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Abstract

Background: The distinct types of hematological malignancies have different biological mechanisms and
prognoses. For instance, myelodysplastic syndrome (MDS) is generally indolent and low risk; however, it may
transform into acute myeloid leukemia (AML), which is much more aggressive.

Methods: We develop a novel network analysis approach that uses expression of eigengenes to delineate the
biological differences between these two diseases.

Results: We find that specific genes in the extracellular matrix pathway are underexpressed in AML. We validate this
finding in three ways: (a) We train our model on a microarray dataset of 364 cases and test it on an RNA Seq dataset of
74 cases. Our model showed 95% sensitivity and 86% specificity in the training dataset and showed 98% sensitivity
and 91% specificity in the test dataset. This confirms that the identified biological signatures are independent from
the expression profiling technology and independent from the training dataset.
(b) Immunocytochemistry confirms thatMMP9, an exemplar protein in the extracellular matrix, is underexpressed in
AML. (c)MMP9 is hypermethylated in the majority of AML cases (n=194, Welch’s t-test p-value < 10−138), which
complies with its low expression in AML.
Our novel network analysis approach is generalizable and useful in studying other complex diseases (e.g., breast
cancer prognosis). We implement our methodology in the Pigengene software package, which is publicly available
through Bioconductor.

Conclusions: Eigengenes define informative biological signatures that are robust with respect to expression profiling
technology. These signatures provide valuable information about the underlying biology of diseases, and they are
useful in predicting diagnosis and prognosis.
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Background
Acute myeloid leukemia (AML) is an aggressive type of
blood cancer and accounts for 1.2% of cancer deaths in the
United States [1]. It is the most common acute leukemia,
which is characterized by the rapid growth of immature
white blood cells. These cells interfere with the produc-
tion of normal blood cells in the bone marrow. Without
treatment, AML can lead to death within months after
diagnosis [2]. Myelodysplastic syndrome (MDS) are a set
of less aggressive diseases; however, about 30 to 40% of
MDS cases can transform into AML [3]. Therefore, it is
critical to delineate the exact mechanisms of this transfor-
mation [4].
Possible molecular mechanisms include genetic muta-

tions [5, 6], chromosomal abnormalities [7], and epige-
netic changes [8, 9]. For example, mutation and abnormal
expression of mRNA splicing genes such as SRSF2 [10]
and SF3B1 [11] are associated with the prognosis of MDS.
Overexpression of Bcl-2 increases resistance of MDS cells
to apoptosis [12], and it can play a role in the transforma-
tion into leukemia [13]. Similarly, the abnormal expression
of some miRNAs such as miR-125 and miR-155 can lead
to aberrant self-renewal of HSC [14], a characteristic
of AML.
Although investigating the differences between AML

and MDS at the molecular level has provided valuable
insight, the research in this area has only scratched the
surface of the problem. In particular, the current knowl-
edge is far from adequate for the development of strategies
for preventing or predicting the transformation of MDS
into AML [9]. Researchers have proposed gene expression
profiling as a systematic approach to explore the biology
and clinical heterogeneity of MDS.
Most notably, Microarray Innovations in Leukemia

(MILE), an international research consortium, assessed
the clinical utility of gene expression profiling for the
diagnosis and classification of leukemia subtypes [15, 16].
They investigated 3334 leukemia patients, including 202
AML with normal karyotype (AML-NK) and 164 MDS
cases in their study, and they developed a classifier to
distinguish MDS from AML. While their classifier could
correctly predict 93% of AML cases from expression pro-
files, it failed to identify half of MDS cases [16]. This
emphasized the heterogeneity of MDS and underlined
the need for more sophisticated approaches for analyzing
expression profiles. Specifically, the following challenges
limited the performance of the classification:

• The classifier was based only on the 100 most
differentially expressed genes. However, the
biological processes in a hematopoietic cell often
depend on the coordination of many more genes.
Because the status of the cell is determined by the
level of expression of hundreds of transcripts,

restricting the analysis to only 100 genes could
decrease the statistical power to a great extent [17].
Also, a random gene might be considered
differentially expressed due to biological or technical
noise or due to the difference in the analyzed cell
types. Such a gene would convolute a classification
based on differentially expressed genes [18].

• The produced data were inconsistent because of
multiple platforms and approaches used across
different institutions [9]. For instance, if a signature
was defined using the level of expression in a
microarray dataset, it would be very challenging to
interpret and use that signature in an RNA-Seq
dataset produced in a different laboratory [19].

We hypothesized that gene network analysis addresses
both of the above challenges because it models the
interactions between genes in a comprehensive structure
[20, 21] (Additional file 1: Note S1). Recently, Liu reviewed
the computational methods that employ a gene network
approach to identify biomarkers from high-throughput
data [22]. Gene networks provide a systematic way to
organize complex data, and to identify biomarkers that are
useful in improving diagnosis, prognosis and therapy of
diseases.
To address the above-mentioned challenges in anal-

ysis of expression profiles, we developed Pigengene, a
novel methodology that is inspired by—and builds upon—
coexpression network analysis and Bayesian networks.
Briefly, we identify gene modules using coexpression net-
work analysis [23]. We summarize the biological infor-
mation of each module in one eigengene using principal
component analysis (PCA) [24]. Our approach is fun-
damentally different from applying PCA directly on the
entire expression profile, which can lead to significant loss
of information [25]. We innovatively use eigengenes as
biological signatures (features) to identify themechanisms
underlying the disease. For instance, we use eigengenes
to train a Bayesian network that models the probabilistic
dependencies between all modules. Alternatively, we infer
a decision tree to predict the disease type based on eigen-
genes. The main idea of our methodology is illustrated in
Fig. 1.
We used our methodology to classify patients in the

MILE dataset. The accuracy of our model reached 95% for
AML and 86% for MDS thus significantly outperforming
the previously reported accuracy of 93 and 50%, respec-
tively [16] (Table 1). To show the generalizability of the
proposed approach, we report the results of applying it to
several cohorts of breast cancer.

Results
We identified 33 genemodules as clusters of genes that are
coexpressed in the 202 AML cases from the MILE dataset
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Fig. 1 Schematic view of the Pigengene methodology. a The input is a gene expression profile (matrix) provided by RNA-Seq or microarray. b The
coexpression network is built according to the correlation between gene pairs. c For each module, an eigengene is computed as a weighted
average of the expression of all genes in that module. d Optionally, a Bayesian network is fitted to the eigengenes to delineate the relationships
between modules. e A decision tree is fitted to the eigengenes and used for classification. f The results are validated on independent expression
datasets and also evaluated using other data types. For instance, DNA methylation profiles can confirm gene-silencing events [43]

[23] (Additional file 1: Note S2). The sizes of the modules
vary in the range of 21 to 888, with a mean and median of
153 and 75, respectively (Additional file 1: Figure S1).

Analysis of gene modules
Overrepresentation analysis reveals that some of themod-
ules are associated with canonical pathways and biological
processes. For instance, module 6 is enriched with genes
that are related to the cell cycle. That is, out of 421 genes
in the Reactome cell cycle pathway [26], 81 (19%) are
grouped in module 6, which consists of 255 genes (p-value
of the hypergeometric test < 10−37). Similarly, module
12 is associated with extracellular matrix, module 14 with
cytotoxic pathway (CD8+ T cells), module 15 with DNA
replication, and module 21 with translation (Additional
file 1: Figures S2 and S3 and Additional file 2: Table S2).
Module 33 is the smallest module containing 21 genes.

We named it HIST1 because almost all of its genes (20,
95%) encode proteins from the linker histone, or H1,

family (Additional file 3: Table S1). Half of the 39 genes
in module 28 are from the homeobox family. Considering
that this module contains 10 HOXA and 9 HOXB genes,
we named it HOXA&B module. It is highly enriched
with the homeobox genes that have been reported to be
associated with the development and prognosis of AML
[27, 28] (Additional file 1: Figure S4, Additional file 3:
Table S1 and Additional file 4: Table S3).

Eigengenes are associated with the disease
We summarized the biological information of each mod-
ule in one eigengene (Additional file 5: Table S4). An
eigengene of a module is a weighted average of expression
of all genes in that module. The weights were adjusted
such that the loss in the biological information is mini-
mized (Methods) [24, 29]. In theMILE dataset, all module
eigengenes present significantly different expression in
AML vs. MDS. The adjusted Welch’s t-test p-values are

Table 1 The confusion matrices show the accuracy of our decision tree on the training (MILE) and test (BCCA) datasets

Dataset MILE (train) BCCA (test)

Disease AML-NK MDS AML-NK MDS

Full tree (155 genes) 191 (95%) 141 (86%) 51 (98%) 20 (91%)

Reduced tree (14 genes) 181 (90%) 137 (84%) 51 (98%) 20 (91%)

Mills et al. [16] 188 (93%) 82 (50%)

Reference diagnosis 202 164 52 22

The percentages of correctly identified cases with respect to the reference diagnosis are shown in parentheses. Compared to Mills et al., our decision tree is 36% more
sensitive to MDS. The sensitivity to AML is comparable in both approaches
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in the range of 10−61 to 10−6, with a median of 10−24

(Additional file 1: Figure S5) [30].
We hypothesized that the eigengenes are important bio-

logical signatures that can predict the disease type solely
based on gene expression. To validate this hypothesis, we
developed an innovative approach to infer the values of
these eigengenes using the RNA-Seq data from an inde-
pendent dataset produced at the British Columbia Can-
cer Agency (BCCA) (Methods). We used this approach
to investigate the patterns common in the MILE and
BCCA datasets. Interestingly, eight eigengenes achieve
significant p-values (< 0.01, Bonferroni adjusted) on
both BCCA and MILE datasets, indicating that these
biological signatures are independent from the profiling
platform (Fig. 2 and Table 2). The eight differentially
expressed modules include module 28 (HOXA&B), mod-
ule 21 (translation), module 12 (extracellular matrix), and
module 14 (CD8+ T cells).
We fitted a Bayesian network to the eigengenes to

determine the relationships of the modules with each
other and with the type of hematological malignancy
(Additional file 1: Note S3) [31]. Descendants of the
“Disease” node, the variable that models the type of
malignancy, are enriched with genes known to be associ-
ated with AML (Fig. 3). The relatively high dependency
between these eigengenes and the disease type suggests
that they have useful biological information that can
explain the differences between the two diseases.

AML andMDS are different in their expression of
extracellular matrix, HOXA, and HOXB genes
We fitted a decision tree to the eight children of the
Disease node in our Bayesian network (R package C50 ver-
sion 0.1.0-24) [32]. We used only MILE data to infer the
topology of the tree and the corresponding parameters.
The algorithm automatically selected the extracellular
matrix and HOXA&B eigengenes (modules 12 and 28,
respectively). The inferred decision tree had high pre-
dictive accuracy (Fig. 4). Specifically, 191 AML-NK cases
(95%) and 141 MDS cases (86%) were correctly identified
(Additional file 6: Table S5).
The majority of AML cases (157, 78%) were identified

because of their low expression of extracellular matrix
genes (i.e., their normalized eigengene value was less
than −0.001). For the rest of the cases, which expressed
the extracellular matrix eigengene, the tree considered
the expression of the HOXA&B eigengene. If it was
over −0.004, the case was classified as AML. The tree
shows that for a case to be MDS, it must have relatively
high expression of the extracellular matrix (Fig. 5 and
Additional file 1: Figure S6) and low expression of
HOXA&B (Fig. 6 and Additional file 1: Figure S7).

Misclassification of MDSwas associated with risk factor
The International Prognostic Scoring System (IPSS) score
[3] is the standard tool for MDS risk stratification [33]. It
ranges from 0 to 3.5, and a higher value indicates a poorer

Fig. 2 The eight eigengenes that are differentially expressed in both datasets. We computed an eigengene for each module as a weighted average
of the expression of all genes in that module. The intensity of the colors in each heatmap corresponds to the normalized average expression. a Each
column corresponds to an eigengene. Each row shows the expression of a case from the MILE microarray dataset. AML cases were first clustered
and then plotted together with MDS cases for comparison. Three (five) eigengenes have clearly higher expression in MDS (AML) cases. Table 2
reports the adjusted p-values, shown in the green strips at the top. b The corresponding expression values are similar in the BCCA RNA-Seq dataset,
which indicates that these biological signatures are robust and independent from the profiling platform
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Table 2 These eigengenes were differentially expressed in AML vs. MDS cases

Module 1 4 12 14 17 21 25 28

P-value (MILE) 10−37 10−32 10−61 10−23 10−28 10−43 10−32 10−33

P-value (BCCA) 10−3 10−5 10−3 10−2 10−3 10−7 10−3 10−11

They had adjusted p-values (Welch’s t-test) less than 0.01 in both the MILE and BCCA datasets

prognosis. There are 30 MDS cases (18%) in the MILE
dataset with poor prognosis (IPSS ≥ 1.5). This set has
a significant overlap with the 23 cases “misclassified” by
our decision tree (Additional file 6: Table S5). Specifically,
15 MDS cases with poor prognosis show AML signatures
and are classified as AML by the tree (hypergeometric test
p-value < 10−7). This suggests that underexpression of
the extracellular genes and overexpression of the HOXA
genes in an MDS case can be considered as a risk factor.
Because transition into AML is more likely for such an
MDS case, a monitoring assay can be developed based on
these signatures.

Validating AML signatures in an independent dataset
We validated the performance of the tree on classifying 74
cases in the BCCA dataset. To this end, we inferred the
values of extracellular matrix and HOXA&B eigengenes
in the BCCA dataset (Methods). With the same above-
mentioned thresholds that performed well for the MILE
dataset, the tree correctly identified 51 (98%) of the AML-
NK and 20 (91%) of the MDS cases. The high accuracy of
our decision tree was helpful in correcting a clerical error
in annotating the dataset. In particular, two BCCA cases
(B118 and B129), originally labeled with MDS, have sig-
natures very similar to AML (Additional file 5: Table S4).

Fig. 3 The Bayesian network fitted to the eigengenes. Each node represents an eigengene of a module. The arcs model the probabilistic
dependencies between the modules [86]. The “Disease” node is set to 1 for AML and 0 for MDS, and its children are highlighted in pink. Some
modules are labeled based on their association with a biological process or a pathway (Additional file 2: Table S2). We used Miller et al., survey to
identify the 427 genes reported to be associated with AML in at least three studies [81] (Additional file 3: Table S1). For each module, the percentage
of AML-related genes is noted. The percentages that exceed 5% are shown in red. As expected, most of the children of Disease are enriched in
genes known to be associated with AML. Specifically, the average of percentages over the children of the Disease node is 10%, which is twice the
average of all modules (5%). Also, hypergeometric tests showed that modules 3, 7, 12, and 28 are statistically enriched with AML-related genes
(Bonferroni adjusted p-values are 10−7, 10−13, 10−3, and 10−8, respectively). All four of these modules are descendants of the Disease node
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Fig. 4 A simple decision tree for distinguishing AML from MDS cases.
If the normalized extracellular matrix eigengene of a case is less than
-0.001, it is classified as AML. Otherwise, the HOXA&B eigengene
determines whether the case is AML (> −0.004) or MDS (≤ −0.004).
The number of cases classified in each leaf is noted for both the MILE
(left) and the BCCA (right) datasets. Only the middle leaf corresponds
to MDS. At the fixed thresholds shown above, this tree correctly
classified 328 cases (90%) in the MILE dataset (the training set) and 71
cases (96%) in the BCCA dataset (the test set)

Fig. 5 Comparing the expression of extracellular region genes. Each
column shows the expression of a gene from the extracellular matrix
module that is associated with the “extracellular region” in the cellular
component category of Gene Ontology (GO). For clarity, each column
is scaled by subtracting its mean and dividing by its standard
deviation. Each row corresponds to a sample from the MILE dataset.
These 36 genes are generally underexpressed in AML compared to
MDS. The expression of all 133 genes in the extracellular matrix
module have a similar pattern (Additional file 1: Figure S6)

Fig. 6 Comparing the expression of genes in the HOXA&B module.
Expression of every member of HOXA&B module is shown in one
column. Each row corresponds to a sample from the MILE dataset.
The majority of HOXA and HOXB genes in this module are not
expressed in MDS. Their expression in AML are variable indicating the
heterogeneity of the disease. They anticorrelate with GNG2, CD48, and
APP, which have the least negative weight (-0.7) in the corresponding
eigengene (the green strip at the top). These patterns are similar in the
BCCA dataset (Additional file 1: Figure S7)

Interestingly, a second review revealed that their correct
diagnosis is in fact tAML (therapy–related AML) and
AML–M1, respectively.
Although the decision tree was trained using only AML-

NK subtype in the MILE dataset, its performance in
differentiating some other subtypes of AML from MDS
in the BCCA dataset is remarkable. In particular, all of
the four AML-t(8;21) cases (100%), all of the four AML
cases with complex karyotype cases (100%), all of the
four AML cases with 11q23 abnormality (100%), and
9 out of 11 AML-inv(16) cases (82%) are all correctly
classified as AML. However, cases from other subtypes,
such as AML-t(15;17), AML-M6, and tAML, do not
always show strong extracellular or HOXA&B signatures
of AML-NK and are frequently misclassified as MDS
(Additional file 6: Table S5). This is expected, because
these three subtypes of AML are distinct and too dif-
ferent from AML-NK. In particular, leukemic cells in
AML-t(15;17) and AML-M6 are relatively more differen-
tiated [34], and may produce some extracellular matrix
proteins.
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Aminimal gene set for clinical testing
Considering the good performance of the decision tree, it
is useful to develop a clinical test based on gene expres-
sion. The extracellular matrix and HOXA&B modules
contain 113 and 42 genes, respectively. To infer the cor-
responding eigengenes, the expression of 155 genes are
needed in total. If the number of genes is reduced with-
out significant loss of accuracy, the test will be easier to
use in clinical settings. Because the genes are correlated
with each other in each module, shrinking the tree is
expected to have little—or no—effect on the accuracy of
classification.
Using a greedy approach, we excluded the majority of

the 155 genes, and obtained a decision tree that need
the expression values of only 14 genes (9%) (Methods).
The performance of the reduced tree is comparable to the
original tree (Table 1). On the training set, the accuracy
dropps by only 5% for AML and by 2% for MDS. On the
test set, however, the reduced tree is as accurate as the full
tree (Additional file 6: Table S5).
The list of 14 genes used in the reduces tree included

PGLYRP1, MMP9, CEACAM6, ARG1, MMP8, ANXA3,
RGL4, SLPI, HP, CEACAM1, MGAM, SYNE1 from the
extracellular matrix module, and HOXB-AS3 and HOXA3
from HOXA&B module (Fig. 7).

The significance of the extracellular matrix pathway in AML
The relationship between HOX genes and AML and their
role in leukemogenesis are extensively studied [27, 27, 28].
Researchers have also explained the significance of the
extracellular matrix pathway in the prognosis of cancers
in general [35]. However, its role in the development
of AML and other leukemias is more complicated. In

addition to regulating cell growth [36], proliferation [37],
differentiation [38], and apoptosis [39], it also mediates
themigration of hematopoietic stem cells through the ves-
sels [40]. Module 12 is enriched with extracellular matrix
genes (Additional file 1: Figure S8). We investigated these
genes, which defined a significant signature in our deci-
sion tree (Fig. 4).
Gene Ontology Cellular Component (GO-CC) analy-

sis showed that 36 of 113 genes in module 12 code for
proteins in the extracellular region (Additional file 1:
Figure S8 and Additional file 7: Table S7). Moreover, 77
of the genes in this module are associated with at least
one of the following categories: extracellular vesicular exo-
some (44 genes), extracellular region (36), extracellular
space (30 genes), and plasma membrane (31 genes). We
noted that 18 genes (16%) are located on chromosome
19. Almost all of these 113 genes are underexpressed in
AML (Fig. 5 andAdditional file 1: Figure S6). The enriched
biological processes include: immune system process
(adjusted p-value< 10−9), killing by host of symbiont cells
(< 10−3), killing of cells in other organism involved in
symbiotic interaction (< 10−2), defense response to fun-
gus (< 10−3), antibacterial humoral response (< 10−2),
extracellular matrix disassembly (< 10−2), and response
to lipopolysaccharide (< 10−2) (Additional file 8: Table
S9) [41].
One particularly interesting gene from this module was

MMP9, which had a relatively high contribution to the
eigengene. Its weight is 0.92, the highest in the extracellu-
lar matrix pathway (Reactome [42]), and the eighth in the
module (Additional file 7: Table S7). MMP9 is a member
of the matrix metalloproteinase (MMP) family, which has
23 members.

Fig. 7 Comparing the expression of the 14 genes used in the reduced tree. Expression of the 14 genes that contribute to the reduced (compact)
decision tree in the aMILE and b BCCA datasets are shown. The 12 extracellular matrix and the two HOXA genes are generally silenced and
overexpressed in AML, respectively
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They remodel and degrade the extracellular matrix by
cleaving its components [42]. In addition to MMP9, this
module includes two other members of MMP family,
namely MMP8 (weight = 0.91) and MMP25 (weight =
0.87). All of these three genes are underexpressed in
AML (Additional file 1: Figure S9a). One way to con-
firm that these genes are silenced in AML would be to
check epigenetic factors such as DNA methylation, which
generally anticorrelates with gene expression [43]. We
compared 194 AML cases of Acute Myeloid Leukemia
(LAML) dataset from The Cancer Genome Atlas (TCGA)
with 368 control cases, and we confirmed that these three
genes were heavily methylated in AML (Additional file 1:
Figure S9b and Additional file 9).

Validating gene expression changes at the protein level
Given the strong discriminating capability of extracellu-
lar matrix gene expression in differentiating AML from
MDS (Fig. 4), we attempted to determine whether a simple
immunohistochemical stain would provide such a differ-
entiation. We selected MMP9 to test this, as it provided
the highest-weighted contribution to the eigengene (0.92)
within the extracellular matrix set of genes. We obtained
10 previously diagnosed AML cases and 10 previously
diagnosedMDS cases, and performed immunostaining on
the diagnostic bone marrow biopsies. As seen in Fig. 8,

MMP9 staining is drastically lower in the AML samples
compared to the MDS cases.

Validating the identified coexpression pattern in other
AML-related datasets
The 113 genes in the extracellular matrix module are
correlated and underexpressed in AML. To validate that
the observed coexpression pattern is specifically asso-
ciated with AML, we investigated the expression of
these 113 genes in a large collection of human datasets.
Specifically, we used Search-Based Exploration of Expres-
sion Compendium (SEEK) [44] to objectively compare
the coexpression of these genes across a collection of
5210 datasets. SEEK automatically scored and ranked the
datasets based on the significance of coexpression of our
113 genes. SEEK also computed empirical p-values to
assess the statistical significance of scores. Specifically,
random scores for each dataset was computed based on
5000 queries of 113 random genes, and a p-value was
reported as the fraction of random scores that were higher
than the reported score. The collection contains 61 AML-
related datasets (1.2%) , which mostly score high in the
ranked list (Additional file 10: Table S8). In particular, all
of the five top datasets are related to AML (GEO acces-
sion numbers: GSE15434 [45], GSE16015 [46], GSE12417
[47], GSE21261 [48], and GSE30599 [49]; with 251, 107,

Fig. 8 Expression ofMMP9 in AML and MDS. The bone marrow of 10 patients with AML (upper panels) and 10 patients with MDS lower panels) was
immunostained in parallel with anMMP9 antibody.MMP9 expression is reduced to absent in AML blasts. Where staining is seen in AML, it is only
present in mature myeloid cells but not leukemic cells
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405, 96, and 29 samples, respectively). The coexpression
scores are 0.31, 0.29, 0.28, 0.28, and 0.27, respectively; and
the adjusted empirical p-values are smaller than 10−37 for
each of these five datasets. A hypergeometric test con-
firmed that the coexpression of the queried genes is signif-
icantly associated with AML (p-value < 10−9). Thereby,
our unbiased and objective SEEK analysis indicates that
these genes define an expression signature that is specific
to AML.

Generalizability to studying other cancers
The described pipeline can also be applied to analyze
other types of cancers and answer different biological
questions. To demonstrate this, we applied our approach
to a prognostic question in breast cancer research. Is it
possible to identify low-risk breast cancer cases based
solely on gene expression and thereby avoid overtreating
a subset of patients who likely would not benefit from
the additional toxic therapy [50]? In this type of prog-
nostic setting, the emphasis lies on achieving very high
specificity for predicted low-risk cases. For instance, the
TRANSBIG Consortium [51] considers a test to be clini-
cally practicable and reliable for ER+ breast cancer only if
at least 88% of cases classified as low-risk have more than
a 10-year overall survival. However, the only clinical test
with such high precision is Oncotype DX, which is appli-
cable to only one clinical subtype of breast cancer, stage
I ER+ tumors [50]. Unfortunately, this method cannot be
generalized to other breast cancer subtypes [52].
We analyzed 1374 ER+ cases from three datasets to train

and validate our model (Methods and Additional file 1:
Note S4). The low-risk specificity of our model is above
89% for all three datasets (Table 3 and Additional file 1:
Figure S11). Twomodules with 319 and 193 genes, respec-
tively, were automatically selected (Additional file 11:
Table S6). The larger module is associated with themitotic
cell cycle (p-value < 10−71) and chromosome segregation
(p-value < 10−28). This module has 16 genes in common
with the genes in the PAM50 assay, which is widely used
in clinical settings to identify breast cancer subtypes [53].
These common genes include UBE2T, BIRC5, CCNB1,
CEP55, MELK, UBE2C, CENPF, PTTG1, EXO1, ANLN,

CCNE1 CDC20, MKI67, KIF2C, MAPT, and FGFR4. This
is a significant overlap (p-value of the hypergeometric test
< 10−10).
The smallermodule is associated with translational con-

trol (Additional file 1: Figure S12). The expression of the
majority of the genes (122, 63%) is correlated with poor
prognosis. Notable genes include AKT1, GSK3B, MTOR,
RAF1, and SRC from the epidermal growth factor recep-
tor (ErbB) signaling pathway [54]. In contrast, the high
expression of 71 genes (37%) in this module—including
16 ribosome-related genes such as RPL22, RPL26, RPS27,
RPS27A, RPL13A, RPL21 and RPLP0—correlate with
good prognosis. This may be predicted, as the loss of
function or abnormal expression of proteins involved in
ribosomal biogenesis is associated with activation of the
tumor suppressor p53 pathway [55, 56]. A possible mech-
anism of p53 activation could be through binding free
(non-ribosome-bound) ribosomal proteins with MDM2,
which modulates the inhibitory activity of MDM2 on
p53 [55].
None of the 193 genes from the smaller module is in

common with PAM50. This suggests that the correspond-
ing eigengene can be considered as a novel biological
signature to assess breast cancer prognosis, and it can be
a basis for improving clinical tests. Overall, our model
is biologically plausible because regulated cell cycle and
controlled translation are generally associated with better
prognostic outcome [57].

Discussion
Biological processes in a cell often require coordination
between multiple genes and proteins, not just one gene
or a single protein. Accordingly, we used network analysis
to delineate the differences in gene expression profiles of
AML andMDS in a systematic and robust way (Additional
file 1: Note S1). We compared the expression at the mod-
ule level to minimize the effect of artifacts such as a
random change in expression of an isolated gene and other
biological or technical noise (Additional file 1: Figure S10).
The results of our study underline the association of the

extracellular matrix pathway with AML, and also confirm
that the overexpression of homeobox genes is a biological

Table 3 Accuracy of predicting breast cancer risk

Dataset METABRIC discovery METABRIC validation MILLER (test)

Low risk High risk Low risk High risk Low risk High risk

Predicted low risk 157 (94%) 11 (7%) 107 (89%) 13 (11%) 68 (93%) 5 (7%)

Predicted medium risk 278 (68%) 134 (33%) 236 (70%) 99 (30%) 55 (68%) 26 (32%)

Predicted high risk 21 (35%) 39 (65%) 33 (42%) 46 (58%) 29 (62%) 18 (38%)

The confusion matrices show the performance of our decision tree on three datasets. The percentage of predicted cases with respect to the total number of predictions in
each group is shown in parentheses. From a clinical standpoint, it is important to achieve a high precision (positive predictive value) for low risk cases (shown in bold) to
confidently recommend a less agressive treatment regimen for a subset of patients. The probability of surviving more than 10 years is above 89% for the predicted low risk
cases in all the three datasets (Additional file 1: Figure S11)
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characteristic of AML. These two signatures are biologi-
cally related [58]. Homeobox genes encode transcription
factors that regulate the development of body structures
during the embryonic period [59]. They also have key
roles in adult tissue remodeling and pathogenesis [60].
In particular, specific homeobox genes can regulate the
extracellular matrix through the expression of matrix-
degrading proteinases [61]. For instance, the expres-
sion of the HOXA3 and HOXB3 are upregulated during
wound healing to remodel the extracellular matrix and to
increase endothelial cell migration [62]. Overexpression of
HOXA7, which is associated with poor prognosis of AML
[63], can modify the interactions between hematopoietic
progenitor cells and the extracellular matrix in the bone
marrow. This alteration can be responsible for blocking
the differentiation process in AML cells [64].
The two signatures are highly associated with AML to

such a degree that they can be used to design an accu-
rate clinical test for differential diagnosis between AML
and MDS. Furthermore, the following confirmatory evi-
dence supports our findings on the significance of the
extracellular matrix pathway in AML:

• Our decision tree can accurately predict the diagnosis
in a validating dataset (BCCA) without the need to
change the parameters that were fitted to the training
dataset (MILE). Our results confirm that the model
was not overfitted to the training dataset.

• SEEK analysis confirms that the genes in the
extracellular matrix module are coexpressed in
several other AML-related datasets.

• The three MMP genes in the extracellular matrix,
MMP9, MMP8, andMMP25, are methylated in AML.

• Immunocytochemistry showed that MMP9 is
underexpressed in AML at the protein level.

MMP9 is an important gene in our analysis, and it
has a distinct expression profile between the two dis-
eases. MMP9 acts as a cell surface transducer by cleav-
ing the extracellular matrix and other proteins, including
chemokines, cytokines, and growth factor receptors. In
this way, it can regulate key signaling pathways in cell
growth, migration, invasion, inflammation, and angiogen-
esis [65]. While MMP9 was previously reported to have a
critical role in AML invasion and metastasis [66–69], the
relationship between its expression and the prognosis of
hematological malignancies is complicated. For instance,
Aref et al. report that 43 pretreatment AML cases had
significantly lower expression of MMP9 as compared to
10 controls. However, after chemotherapy, MMP9 was
expressed significantly higher in relapsed cases as com-
pared to complete remission cases [70].
In this context, the high expression of MMP9 in MDS,

which we showed is more than AML, is interesting.

Correspondingly, Travaglino et al. measured MMP2 and
MMP9 in myeloid cells of 143 MDS cases using immuno-
cytochemistry. They found that high MMP levels are
associated with longer overall survival [71]. One possi-
ble interpretation is that by deregulating the extracellular
matrix, MMP9 may interrupt the survival signalling in
MDS and lead to apoptosis. In contrast, lowering MMP9
expression may prolong the life of the MDS cells and facil-
itate the transition into AML. MMP9 processing of the
matrix may also have an impact on blast cell invasion, dis-
semination, and homing [70]. However, functional studies
will be needed to determine the mechanism and impact
ofMMP9 on myeloid cancers. A competing theory would
be that the observed differences in the extracellular matrix
activity might be due to differences in the underlying
cell-types.
Our approach has novel methodological contributions

to gene expression analysis. While other scholars have
used weights (loadings) of eigengenes to study genes in
a module [24], we are the first to use values of eigen-
genes directly as biological signatures. We developed an
approach to infer and compare eigengenes across datasets.
Our approach is fundamentally different from applying
PCA directly on the entire expression profile, which is not
a promising approach because the first few PCs may not
have enough information on the modules’ structure [25].
An analysis based on a limited number of genes with

the best p-value can be convoluted by random, dramatic
expression changes due to biological or technical noise
[17]. In contrast, because an eigengene is a weighted
average expression of several genes, our systematic and
holistic approach is much more robust than the alterna-
tive approaches that select one or a few genes from each
module [72, 73]. We show that our methodology is gen-
eralizable and useful in studying other malignancies by
applying it to several breast cancer datasets.

Conclusions
Eigengenes are robust informative biological signatures.
They are useful in predicting the diagnosis and prognosis,
and also, in delineating the molecular characteristics of
diseases. For instance, we used large-scale network analy-
sis to show that underexpression of particular genes in the
extracellular matrix pathway is a specific characteristic of
AML.

Methods
The AML gene expression datasets
We downloaded the expression profiles of 202 AML-
NK and 164 MDS cases from Gene Expression Omnibus
(GEO) (series number GSE15061) [16], Additional file 12.
The dataset is part of the expression MIcroarray analysis
for diagnosis of LEukaemia (MILE) series. For simplicity,
we refer to this expression profile as the MILE dataset,
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which was used to train our model. To validate our model
and test the accuracy of classification, we used RNA-Seq
data from 133 AML and 22 MDS cases analyzed at British
Columbia Cancer Agency. For simplicity, we refer to this
expression profile as the BCCA dataset, which is indepen-
dent from the MILE dataset. From the 133 AML cases,
52 were AML-NK and thus were comparable with the 202
cases from the MILE dataset (Additional file 6: Table S5).
We used Sailfish (version 0.6.3) [74] to compute reads per
kilobase per million mapped reads (RPKM) values [75] for
each gene, and considered the natural logarithm of RPKM
to measure gene expression.

Breast cancer datasets
We used 640 ER+ cases from the Molecular Tax-
onomy of Breast Cancer International Consortium
(METABRIC) [76] discovery dataset for training.We eval-
uated the resulting model on 533 different cases from
the METABRIC validation dataset. We also validated the
prognostic value of the inferred biological signatures using
201 cases from a second independent dataset produced by
Miller et al. [77] (GEO accession number GSE3494). The
details of our analysis on these three datasets is presented
in Additional file 1: Note S4.

Detailed description of the Pigengenemethodology
Preprocessing The input to the Pigengene methodol-
ogy includes two gene expression profiles corresponding
to two biological conditions (e.g., AML and MDS in
this paper). Optionally, the user can provide a validat-
ing dataset (e.g., BCCA dataset). The train and validation
datasets do not need to be assayed using the same plat-
form. Thas is, one dataset can be microarray and the other
one can be RNA-Seq. Figure 1 shows the main steps of the
Pigengene methodology. More specificity, the first step of
the analysis is to exclude the genes that have too little vari-
ation or negligible expression across the conditions. This
can be done using a differential expressed analysis, which
computes a p-value for each gene with the null hypothesis
that it is similarly expressed in the two conditions. Con-
sistent with the common approach in the gene network
analysis [78, 79], we kept only the top one-third genes with
the best p-values in our analysis.

Constructing the coexpression network: We used the
WGCNA package to construct a coexpression gene net-
work, in which each node (vertex) is a gene and the edge
(connection) between two genes is weighted based on the
correlation between their expression values (Additional
file 1: Note S2). WGCNA uses a hierarchical clustering
approach to identify gene modules from the coexpression
network.

Computing eigengenes: We used principal component
analysis (PCA) to compute an eigengene for each module.

First, we balanced the number of AML and MDS
cases using oversampling, so that both disease types
had comparable representatives in the analysis. Specif-
ically, we repeated the data of each AML and MDS
case 9 and 11 times, and obtained 1818 and 1804 sam-
ples from each type, respectively. Then, we applied the
moduleEigengenes() function from the WGCNA
package on the oversampled data. We ran it with the
default parameters, and computed an eigengene for each
of the modules identified earlier. This function computed
the first principal component of eachmodule, which max-
imized the explained variance ensuring the loss in the bio-
logical information was minimized. [24, 29] (Additional
file 5: Table S4).

Inferring the decision tree: We use eigengenes as
features to infer a decision tree (R package C50 version
0.1.0-24) [32]. While the C50 package uses a heuristic
approach to select the best set of features, its default
arguments does not result in optimal performance
when too many features are provided. The solutions
include: 1) using a Bayesian network to determine the
relationships of the modules with each other and with
the type of hematological malignancy (Additional file 1:
Note S3) [31], 2) using a feature scoring algorithm such
as FeaLect [80], and 3) adjusting the C50 parameters,
for example, enforcing the number of samples in each
node to be at least 10%. The first and the third solutions
are implemented in the Pigengene package through the
bnNum argument of the one.step.pigengene()
function and the minPerLeaf argument of the
make.decision.tree() function, respectively. These
two approaches resulted in the same decision tree
presented in this paper (Fig. 4).

Inferring the values of eigengenes in an independent
dataset: When a validation dataset is available (i.e., the
BCCA dataset in our study), the values of the eigen-
genes need to be inferred in the validation dataset. We
computed eigengenes using the MILE dataset, which is a
microarray dataset. It was challenging to compute the val-
ues of the same eigengenes for BCCA cases because the
BCCA dataset was produced using a different platform
(i.e., RNA-Seq) [19]. The simple approach of applying
PCA on the BCCA data would fail; It would result in
different weights (loadings), and the eigengenes would
not be comparable between the two datasets. Instead,
we inferred the values of the eigengenes for BCCA cases
using the same weights obtained from the MILE dataset.
Specifically, for each module, we identified the genes
that are common in both datasets. Then, we scaled the
expression of those genes by subtracting their mean
and dividing by their standard deviation. We used the
scaled expression values to compute the eigengene (the
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weighted average of expression) for each BCCA case.
The project.eigen() function from our Pigengene
package facilitates this approach.

Reducing the number of genes needed for the decision
tree: Our decision tree used the eigengenes of HOXA&B
and extracellular matrix modules, which were weighted
averages of the expression of 42 and 155 genes, respec-
tively. To reduce the number of genes, we repeated the
following greedy procedure [72]: We excluded the gene
with the lowest absolute weight, inferred the eigengenes
using the remaining genes, and used the updated eigen-
genes as input to the decision tree. In each iteration,
we used the same tree structure and thresholds, and we
measured the accuracy of classification. We repeated this
procedure until the tree needed only 14 genes, because
excluding any more genes would result in a significant
decline in the accuracy of the classification. The suffi-
ciency of these 14 related genes indicates that they contain
the core biological information needed for classification.
The compact.tree() function from our Pigengene
package facilitates this approach.

Code availability
“Pigengene”, a documented R package that implements
our approach, is publicly available through Bioconductor:
http://bioconductor.org/packages/Pigengene. The results
presented in this paper can be reproduced using version
0.99.19. To apply our methodology in other studies, we
strongly recommend using the most recent version. We
encourage users to use the Bioconductor mailing list to
send bug reports and seek technical help.

Additional files

Additional file 1: Supplementary Notes and Figures. (PDF 1656 kb)

Additional file 2: Table S2. Overrepresented pathways. The canonical
pathways that are overrepresented in the modules are available as part of
the online supplementary materials. Each sheet in the excel file
corresponds to a module. The statistics for each pathway (gene set) is
reported on one row, in particular, the p-value of a hypergeometric test
with the null hypothesis that the genes from the pathway were observed
in the module by chance. The other columns include the name of the
pathway (Set Name), the number of genes observed in the module (In
Module), the number of the genes from the pathway that are present in
our pool of 9,166 genes (Set Size), percentage of those genes that are
in the module (% In Module), the name of the collection in MSIGDB
[83] (Source), and a link to more information on the pathway
(Description). There was no statistically significant pathway with
p-value less than 10−4 for the modules that are not included. (XLS 131 kb)

Additional file 3: Table S1.Module assignments. The module
assignments for all of the 9,166 genes are available as part of the online
supplementary materials. The columns of the table include:

• Symbol: The gene name.
• ENTREZ ID: The gene ID in the Global Query Cross-Database

Search System.

• Probe representative: The representative probe mapped to
this gene.

• Adjusted p-value: For the null hypothesis that expression is
similar in AML and MDS (Supplementary Note 2).

• Module ID: The assigned module.
• IMC: Intramodular connectivity.
• EMC: Extramodular connectivity.
• Rank: The rank of the gene in the module based on its intramodular

connectivity.
• # of references The number of studies that reported the gene

being relevant to AML according to Miller et al,. survey [81].

Intramodular and extramodular connectivities were computed by
intramodularConnectivity() function from WGNCA package.
They measure the overall correlation of the gene with other genes within
and outside the module, respectively. The genes with the most
connectivity in a module are considered as the “hubs” of that module [82].
See WGNCA manual for more information. (XLS 1618 kb )

Additional file 4: Table S3. Enrichment in AML-associated genes. The
enrichment of modules in genes associated with AML is reported as part of
the online supplementary materials. Miller et al,. systematically surveyed 25
published reports of gene expression profiling in AML [81]. We used this
survey to score the modules based on their know association with AML.
For instance, the # of Reported Genes-2 and Score-2 columns
respectively report the number and the percentage of genes in each
module that were reported to be related to AML in at least 2 studies
according to Miller et al,. survey. The Module ID, Module Size, and
the most overrepresented pathway in each module are also reported.
These data are plotted in Additional file 1: Figure S4. (XLS 39.5 kb)

Additional file 5: Table S4. Eigengenes. The eigengenes computed for all
gene modules are available as part of the online supplementary materials.
Each row reports the values for a sample and columns correspond to
modules. The first sheet was computed using moduleEigengenes
function from WGCNA package, which applied PCA on the gene
expression in the MILE dataset. The second sheet shows the inferred
expression of these 33 eigengenes in the BCCA dataset (Methods). Module
zero contains the set of “outlier” genes that did not correlated with each
other or with the rest of the genome. WGCNA could not confidently assign
them to any module and we did not use them in our analysis. (XLS 334 kb)

Additional file 6: Table S5. Classification results. The results of
classification of the BCCA and the MILE cases using our decision tree are
available as part of the online supplementary materials. The first sheet
reports classification results of 176 BCCA patients. For each case sample ID,
age, gender and the corresponding cohort are reported. The other
columns of the table include:

• Sequenced Tissue: Bone marrow (BM) or peripheral blood (PB).
• RIN: The RNA Integrity Number, a value in the range of 1–10

measuring the quality of the RNA samples [84]. A higher value
corresponds to less degradation of RNA.

• Subtype: The AML subtypes were diagnosed based on
chromosomal abnormalities and other factors. AML-NK stands for
AML with normal karyotype. tAML and tMDS are therapy related.

• Type: All AML subtypes were labeled as AML. MDS and tMDS were
labeled as MDS, and 21 gray-highlighted cases that had clinical and
pathological characteristics of both diseases were labeled as
AML-MDS.

• Prediction (Full Tree) The label predicted by the decision
tree using the inferred extracellular matrix and HOXA&B eigengenes.
relevant misclassified.

• Prediction (Shrunk Tree) The label predicted by the
shrunk decision tree using expression of only 14 genes from the
extracellular matrix and HOXA&B modules.

• Signature The leaf of the full decision tree determined based on
the expression of the extracellular matrix (ECM) and HOXA&B
eigengenes.

Similarly, the second sheet reports classification results of 366 patients from
the MILE dataset. Additional information such as IPSS, blast, and karyotype
categories are included from MILE study [16]. The misclassified cases by
either the full or the shrunk tree are highlighted in yellow. (XLS 155 kb)

http://bioconductor.org/packages/Pigengene
http://dx.doi.org/10.1186/s12920-017-0253-6
http://dx.doi.org/10.1186/s12920-017-0253-6
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http://dx.doi.org/10.1186/s12920-017-0253-6xls
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http://dx.doi.org/10.1186/s12920-017-0253-6
http://dx.doi.org/10.1186/s12920-017-0253-6xls
http://dx.doi.org/10.1186/s12920-017-0253-6
http://dx.doi.org/10.1186/s12920-017-0253-6xls
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Additional file 7: Table S7. The extracellular matrix module. For each
gene in the extracellular matrix module, the cellular component ontology
(GO-CC) is available as part of the online supplementary materials. The
genes are ordered according to their weight (also known as “membership”
[85]) in the module eigengene, e.g., the first gene has the highest
contribution to the eigengene. See the description of Additional file 2:
Table S1 for the definition of other columns. (XLS 37 kb)

Additional file 8: Table S9. Biological processes. We used PANTHER
(Version 10) [41] to identify the GO biological processes that are enriched
in the 113 genes in our extracellular module. The columns of the resulting
table include the name of GO biological process, the number of genes in
the corresponding category (Homo sapiens), the number of overlapping
genes, the expected overlap, the fold enrichment, and the
Bonferroni-adjusted p-value. (XLS 20 kb)

Additional file 9: Supplementary Data 1. DNA-methylation. The DNA
methylation ofMMP9,MMP8, andMMP25 genes in TCGA dataset are
available as part of the online supplementary materials. The two sheets
include the patient barcodes for 194 AML and 368 control samples. The β

values were reported at cg04656101 (equivalent to chr20:44,645,014 in
hg19), cg01092036 (chr11:102,595), and cg02680314 (chr16:3,097,388),
respectively (Additional file 1: Figure S9b). (XLS 102 kb)

Additional file 10: Table S8. Validating coexpression patterns in 5,210
datasets. The descriptions and names of 5,210 datasets used to perform
coexpression analysis are available as part of the online supplementary
materials. SEEK sorted the datasets based on their coexpression score
computed using the 113 genes from our extracellular matrix module. The
AML-related datasets, highlighted in yellow, are frequent at the top of the
list. The details of coexpression score and p-value computation are defined
in the corresponding publication [44]. (XLS 1044 kb)

Additional file 11: Table S6. The cell cycle and translational control
modules. Two modules with 319 and 193 genes were automatically
selected by breast cancer survival analysis. In each sheet, gene symbols,
Entrez IDs, and weights in the corresponding modules are reported. Genes
are sorted based on their weights. (XLS 55 kb)

Additional file 12: Supplementary Code 1. Geo2R. The Geo2R script, used
to compute p-values for probes, is available as part of the online
supplementary materials. The process starts by downloading MILE data
from GEO. (TXT 5.91 kb)
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