically, using color-coded
values, we plotted AUCs corresponding to any combin-
ation of the two parameters p.S and p.dPct while fixing
the four other parameters, p.Fc, p.upPct, bf.FC, and
bg.dPct. The horizontal and vertical axes in the contour
plot represent the values of p.S and p.dPct, respectively.
AUC values on the contour plot are indicated by color
gradient. All points with an AUC value of 95% on the
contour plot were connected to construct the 95% curve,
demarcating the ACC95% boundary.

Validation case study of head and neck cell carcinoma
patients
We further evaluated the performance of N-of-1-path-
ways MixEnrich, in the context of head and neck squa-
mous cell carcinomas (HNSCCs) (Datasets), using
paired RNA-Seq data (tumor vs. healthy) from 45
HNSCC patients. Since a vetted gold standard for
HNSCCs does not exist and would require experimen-
tally testing pathways, we established ‘quasi-gold

Table 3 Simulation parameters

Parameter Description of the parameter Values tested

bg.FC Fold change of dysregulated background mRNAs {1, 1.3, 1.5, 2}

bg.dPct Percentage of dysregulated mRNAs as noise in the background {0, 0.01, 0.05, 0.1, 0.2}

p.S Number of mRNAs randomly chosen in the target pathway {5, 10, [15, 490] by step 25, 500}

p.dPct Percentage of dysregulated mRNAs in the target pathway {(0, 1] by step 0.05}

p.FC Fold change of mRNAs in the target pathway {1.3, 1.5, 2}

p.upPct Percentage of up-regulated mRNAs among dysregulated mRNAs in the target pathways {0, 0.1, 0.2, 0.3, 0.4, 0.5}
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standards’ to evaluate MixEnrich. Forty-five patients
were split into two subsets: 30 patients to establish a
quasi-gold standard, and 15 testing patients to test the
methods. The quasi-gold standard was defined as the
dysregulated GO-BP terms identified from the 30 pa-
tients using a well-accepted cohort-based method:
DESeq (Anders and Huber, 2010) followed by enrich-
ment test (DESeq + Enrichment). DESeq identifies
mRNAs differentially expressed between 30 samples of
normal tissue and 30 samples of tumor tissue. Nominal
p-values resulted from DESeq were adjusted for multi-
plicity via the method proposed by Benjamini and Hoch-
berg to produce FDRBH values. mRNAs with FDRBH <
0.05 were defined as differentially expressed mRNAs
(DEGs). Every pathway was then tested for enrichment
by a Fisher’s Exact Test [21] to determine the enrich-
ment of DEGs. Since different pathways may share
mRNAs and therefore resultant p-values are dependent,
the multiplicity adjustment developed by Benjamini and
Yekutieli was used to calculate FDRBY [28] for adjusting
multiple hypothesis testing. The quasi-gold standard was
constructed as the set of all pathways with FDRBY < 0.05.
Employing the quasi-gold standard, we compared the

accuracy of MixEnrich with that of MD, Wilcoxon,
GSEA and DESeq + Enrichment. N-of-1-pathways
methods, MixEnrich, MD, and Wilcoxon, are single-
subject methods and were conducted on every single pa-
tient of the 15 testing patients. 15 area under the ROC
curves (AUCs) were calculated for each N-of-1-pathways
methods. Since GSEA and DESeq + Enrichment can only
perform on a group of patients, they were evaluated on
50 distinct subsets, which contain 3, 6, or 12 patients, of
the 15 testing patients. Taking the subset of 3 patients as
an example, 15 testing patients can yield 455 distinct
combinations of three patients. To mitigate computa-
tional burden, we randomly chose 50 distinct combina-
tions from the 455 combinations as a test set. GSEA and
DESeq + Enrichment were conducted on every combin-
ation of the 50 distinct patient combinations, which
yielded 50 AUCs for each method when compared to
the quasi-gold standard. The AUCs resulted from each
N-of-1-pathways methods and the AUCs resulted from
cohort-based methods performed on 3, 6, or 12 patients
were plotted by boxplots. With the same strategy, we
also evaluated MixEnrich in the context of breast inva-
sive carcinoma (BRCA) (Datasets) using paired RNA-
Seq data (tumor vs. healthy) from 112 BRCA patients
(Additional file 1: Figure S1).

Results and Discussion
Simulation study
To evaluate the performance of N-of-1-pathways Mix-
Enrich, we produced synthetic datasets corresponding to
107,640 scenarios of pathway dysregulation by varying

six simulation parameters (Table 3). We compared N-of-
1-pathways MixEnrich with two other single-subject
methods, Wilcoxon, and MD, based on (i) the overall
performance across all types of dysregulated pathways
(Global comparison of the three N-of-1-pathways
methods); (2) change in performance as the value of a
single simulation parameter varies (MixEnrich is robust
against background noise and bidirectional dysregula-
tion), and (3) the change in accuracy as two critical pa-
rameters, pathway size (p.S) and percentage of the
dysregulated mRNAs in the target pathway (p.dPct), vary
simultaneously (MixEnrich outperforms MD and Wil-
coxon when studying the joint effect of pathway size and
proportion of dysregulated mRNAs).

Global comparison of the three N-of-1-pathways methods
We compared N-of-1-pathways MixEnrich with MD
and Wilcoxon for their overall performance across all
types of pathway dysregulation by combing all 107,640
AUCs (Comparing the performance of MixEnrich with
Wilcoxon and MD, Fig. 2). Using Wilcoxon signed-rank
test [34], the AUCs of MixEnrich are significantly higher
than the ones of N-of-1-pathways Wilcoxon (p-value <
1 × 10−10) and MD (p-value < 1 × 10−10). This result is
further supported by the boxplots (Fig. 2b) comparing
the overall performance across all simulated pathway
dysregulation scenarios (107,640 AUCs for each method)
suggesting that MixEnrich is preferable to Wilcoxon and
MD for single-subject transcriptome analysis to evaluate
the dynamic change in gene expression in the presence
of background noise or to uncover bidirectionally dys-
regulated pathways, as detailed in the subsequent
sections.

MixEnrich is robust against background noise and
bidirectional dysregulation
We further explored the relative effect of each of the six
simulation parameters (Table 3) on the performance of
N-of-1-pathways MixEnrich in comparaison to Wil-
coxon and MD. The boxplots in the fourth column of
Fig. 3 confirm that MixEnrich performed uniformly well
across all values of p.upPct (p.upPct = 0, 0.1, 0.2, 0.3, 0.4
or 0.5). On the other hand, the performance of Wil-
coxon and MD decreased dramatically as the value of
p.upPct increased. Unlike MixEnrich, both N-of-1-path-
ways Wilcoxon and MD were designed to identify the
pathways only with concordant dysregulation, i.e., dys-
regulated mRNAs within a pathway are either exclusively
up-regulated (p.upPct = 1) or exclusively down-regulated
(p.upPct = 0). Wilcoxon and MD aim to identify the cen-
tral tendency shift of pathway expression; mRNAs dys-
regulated in opposing directions counterbalance each
other. In contrast, MixEnrich can identify complex bidir-
ectional dysregulation of a pathway since mRNAs
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Fig. 3 Evaluation of performance as each parameter of the simulation varies Each column corresponds to one simulation parameter (horizontal
axis), while each row corresponds to a method (names on the left of the vertical axis). Each panel, defined by the combination of a simulation
parameter and a method, contains all 107,640 AUCs resulted from a method. For example, in the panel of pathway dysregulation percentage
(p.dPct) for N-of-1-pathways Wilcoxon, bottom left panel, each boxplot illustrates the distribution of AUCs resulting from Wilcoxon at a fixed value
of p.dPct (horizontal axis) while varying all the other five simulation parameters. For the sake of clarity, outliers are not shown

A B

Fig. 2 Illustrative ROC curves and comparison of the overall performance of three single-subject methods. MixEnrich is compared to MD and
Wilcoxon in overall performance across all simulated pathway dysregulation scenarios via area under ROC curves (AUCs). Panel a shows an
example of ROC curves for the three methods derived from the following setting: 20% of mRNAs in the background were dysregulated at fold
change of 2; 20% of mRNAs in the target pathways (size of 65 genes) were dysregulated at fold change of 1.3 with half of them up-regulated.
Each boxplot, in Panel b, visualizes all resultant AUCs of the corresponding method across all simulation settings (outliers are not illustrated)
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dysregulated in both directions contribute additively to
the over-representation of a pathway in dysregulated
mRNAs.
The increase in percentage of background dysregu-

lated mRNAs (indicative of greater transcriptome
noise) does not affect the performance of MixEnrich
(Fig. 3, sixth column). Compared to MixEnrich, Wil-
coxon and MD are less accurate at various percentages
of dysregulated mRNAs in the background (Fig. 3, sixth
column). MixEnrich is a competitive model [16] that
compares mRNAs in a pathway against the background
transcriptome and distinguishes pathways that are sig-
nificantly more dysregulated than the background tran-
scriptome. In contrast, MD and Wilcoxon are self-
contained methods [16], implying that they only use
mRNA (gene) expression within a given pathway.
Therefore, MixEnrich is expected to have a lower false
positive rate when there are a lot of dysregulated
mRNAs in the background noise such as biological
variation and technical artefacts [16, 35]. However, as
the percentage of background noise increases, the per-
formance declines of Wilcoxon and MD are moderate.
The data suggest that bidirectional dysregulation de-
creases the performance of Wilcoxon and MD more se-
verely than the background noise, and therefore the
degenerate effect of background noise is hidden by the
effect of bidirectional dysregulation (data not shown).
Notably, all three methods perform better as the per-
centage of dysregulated mRNAs in a pathway (p.dPct),
pathway size (p.S), or fold change of the dysregulated
mRNAs in a pathway (p.FC) increase (Fig. 3, first, sec-
ond, and third columns).

MixEnrich outperforms MD and Wilcoxon when studying
the joint effect of pathway size and proportion of
dysregulated mRNAs
The number of mRNAs in the pathway (p.S) and the
proportion of these mRNAs that are dysregulated
(p.dPct) are two factors most relevant to biology. A com-
parison (Fig. 4 Panel b) of the AAC95% (Comparing the
performance of MixEnrich with Wilcoxon and MD) dis-
tributions for the three single-subject methods demon-
strates that MixEnrich produced an overall better
performance when two parameters, p.S and p.dPct,
chang simultaneously. Using Wilcoxon signed-rank test
to compare AAC95%, MixEnrich outperformed both N-
of-1-pathways MD and N-of-1-pathways Wilcoxon (p
<1 × 10−10 and p <1 × 10−10, respectively). MixEnrich ob-
tained an AAC95% > 0.8 for 228 of the 234 tested scenar-
ios while N-of-1-pathways MD and N-of-1-pathways
Wilcoxon yielded AAC95% > 0.8 for 15 and 22 of scenar-
ios, respectively. In the scenarios in which MixEnrich
yielded AAC95% < 0.8, the fold change of dysregulated
mRNAs was small (1.3 FC) in both the target pathway
(p.FC) and the background noise (bg.FC).

Validation case study: pathways uncovered by MixEnrich
agree with the quasi-gold standard
We investigated the biological relevance of the dysregu-
lated pathways uncovered by N-of-1-pathways MixEn-
rich using a biological dataset of RNA-seq paired
samples (healthy and cancer tissues) derived from head
and neck squamous cell carcinoma patients, HNSCCs
[24], presented in Table 1. MixEnrich outperforms N-of-
1-pathways MD and Wilcoxon as well as conventional

A B

Fig. 4 Joint effect of the pathway size and proportion of dysregulated mRNAs on the performance of MixEnrich method. Panel a shows an
example contour plot of the AUC values under the combination of the four parameters (values are shown at the up-right corner in the contour
plot) for MixEnrich. Every point in the contour plot is colored by the AUC value, with the color key shown in the upper left corner of the panel.
Points with the same AUC values are connected by contour lines in the plot. We used area above the 95% curve (AAC95%; white area above the
contour line of AUC = 0.95) as the overall joint performance measure when the two parameters change simultaneously. Panel b shows the
distribution of every possible AAC95% for each method; each boxplot includes 234 data points; each point in a boxplot corresponds to a specific
combination of the four other parameters: bg.Pct, bg.FC, p.upPct, and p.FC while allowing p.S and p.dPct to vary
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cohort-based methods GSEA and DESeq + Enrichment
in uncovering dysregulated GO-BP terms for HNSCCs.
Since it is not feasible to biologically test each pathway
to determine the truly dysregulated pathways and un-
altered pathways, we conducted DESeq + Enrichment on
the 30 patients of HNSCCs cohort to produce a quasi-
gold standard (Validation case study of head and neck
cell carcinoma patients). DESeq identified 4061 differen-
tially expressed genes from the 30 patients, and a big
proportion of these genes were recapitulated by the
intermediate step of MixEnrich (Additional file 1: Table
S1). The quasi-gold standard consisted of 251 dysregu-
lated GO-BP terms out of the total 3,485 GO-BP terms.
MixEnrich achieved higher AUCs (Validation case study
of head and neck cell carcinoma patients) in general on
predicting the quasi-gold standard in comparison to MD
and Wilcoxon (Fig. 5) as well as when compared to
AUCs yielded by cohort-based methods conducted
across 3, 6 and 12 patients. The superior performance of
MixEnrich over cohort-based methods is likely attrib-
uted to two reasons: (i) cohort-based methods are
underpowered when the sample size is small, and (ii)
MixEnrich detects patient-specific signals in addition to
the common signals shared among the three patients.

We then tested the hypothesis that single-subject
method MixEnrich can capture the individual signals in
addition to the common signals shared by all patients.
Interestingly, an outlier (patient ID: A6H7) presents in
the MixEnrich results, which carries a lower AUC of
0.707. We investigated the dysregulated pathways identi-
fied by MixEnrich from patient A6H7 but are not
present in the quasi-gold standard (Additional file 1:
Table S2). Most of those pathways are related to cell
cycle, DNA damage repair, and inflammatory response.
Further, all of the GO-BP terms that are identified as
dysregulated by MixEnrich from all 15 testing patients
exist in the quasi-gold standard (Additional file 1:
Table S3).
We also performed another case study using a dataset

of matched healthy and cancer RNA-seq samples de-
rived from 112 breast invasive carcinoma patients
(Table 1) and again observed the superior performance
of MixEnrich (Additional file 1: Figure S1).

Limitations and future work
As noted in 3.1.3, MixEnrich does not perform well
when the FC of dysregulated mRNAs is small in both
the background and the target pathway. In addition, the

Fig. 5 MixEnrich shows higher performance than other single-subject and cohort-based methods (the latter utilized on small samples). Each
boxplot corresponding to the N-of-1-pathways methods (MixEnrich in purple, MD in green, and Wilcoxon in orange) consists of 15 AUCs resulting
from 15 tested patients. Each boxplot corresponding to the cohort-based methods (DESeq + Enrichment in red and GSEA in blue) includes 50
AUCs resulting from 50 distinct subsets of the 15 tested patients (Validation case study of head and neck cell carcinoma patients). Cohort-based
methods were performed across 3, 6 and 12 patients (Pt). The number of distinct subjects is shown below the horizontal axis as human icons to
further illustrate how many distinct subjects are required in cohort-based analyses to obtain improvements of the AUC (vertical axis). In addition,
the three single-subject analyses predict between 200-300 candidate pathways at FDR = 1%, while cohort-based statistics operating on 3 to 12
individuals predict only 50 pathways at FDR = 5% and over 200 at FDR = 20% (data not shown), which explains in part the observed differences
in accuracies
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use of a Poisson distribution in the simulation study can
be considered a limitation of our work, as negative bino-
mial distribution could have been employed to introduce
more noise in the simulated paired samples. Another
possible limitation of our study is the choice of the Ex-
pectation Maximization (EM) algorithm [27] for estimat-
ing the parameters of the mixture model. This algorithm
is not guaranteed to converge towards the global
optimum. Since MixEnrich operates on the log2 trans-
formed mRNA expression fold changes, it may have
higher tendency to discover lowly expressed genes as
dysregulated, although making inference on gene sets
mitigates the bias towards lowly expressed genes (Add-
itional file 1: Table S7). The datasets used in both the
simulation study and the validation case studies contain
a large amount of lowly expressed genes (Additional file
1: Table S4); the genes annotated to the dysregulated
GO-BP terms identified from each of the 15 testing pa-
tients have similar distributions compared to the genes
annotated all GO-BP terms investigated in the HNSCCs
case study (Additional file 1: Table S5-S6). The two-
stage process of clustering and enrichment can be
viewed as a general framework for paired single-subject
analysis. We speculate that more elaborate statistical
models could improve the performance of the clustering.
Future studies could employ a more general gamma dis-
tribution kernel and explore techniques that automatic-
ally determine the number of clusters.
Importantly, the simulation study results highlight that

MixEnrich detects pathways more dysregulated than the
background. This is not addressed by the self-contained
methods of MD and Wilcoxon. The fact that self-
contained tests do not perform well according to the cri-
teria imposed in the simulation does not invalidate the
use of these approaches. Further, self-contained tests are
useful to test a small panel of genes such as obtained by
real-time PCR.
The current study is based on two paired samples

from a single subject. Further improvements and new
features of the N-of-1-pathways analytic tools can pro-
vide more statistical power as more comprehensive N-
of-1 experimental studies and assays may be conceived.
For example, future studies may include (i) multiple bio-
logical and technical replicates of both tumor and con-
trol samples from a single subject or (ii) multiple omics
measurements beyond the transcriptome (e.g., proteome,
methylome, etc.). Future improvements will need to ad-
dress N-of-1 studies designed with time-series datasets
using multi-gene measurement and genomic informa-
tion based on data derived from normal, treated, and
withdrawn treatment samples from a single patient. As
single-cell transcriptome datasets from a single patient
are increasingly being studied [36], N-of-1-pathways
framework can be applied and further improved as

demonstrated by our recent work in profiling circulating
tumor cells using N-of-1-pathways MD [10]. As we
strive for precision medicine, we must tackle these chal-
lenges to accurately provide personal transcriptome ana-
lysis at point of care for diagnosis and prognosis.

Conclusion
Compared to our previously developed N-of-1-pathways
methods, Wilcoxon and MD, N-of-1-pathways MixEn-
rich is more effective in detecting non-concordant path-
way dysregulation, better reflecting what one would
expect in biological pathways. Moreover, this novel two-
stage competitive gene set testing strategy provides more
resistance to background noise, which is ubiquitous in
biological systems. Results based on the head and neck
squamous cell carcinomas study demonstrate that the
dysregulated pathways discovered using MixEnrich over-
lap highly with the quasi-gold standard compared to the
two single-subject methods (Wilcoxon and MD). In
addition, we have shown the robust performance of N-
of-1-pathways MixEnrich operating on single subjects in
identifying dysregulated pathways when compared to
small-sample, cohort-based methods (DESeq + Enrich-
ment and GSEA).
In this era of precision medicine, it becomes crucial to

develop unbiased and personalized transcriptome analyt-
ics for single-subject diagnosis and prognosis, rather
than using methods that aggregate signals across hetero-
geneous patients. N-of-1-pathways MixEnrich is an in-
novative framework that bridges this gap by analyzing
paired samples, one patient at a time, and is ostensibly
extensible to other quantitative ‘omics measurements
(e.g., methylome and proteome). MixEnrich is a valuable
tool for studying rare and orphan diseases for which
sample sizes remain small whereas cohort-based
methods are underpowered in that setting. Lastly, the
mRNA- and pathway-level analysis performed patient-
by-patient by N-of-1-pathways MixEnrich offers more
interpretable results for biologists and physicians such as
dysregulated mRNAs of interest that can be potentially
validated and identified as biomarker candidates for
diagnosis.

Additional file

Additional file 1: Figure S1. MixEnrich shows higher performance than
other single-subject methods. We repeated the case study using another
dataset that contains matched tumor and normal samples for 142 breast
invasive carcinoma patients. Each boxplot corresponding to the N-of-1-
pathways methods (MixEnrich in purple, MD in green, and Wilcoxon in
orange) consists of 15 AUCs resulting from 15 testing patients. Table S1.
Overlap of dysregulated genes (DEG) between the ones in quasi-gold
standard and the ones discovered from single patients. Table S2. GO-BP
terms do not exist in the quasi-gold standard but are identified as
dysregulated by MixEnrich from patient A6H7. Table S3. GO-BP terms
identified as dysregulated by MixEnrich from all 15 head and neck
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squamous cell carcinoma patients (HNSCCs) patients. Table S4. Summary
statistics of expression levels for the three data sets (Datasets). According
to the first quartile of the three datasets, all three contain a large amount
of lowly expressed genes. Table S5. Summary statistics of the expression
levels for the genes annotated to the dysregulated GO-BPs identified
from each of the 15 testing patients. Table S6. Summary statistics of the
expression levels for the genes annotated to the any GO-BPs investigated
in the HNSC validation case study. Table S7. True positive rate (TPR) and
false positive rate (FPR) of MixEnrich at the final enrichment step (pathways)
are improved as compared to the initial clustering step (mRNAs). We randomly
chose 1000 pathway dysregulation scenarios from the simulation study
(Generation of the simulated dataset). For each dysregulation scenario, we ran
MixEnrich and computed TPR and FPR at the enrichment step as described in
Comparing the performance of MixEnrich with Wilcoxon and MD. In
addition, we computed the TPR and FPR at the clustering step, at which
MixEnrich defines a positive case (dysregulated mRNA) as one whose posterior
probability of being dysregulated (Eq. 4) is greater than its posterior probability
of being unaltered. True positive mRNAs (TP) at the clustering step are the
ones that were dysregulated in simulation and also identified as dysregulated
by MixEnrich. False positive mRNAs (FP) at this step are the ones that were
not dysregulated in simulation but identified as dysregulated by MixEnrich.
(DOCX 36 kb)
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