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Abstract

Background: Single base level information from next-generation sequencing (NGS) allows for the quantitative assessment
of biological phenomena such as mosaicism or allele-specific features in healthy and diseased cells. Such studies often
present with computationally challenging burdens that hinder genome-wide investigations across large datasets that are
now becoming available through the 1,000 Genomes Project and The Cancer Genome Atlas (TCGA) initiatives.

Results:We present ASEQ, a tool to perform gene-level allele-specific expression (ASE) analysis from paired genomic and
transcriptomic NGS data without requiring paternal and maternal genome data. ASEQ offers an easy-to-use set of modes
that transparently to the user takes full advantage of a built-in fast computational engine. We report its performances on a
set of 20 individuals from the 1,000 Genomes Project and show its detection power on imprinted genes. Next we
demonstrate high level of ASE calls concordance when comparing it to AlleleSeq and MBASED tools. Finally, using a prostate
cancer dataset we report on a higher fraction of ASE genes with respect to healthy individuals and show allele-specific
events nominated by ASEQ in genes that are implicated in the disease.

Conclusions: ASEQ can be used to rapidly and reliably screen large NGS datasets for the identification of allele specific
features. It can be integrated in any NGS pipeline and runs on computer systems with multiple CPUs, CPUs with multiple
cores or across clusters of machines.

Keywords: Allele-specific features, Parallel computation, Genome analysis, Transcriptome analysis, Next-generation
sequencing, SNPs
Background
Next-generation sequencing (NGS) provides unprecedented
single base level information of the human genome and tran-
scriptome and opens up the investigation of previously unex-
plored biological questions. By integrating information from
individuals’ genetic makeup accessible in sequencing reads, it
is possible to quantitatively estimate DNA somatic lesion
clonality and infer tumor evolution, mosaicisms, or allele
specific expression and binding [1-5]. Allele specific expres-
sion (ASE) is a common phenomenon observed in human
cells where transcription originates predominantly from one
allele [6,7]. Imprinted genes, physiological conditions (as for
chromosome X inactivation) or other mechanisms affecting
multiple sites of the human genome can contribute to the
phenotypical human variability [6]. Specifically, ASE was
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demonstrated relevant to tumorigenesis in particular with re-
spect to tumor-suppressor genes [8]. Transcript degradation
by miRNA, mono-allelic disruption of a regulatory region or
alternative splicing patterns, and alternative polyadenilation
can initiate ASE [9-11] as well as epigenetic phenomena, like
histone modifications inherited during mitosis or DNA
methylation [7,12].
Available ASE analysis tools [4,5,13-15] either require trios,

i.e. genomic information from individual’s parents, or solely
rely on RNA-seq data with limitations in terms of exploring
large datasets or in potential high false positive rates, respect-
ively. To overcome these limitations and readily extend the
analysis to large datasets, we developed ASEQ, an application
that provides a complete and easy-to-use set of functional-
ities to optimally and rapidly perform ASE studies. We im-
plemented an original method to identify ASE genes from
paired genomic and transcriptomic NGS data that takes full
advantage of a built-in fast computational engine thus redu-
cing the effort of single base level computation, which still
represents one of the major bottlenecks in NGS data
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analysis. Indeed, to deal with the computationally intense
task of calculating reads coverage at specific chromosomal
positions (namely the pileup), which is fundamental in ASE
studies, ASEQ combines the power of multi-threaded com-
putation with samtools C APIs, a programming library that
offers rapid random access functionalities to indexed align-
ment files [16]. We first i) tested the performances of our
tool on a selected set of 1,000 Genomes Project individuals,
ii) validated its allele-specific expression detection power on
imprinted genes, and iii) compared the performance with
existing tools. Next, we queried paired whole exomes se-
quencing and transcriptomes RNA-seq data of 22 individuals
to nominate ASE genes potentially involved in prostate
cancer.

Implementation
ASEQ is a command line application written in C that
provides high performing NGS data retrieval features
and statistical assessment of allele specific features.
ASEQ includes a main execution mode, ASE, that per-
forms the allele-specific expression computations and
two auxiliary modes called PILEUP and GENOTYPE.
PILEUP is the fast multi-threaded computational engine
that is used by the other modes to generate pileups. The
GENOTYPE mode is used to generate input information
to ASE mode when necessary. PILEUP and GENOTYPE
are also provided as standalone features as they proved
successful in NGS pipelines that we recently applied to
whole genome and to targeted sequencing data from tis-
sue and plasma DNA [1,17].

Parallel pileup implementation
The auxiliary mode PILEUP allows executing the pileup ana-
lysis for a list of single nucleotide positions, e.g. polymorphic
positions along the genome like SNPs, using NGS data. Input
and output formats (VCF, BAM, and BED) are compliant
with the 1,000 Genomes Project (all specifics are outlined in
the ASEQ manual and available online). Using pileup rou-
tines from samtools APIs, our application provides a built-in
multi-threaded solution that optimizes the execution time
when multiple CPUs or cores are available. By specifying the
number of threads T to be used, the application provides
two strategies for pileup computation: the static strategy
splits the list of positions into T sub lists and initiates differ-
ent threads to execute parallel pileups using a shared data
structure; the dynamic strategy coordinates T different
threads to execute parallel pileups of sequential sub lists of
determined size as specified by the user using a shared data
structure. While the former strategy is desirable for most sce-
narios, the latter one speeds-up the computation in the pres-
ence of genomic regions with high variance of completion
time (e.g. regions with high levels of amplification). For each
single nucleotide position in input, the PILEUP mode returns
information about the read count results for each of the 4
bases A, C, G and T, the strand bias information for each
base, the genomic coordinate (chromosome and position)
and the unique identifier (dbsnp ID) if available. The applica-
tion also provides a way to simultaneously perform multiple
pileup computations on several lists of single nucleotide posi-
tions and corresponding NGS data files.

Genotype calls
The auxiliary GENOTYPE mode determines the geno-
type at each input SNP position. The GENOTYPE mode
is not designed to discover SNPs, but rather to compute
the genotype of an input sample at known SNP positions
(e.g. dbsnp catalogue). Given a list of known SNPs the
application first computes the pileup from each NGS
data file using the fast PILEUP computational engine
and then determines the genotype calls for each sample
independently. To perform genotype calls the tool offers
two strategies. The first method, htperc, is based on al-
ternative read counts percentages. The method calls a
heterozygous genotype if the proportion of coverage of
the alternative base with respect to the total coverage at
that position is in the range [0.2,0.8] (default values);
otherwise the method calls homozygous genotype, either
for the reference or the alternative base. The second
method, binom, implements a binomial test with prob-
abilities p and q for the reference and the alternative al-
lele, respectively. To account for the reference bias
mapping [18], we apply default probabilities p = 0.55 and
q = 0.45 (user-specific, see Additional file 1: Figure S1
and Supplementary Methods). No heterozygous geno-
types are called for SNPs with reference or alternative al-
lele coverage equal to zero. However, since this option
can be too restrictive in presence of low coverage, the
parameter can be set by the user, thus allowing the bino-
mial test to be executed. Regardless of the method
chosen, read counts information for reference and alter-
native alleles are included in the output files and are
then utilized to optimize the ASE analysis. To streamline
the input of the ASE mode, the GENOTYPE mode
returns an output file restricted to the subset of SNPs
with heterozygous genotypes. The complete list is also
provided in a separate file.

ASE analysis
The main ASE mode performs allele specific expression ana-
lysis. Two input options are implemented: (i) the gene model
input that requires a list of coding heterozygous SNPs of the
sample and a list of genes start/end coordinates; (ii) the tran-
script model input that requires a list of heterozygous SNPs
of the sample and a list of transcripts with exonic coordi-
nates. In the gene model option ASEQ matches coding SNPs
and gene coordinates, whereas in the transcript model option
transcript specific exon coordinates are considered for each
SNP. The input list of heterozygous SNPs can be generated
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through the GENOTYPE mode or any other suitable SNPs
genotyping tool, e.g. GATK [19]. Figure 1A shows the stand-
ard ASEQ pipeline using the gene model input.
Given a gene, the list of coding heterozygous SNPs for a

study individual and the RNA-seq data file, the application
performs the heterozygosity test on the RNA data at each
input SNP position (using the previously described bino-
mial method with p = q = 0.5, tunable by the user). A
position is annotated as showing ASE, when a non-
heterozygous call in NGS RNA-seq data is detected. To
control for false positive ASE calls due to different depths
of coverage between the DNA- and the RNA-seq data, the
application performs an additional statistical test on the
reference and alternative alleles counts proportions from
the DNA and the RNA NGS data (Fisher Exact Test),
whenever the DNA coverage information is available. For
each sample and each gene with available heterozygous
SNPs in the sample a, ASEQ returns a positive ASE result
if the proportion of SNPs passing the test (denoted as ASE
score) is greater than a predefined threshold (user-specific,
Figure 1 ASEQ pipeline and detection power of SNP-based ASE studies
initial list of SNPs (or genomic coordinates) and DNA-seq data, the GENOTYPE
the heterozygous SNPs are analyzed with the ASE mode in the context of the
coding SNPs will contribute to the analysis). A final collection of sample-based
for any set of genomic positions independently from SNP annotations). B) Fre
genes containing N = 1,2,… coding SNPs based on UCSC hg19 gene catalogu
most 14 SNPs corresponds to the 99 percentile of the distribution. C) Upper-l
frequencies. Upper-limit computation trends of the number of genes available
Few SNPs per genes are enough to rapidly converge to the Ta estimate. D) H
Distribution of heterozygous SNPs frequency obtained from CEU HapMap sam
distribution of ASE suitable genes is shown; horizontal line corresponds to the
default equal to 0). For all gene-sample pair without avail-
able heterozygous SNPs or RNA-seq data coverage below
a user-specified threshold, the application returns a flag of
not available for ASE calculation. Additionally, when mul-
tiple samples are investigated, the application also returns
an ASE gene flag if it shows ASE in at least N samples
available for the gene ASE calculation (user-specific, de-
fault N = 1). As output, ASEQ provides both sample-based
and aggregated ASE results.
For each execution mode the user can specify the

minimum base quality score, the minimum read quality
score and the minimum depth of coverage for the pileup
computations and the significance threshold for the stat-
istical tests used in the GENOTYPE and ASE modes
(default values set to 0, 0, 1, 5%, and 5%, respectively).

Results and discussion
The detection power of SNP-based ASE studies
We first asked what the power of detecting ASE genes in
the transcriptome of an individual through the processing
. A) Illustration of ASEQ pipeline used to perform ASE analysis. Given an
mode determines for each sample the set of heterozygous SNPs. Then,
corresponding matched RNA-seq samples data and a list of genes (only
and aggregated ASE results is generated. (The GENOTYPE mode works
quency distribution of coding SNPs per gene. Frequency distribution of
e and dbsnp 138 CEU. Note that the number of genes containing at
imit of genes available for ASE calculation for different heterozygous SNPs
for ASE calculation considering different heterozygous sites frequencies.

apMap frequency distribution of heterozygous SNPs frequencies.
ples. E) Distribution of genes available for ASE calculation. Empirical
Ta for SNPs frequency equal to 30%.
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of heterozygous SNPs is. First, under the assumption that
one SNP per gene is sufficient to perform ASE analysis,
we empirically built the distributions of ASE suitable
genes on a sample basis in multiple ethnical populations
from the 1000 Genomes Project and the HapMap consor-
tium data (see Additional file 1: Figure S2 and Figure S3)
and observed non-uniform behavior. Therefore, we opted
for a general mathematical formulation to determine the
ASE suitable genes upper bound that also models multiple
SNPs per gene. Given a frequency distribution D of SNPs
in coding regions per gene, a value I representing the fre-
quency of heterozygous SNPs per individual and assuming
that: (i) one SNP is sufficient to perform ASE analysis on a
gene, (ii) heterozygous SNPs are uniformly distributed
across the genome of an individual and (iii) SNPs are inde-
pendent, we can estimate the upper-limit of the number
Ta of genes available for ASE calculation:

Ta ¼
XM

i¼1

Di � 1−P X ¼ 0ð Þð Þwhere X ¼ Binom i; Ið Þ

where M is the maximum observed number of coding
SNPs overlapping a gene, Di is the number of genes with
i overlapping coding SNPs and 1 − P(X = 0) with X =
Binom(i, I) is the probability that at least one of these i
SNPs is heterozygous. To verify the validity of the for-
mula we inspected the setting of the well represented
Caucasian population in the HapMap dataset. Figure 1B
shows the distribution D of SNPs per gene reflecting
dbsnp 138 and UCSC hg19 gene catalogue and Figure 1C
shows the impact of different frequencies of heterozy-
gous SNPs on Ta calculation. In this setting the empiric-
ally assessed value I = 0.3 results in Ta = 6612 ASE
suitable genes (23%) that is a valid over-approximation
of the observed distribution (see Figure 1D, Figure 1E
and Additional file 1: Supplementary Methods).

Performances of PILEUP and GENOTYPE auxiliary
methods
We tested the performances of the most intensive compu-
tational task performed across all ASEQ execution modes,
the multi-threaded pileup implementation PILEUP, on a
multi-core machine (4 Intel® Xeon CPUs E7540 at
2.00GHz with 12 cores each in hyper-threading mode). We
tested the PILEUP mode against the canonical mpileup
samtools tool [16]. Both mpileup and PILEUP are built on
top of samtools APIs. Importantly, mpileup is optimized to
generate pileup of long continuous regions, whereas our
approach is conceived to optimize the pileup of a list of
non-contiguous single nucleotide positions. Figure 2A
shows that PILEUP execution time increases linearly with
the number of input SNPs, but the slope decreases loga-
rithmically with the number of available cores. The mpi-
leup execution time, instead is constant over different
numbers of input SNPs and cores. With as few as 4 cores,
PILEUP outperforms samtools when considering up to 1
million SNPs. When a single core is available, PILEUP out-
performs mpileup when up to ~400,000 input SNPs are
considered. On average, the number of SNPs such that
PILEUP outperforms mpileup doubles by doubling the
number of cores. Relevant to most single base level studies,
such as ASE studies, the number of SNPs in transcription-
ally active regions is within the limits where random access
strategy is more effective. In addition, in the presence of
multiple cores, PILEUP performances subsume mpileup
ones in all the considered cases.
We next tested the performances with respect to the

size of the input NGS data files adopting two strategies:
random sampling of reads (Figure 2B) and random sam-
pling of DNA coordinates (Figure 2C). The first strategy
tests how PILEUP performs with NGS data files of in-
creasing average depth of coverage, while the second
tests performances with NGS data files of increasing
genomic sizes. Tests were performed using 500,000 in-
put SNPs and a human genome NGS data file (~200GB).
Figures 2B and 2C show that both PILEUP and mpileup
execution times increase linearly by increasing NGS data
file size. In the case of PILEUP, the slope decreases with
the number of available cores. Again, with multiple
cores, PILEUP outperforms mpileup across all tested
conditions.
For a direct comparison with other tools implementing

parallel pileup computation strategies, we compared
ASEQ performances against GATK Pileup module b. In
Figure 2D we show that for ranges of input SNPs that
are reasonable for ASE studies, ASEQ execution times
are comparable with GATK ones for all considered com-
binations of input SNPs and available cores.
To validate the performance of the GENOTYPE mode,

we considered SNPs from dbsnp 138 represented on a
widely used SNP array platform (see Additional file 1:
Supplementary Methods). Validation was performed first
on seven human prostate samples that underwent whole
genome sequencing (WGS) [20] and was then extended
to a larger set of 90 samples that underwent whole ex-
ome sequencing (WES) [21]. Genotype calls obtained
with the two GENOTYPE methods on WGS data were
compared to high quality SNP array data calls. Consist-
ently across samples and different coverage depths, the
numbers of heterozygous calls obtained by htperc and
binom are comparable (Figure 3A). For each WGS sam-
ple, at depth of coverage > =10, the sensitivity of htperc
and binom with stringent significance threshold remains
above 95% and false discovery rate below 1% (Figure 3B).
Consistently, in WES samples the mean sensitivity of
htperc and binom with stringent significance threshold
(P = 0.01) scored > =97% and > =92%, respectively (for
depth of coverage > =10), and mean FDR scored <0.3%



Figure 2 ASEQ PILEUP engine computational performances. A) Execution time comparison between ASEQ PILEUP mode and mpileup
(Samtools, option -l to provide a SNPs list) by increasing the number of input SNPs; B) Execution time comparison between ASEQ PILEUP mode
and mpileup (option -l was set to pass SNPs list) by increasing genomic size in Gb. C) Execution time comparison between ASEQ PILEUP mode
and mpileup (option -l) by increasing the average depth of coverage for a human genome sample. D) Execution time comparison between ASEQ
PILEUP mode and GATK Pileup mode.
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in both cases (Additional file 1: Figure S4). More
details are available in Additional file 1: Supplementary
Methods.
Overall, the tests show that our auxiliary modes are ef-

fective tools to rapidly analyze and genotype lists of
known SNP loci on NGS datasets.

ASE analysis on 1,000 Genomes Project individuals
To investigate the extent of ASE in a human dataset, we
selected 20 individuals from 1,000 Genomes Project col-
lection for which matched WES and RNA-seq data are
publicly available. We considered all coding SNPs from
dbsnp 138 CEU catalogue present in UCSC hg19 gene
catalogue and considered the same gene catalogue to cre-
ate our gene model by means of RSEQtools [22]. Using
the germline DNA-seq data, coding heterozygous SNPs
were selected for each of the 20 individuals (average num-
ber across samples ~7500 SNPs, ~22% of the considered
coding SNPs). Based upon RNA-seq data, genes with ASE
support were identified by ASE mode (see Figure 4A for
an example of identified ASE gene). Base quality > = 20,
read quality > = 20, depth of coverage > = 10 and 1% of
significance level for statistical tests were applied. On aver-
age (see Table 1 and Additional file 2: Table S1 for details),
we detected 4.6% of genes showing ASE (ASE genes) with
percentages ranging from 2.8% to 7.9%, in line with the
4.3% recently reported in [5] but lower with respect to the
19% reported in [4]. Most of the ASE genes (average 3%
within range 1.8%-6.3%) show a high ASE score (>0.5),
meaning that the majority of heterozygous SNPs on the
gene support ASE. The prevalence of high ASE scores
may suggest that ASE mechanisms involving most part of
the whole gene (e.g. whole-gene ASE) are relatively more
common.
In the absence of a gold-standard to test ASE ana-

lysis tools, we quantify ASEQ performances by first



Figure 3 Genotype mode performance. A) Comparison between htperc and binom options on WGS data. Comparison of number of
heterozygous calls for htperc and binom (P = 0.01 and P = 0.05) methods on 7 WGS samples (numbers identify patients IDs) from [20] increasing
the minimum depth of coverage (mdc). The inset shows the samples mean coverage computed on the original BAMs on the ~2.7 million SNPs
of dbsnp 138 CEU. Labels 508(16X) and 508(8X) refer to samples data where reads were computationally down-sampled with probability equal to
0.5 and 0.25, respectively, from sample 508 (original mean coverage of ~33X). B) Estimation of sensitivity and False Discovery Rate (FDR) of ASEQ
GENOTYPE mode. Each panel shows for individual sample the sensitivity and the FDR results of ASEQ GENOTYPE mode quantified for heterozygous
calls obtained on WGS data with respect to the corresponding SNP array data calls by increasing the value of minimum depth of coverage. FDR curves
for sample 508 (8X) are not shown as above the maximum considered FDR across the figure panels.
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comparing it with a trio analysis based tool, AlleleSeq
[4], and with a RNA-seq data only tool, MBASED [5],
and then by measuring its power in detecting
imprinted genes. To explore the comparison with Allele-
Seq and MBASED we focused on the 1,000 Genomes
Project individual NA12878. ASE genes lists for AlleleSeq
and MBASED were retrieved from corresponding studies
while for ASEQ we considered germline WES data avail-
able from the 1,000 Genomes Project collection and RNA-
seq available from Rozowsky et al. study (see Additional



Figure 4 (See legend on next page.)
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Figure 4 ASE results and comparative analysis. A) Example of gene showing ASE. We considered 1,000 Genomes Project individual NA12717
and gene UGGT2. Considering our pileup filtering parameters this gene presents three heterozygous SNPs in DNA data all showing mono-allelic
transcription in RNA-seq data and is hence classified as ASE gene. B) Comparison with AlleleSeq and MBASED. Concordance of ASE genes
detection is shown between ASEQ, AlelleSeq and MBASED. The three panels refer to ASEQ run on three different input SNPs lists. ASE genes lists
for AlleleSeq and MBASED are retrieved from corresponding publications.
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file 1: Supplementary Methods). ASEQ pipeline processed
WES data with the GENOTYPE mode on three different
input SNPs lists (1,000 Genomes Project SNPs list, dbsnp
138 SNPs in coding regions and dbsnp 138 SNPs on
exonic regions). We obtained ASE percentages in the
range 6%-7.1% (statistical significance level threshold
at 1%; see Tables 2, S2, S3 and S4 for details), in line
with what reported in [5]. Figure 4B illustrates the dis-
tributions of potential ASE genes as revealed by
ASEQ, MBASED and AlleleSeq. Overall 17 ASE genes
were commonly detected by all three methods. When
restricting the analysis on ASEQ and MBASED com-
mon genes (i.e., genes for which both methods provide an
ASE call c, see Additional file 1: Supplementary Methods
for details), ASEQ detects ~60% of MBASED detected genes
Table 1 Summary of 1,000 Genomes Project dataset analysis

Individual ID DNA mean
coverage

RNA mean
coverage

Het
SNPs

Available
genes

NA06994 98 46 7397 1896

NA07357 71 139 7904 1889

NA10847 105 104 7490 1877

NA11831 74 126 7604 2002

NA11843 55 136 7361 1694

NA11894 148 107 6385 1683

NA11930 58 149 7320 1662

NA11992 84 90 7724 1744

NA12004 59 94 7562 1544

NA12043 108 77 7759 1838

NA12045 81 122 7419 1841

NA12144 87 81 7844 2020

NA12155 83 113 7940 1802

NA12286 107 100 7572 1767

NA12348 134 124 6408 1400

NA12717 101 77 7467 1857

NA12750 118 89 8623 1972

NA12751 99 111 7396 2115

NA12842 182 141 7728 2074

NA12874 69 129 7297 1738

Average 96.05 107.75 7510 1820.75

For each individual we report the mean coverage in WES and RNA-seq data compu
WES. Then we report the number of genes found available for ASE calculation alon
percentages. Finally, we report the number of imprinted genes we found available
the p-values obtained by testing the significance of proportion of imprinted ASE ge
when 0 imprinted ASE genes are detected).
with an intersection percentage of 24% (enriched with re-
spect to the baseline ASEQ detection percentage, P < 10− 8

Fisher Exact Test), supporting a significant concordance be-
tween the two methods (see Additional file 1: Supplementary
methods for details). For ASEQ versus AlleleSeq comparison,
we implemented a different strategy based on resampling
statistical method (see Additional file 1: Supplementary
Methods for details) as the initial gene list from [4] is not
available. An intersection percentage of ~46% (P < 10− 4) fur-
ther supports the ASE detection power of ASEQ.
Finally we investigated to what extent ASEQ is able to

detect known imprinted genes, using the genomic im-
printing website (geneimprint.com). On average (see
Table 1 for details) 30% (average 5, range from 2 to 9) of
the genes available for this analysis were detected by
ASE
genes

Imprinted
available genes

Imprinted
ASE genes

Fisher
p-value

94 (5%) 7 2 (28%) 0.04

71 (3.8%) 9 2 (22%) 0.04

101 (5.4%) 5 1 (20%) 0.2

101 (5%) 3 0 -

77 (4.5%) 4 1 (25%) 0.2

91 (5.4%) 2 2 (100%) 0.003

47 (2.8%) 7 3 (30%) 0.0008

58 (3.3%) 6 0 -

48 (3.1%) 3 1 (33%) 0.09

91 (5%) 5 1 (20%) 0.2

58 (3.2%) 3 0 -

92 (4.6%) 7 2 (28%) 0.04

87 (4.8%) 4 2 (50%) 0.01

86 (4.9%) 8 2 (25%) 0.06

50 (3.6%) 4 2 (50%) 0.008

93 (5%) 4 1 (25%) 0.2

108 (5.5%) 4 1 (25%) 0.2

97 (4.6%) 5 3 (60%) 0.001

163 (7.9%) 7 2 (28%) 0.1

85 (4.9%) 4 1 (25%) 0.2

84.9 (4.6%) 5.05 1.45 (29%) -

ted at SNP positions and the number of heterozygous SNPs identified from
g with the number of genes identified as ASE genes with corresponding
for ASE calculation, the number of these that are identified as ASE genes and
nes with respect to the overall ASE genes proportion (no test is performed



Table 2 Summary of NA12878 individual analysis

Input SNP list DNA mean
coverage

RNA mean
coverage

Het
SNPs

Available
genes

ASE
genes

Available imprinted
genes

Imprinted
ASE genes

1,000 Genomes Project 88 39 16016 3071 184 (6%) 10 1

Coding dbsnp 138 100 41 7465 2403 169 (7%) 9 2

Exon dbsnp138 90 40 9372 2840 203 (7.1%) 13 4

We report ASE analysis results on NA12878 individual for all combinations of input SNP list considered. For each combination we report the mean coverage in
WES and RNA-seq data computed at SNP positions and the number of heterozygous SNPs identified from WES. Then we report the number of genes found
available for ASE calculation along with the number of genes identified as ASE genes with corresponding percentages. We also report the number of imprinted
genes we found available for ASE calculation and the number of these that are identified as ASE genes.

Table 3 Summary of Barbieri et al. dataset analysis

Individual
ID

DNA mean
coverage

RNA mean
coverage

Het
SNPs

Genes
Available

ASE
Genes

01-28R 109 107 7665 2138 259 (12.1%)

03-1426R 103 126 7677 2214 180 (8.1%)

03-2345R 93 124 7719 2594 78 (3%)

04-1084 L 102 115 7744 2610 275 (10.5%)

04-1243 L 103 108 7590 2399 151 (6.3%)

05-
3595TTZ

165 114 7685 2499 146 (5.8%)

05-3852 L 104 114 7554 2169 223 (10.3%)

06-1749TR 167 113 7560 2688 258 (9.6%)

07-144R 107 99 7527 2540 322 (12.7%)

07-360TZ 108 139 7581 2364 160 (6.8%)

07-837 L 87 115 7506 2278 208 (9.1%)

2661_Dt 185 82 7829 2162 214 (9.9%)

2682_A 183 86 7701 1580 181 (11.5%)

2740_A 174 84 7572 1871 105 (5.6%)

2761_D 189 83 7552 2180 184 (8.4%)

2858_C 181 68 8084 2017 330 (16.4%)

2872_D 142 69 7663 1516 137 (9%)

2916_At 176 69 7722 1860 647 (34.8%)

3023_B62 193 96 7616 1956 688 (35.2%)

3026_B56 172 79 7851 1787 160 (9%)

3035_B53 163 69 7582 1679 177 (10.5%)

3036_B51 179 86 7618 1793 187 (10.4%)

Average 142.15 99.5 7669.9 2171.1 239.5 (11.6%)

For each individual we report the mean coverage in WES and RNA-seq data
computed at SNP positions and the number of heterozygous SNPs identified
from WES. Then we report the number of genes found available for ASE
calculation along with the number of genes identified as ASE genes with
corresponding percentages.
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ASEQ. Considering all samples where at least one
imprinted gene was detected, the average detection pro-
portion is 8 times higher than the baseline ASEQ detec-
tion; despite the small number of imprinted genes, the
difference in the proportions is statistically significant
for half of the individuals (P < 0.05 Fisher Exact Test, see
Table 1 for details). For the individual NA12878,
MBASED detects 3 out of 8 imprinted genes, while Alle-
leSeq identifies 5 imprinted genes. In both cases ASE de-
tection proportions are in line with ASEQ results (see
Table 2).
Altogether, we assessed that ASEQ detection perform-

ance are largely satisfactory and that running time is ad-
vantageous for large scale ASE analysis (computation of
the 20 individuals from the 1,000 Genomes Project using
20 cores ran in less than 25 minutes).

ASE analysis on a prostate cancer dataset
To explore the extent of ASE in a tumor dataset, we
queried matched germline WES and tumoral RNA-seq
data for 22 prostate cancer patients from the Barbieri
et al. study [21]. As previously, we considered all coding
SNPs from dbsnp 138 CEU catalogue present in UCSC
hg19 gene catalogue and considered the same gene cata-
logue to create our gene model by means of RSEQtools
[22]. Using the germline DNA-seq data, coding hetero-
zygous SNPs were selected for each of the 22 individuals
(average number across samples ~7600 SNPs, ~23% of
the considered coding SNPs). Base quality > = 20, read
quality > = 20, depth of coverage > = 10 and 1% of sig-
nificance threshold for statistical tests were applied. On
average (see Table 3 and Additional file 2: Table S5 for
details), we detected 11.6% of genes ASE genes with per-
centages ranging from 3% to 35%. Also in this case most
of the ASE genes (average 8% within range 2%-24%)
show a high ASE score (>0.5). As the distribution of ASE
genes percentages in the Barbieri et al. dataset was sig-
nificantly higher than in the 1,000 Genomes Project
dataset (Figure 5A) and the sequencing characteristics
comparable (see Table 1 and Table 3), we wondered to
what extent the presence of somatic copy number aber-
rations (SCNAs) could have affected the analysis; for in-
stance, a gene harboring a monoallelic deletion would
appear as an ASE gene. We considered SCNAs profiles
reported in the original study [21] and filtered out genes
with genomic coordinates overlapping aberrant seg-
ments (copy neutral loss of heterozygosity LOH are not
considered as they are infrequent in localized prostate
cancer). Interestingly, we still detected 9.8% of ASE
genes on average with percentages ranging from 3% to
34%. Again, most of the ASE genes (average 6.8% within



Figure 5 (See legend on next page.)
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Figure 5 Case study assessment of ASE genes. A) ASE percentage distribution in 1,000 Genomes Project and Barbieri et al. dataset. Difference
in ASE percentage distribution among samples in the 1,000 Genomes Project dataset, the Barbieri et al. dataset and the Barbieri et al. dataset with
SCNAs filtered out. Comparison is made both for overall ASE genes and high score ASE genes. Wilcoxon statistical test is used to compare the
distributions. B) Genes showing ASE in multiple individuals. Frequency distribution of genes showing ASE in at least N (1,2,..,22) individuals,
divided by ASE genes and ASE genes with high score. The inset highlights the tail of the distribution and lists the genes that show ASE in at least
13 to 19 individuals. C) Genes showing ASE in at least one individual (top). Genes with ASE score associated to RPKM levels (bottom). Top panel
shows the genomic localization across the human genome of all the ASE genes with low score and ASE genes with high score. Bottom panel
shows the distribution across the genome of all the ASE genes with score associated to the corresponding RPKM transcript level (P < 0.01). The
inset shows two prostate cancer related ASE genes with corresponding RPKM transcript levels differences.
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range 2%-24%) show a high ASE score (>0.5) (see
Additional file 2 Table S6 for details). Although lower,
the distribution of ASE genes in the filtered Barbieri
et al. dataset still is significantly higher than in the 1,000
Genomes Project dataset (Figure 5A). Overall these re-
sults are in accordance with what reported in [5].
While ~45% of the genes shows ASE in at least 2 indi-

viduals, only ~0.5% are detected in at least half of the in-
dividuals (Figure 5B) including members of the
Neuroblastoma breakpoint family (NBPF9 and NBPF14)
that are deregulated in several cancer types [23].
We next asked if individuals with evidence of ASE for

a specific gene demonstrate corresponding differential
transcript levels (Figure 5C, see Additional file 1:
Supplementary Methods). The top ranked associations
(P < 0.01) included two genes implicated in prostate can-
cer; specifically increased ADAM15 and decreased PXMP4
expressions [24-27] (Figure 5C bottom panel inset). The
metalloproteinase ADAM15 mRNA and protein levels are
over-expressed in prostate cancer and its expression is sig-
nificantly increased during metastatic progression. PXMP4
is a peroxisomal membrane protein that undergoes hyper-
methylation associated with gene silencing during cancer
progression. Overall, these findings support the hypothesis
that ASE is enriched in cancer cells.

Conclusions
We presented a tool to rapidly screen NGS datasets for
allele specific expression studies. This tool can also be
applied to investigate eQTL [28]. Systematic assessment
of ASEQ performance showed the efficacy and reliability
of the approach on multiple datasets and identified po-
tential cancer related ASE genes. The tool can be used
within any NGS pipeline that runs on computer systems
with multiple CPUs, CPUs with multiple cores, or across
clusters of machines. As future work we will apply
ASEQ to identify tissue and cancer specific ASE genes
and explore its efficacy in detecting allele-specific bind-
ing (ASB) patterns in cancer.

Availability and requirements
Project name: ASEQ
Project home page: http://demichelislab.unitn.it/ASEQ
Operating system(s): Platform independent
Programming language: C
License: MIT

Endnotes
aNote that a gene may span multiple SNPs.
bNote that while ASEQ PILEUP mode returns the read

count for each base separately, to have the same output
data GATK Pileup mode would require an additional
processing step that for simplicity here is not considered
in the overall GATK Pileup execution time.

cDifferent tools embed different preprocessing, filter-
ing and processing pipelines along with different set of
conditions to be satisfied for an ASE call to be made.
This may result in different set of analyzable genes.

Additional files

Additional file 1: Figure S1. Distribution of mean reference allelic
fraction from 111 normal WES samples of Barbieri et al. dataset.
Figure S2: Distribution of number of genes containing at least one
heterozygous coding SNP across different populations from 1000
Genomes Project data. Genotyping data of ~600000 coding SNPs for 848
samples across 9 populations were considered. For each sample the
number of genes containing at least one heterozygous SNP is computed
using the UCSC hg19 genes catalogue as reference. Figure S3:
Distribution of number of genes containing at least one heterozygous
coding SNP across different populations from HapMap data. Genotyping
data of ~200,000 coding SNPs for 736 samples across 9 populations were
considered. For each sample the number of genes containing at least
one heterozygous SNP is computed using the UCSC hg19 genes
catalogue as reference. Figure S4: Sensitivity and FDR of GENOTYPE ASEQ
method calculated on 90 WES sample from Barbieri et al. dataset.

Additional file 2: Table S1. ASEQ ASE analysis results for the 1,000
Genomes Project dataset. Table S2: ASEQ ASE analysis results for the
NA12878 individual (1,000 Genomes Project SNPs input list). Table S3:
ASEQ ASE analysis results for the NA12878 individual (dbsnp coding SNPs
input list). Table S4: ASEQ ASE analysis results for the NA12878 individual
(dbsnp exonic SNPs input list). Table S5: ASEQ ASE analysis results for
the Barbieri et. al dataset. Table S6: ASEQ ASE analysis results for the
Barbieri et. al dataset without genes in somatic copy number alterations.
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