
PROCEEDINGS Open Access

Analysis of genetic and nongenetic factors
influencing triglycerides-lowering drug
effects based on paired observations
Zheng Xu1,2*, Qing Duan3, Juan Cui4, Yumou Qiu1, Qidong Jia5, Cong Wu6 and Jennifer Clarke1,2

From Genetic Analysis Workshop 20
San Diego, CA, USA. 4 - 8 March 2017

Abstract

Obesity is a risk factor for heart disease, stroke, diabetes, high blood pressure, and other chronic diseases. Some drugs,
including fenofibrate, are used to treat obesity or excessive weight by lowering the level of specific triglycerides.
However, different groups have different drug sensitivities and, consequently, there are differences in drug effects. In
this study, we assessed both genetic and nongenetic factors that influence drug responses and stratified patients into
groups based on differential drug effect and sensitivity. Our methodology of investigating genetic factors and
nongenetic factors is applicable to studying differential effects of other drugs, such as statins, and provides an
approach to the development of personalized medicine.

Background
Obesity and excessive weight (body mass index > 25) are
highly prevalent among US adults and youth [1]. Obesity
puts a person at a higher risk for heart disease, stroke,
diabetes, high blood pressure, and other medical ail-
ments. Consequently, effective treatment strategies for
obesity and excessive weight designed to improve an in-
dividual’s health and quality of life are highly desired.
Genetic and nongenetic factors jointly influence the

likelihood of obesity and being overweight [1, 2]. Obesity
is associated with changes in blood lipid levels, which can
increase the risk of cardiovascular diseases. Fenofibrate is
recommended because of its triglyceride-lowering effect.
However, many genetic and nongenetic factors may
influence the effects of such medications. Instead of the
same types and amounts of drugs for all patients, person-
alized medicine considers the differences in drug effects
between individuals and recommends the optimal treat-
ment strategy for each patient individually.

Our goal was to provide a better understanding of
drug mechanisms and to contribute to the development
of precision medicine by studying the genetic and non-
genetic factors that influence the effects of fenofibrate in
treatment of obesity. We identified groups of individuals
with differential drug effects. In addition, our method-
ology has the potential to be applied in the study of dif-
ferences in drug effects and personalized medicine based
on other medicines such as statins.

Methods
GAW20 provided the data. We are interested in under-
standing factors that may influence the drug effects of
fenofibrate on triglyceride levels.
Our proposed methodology can work for the paired

observation situation in which the research problem is
how multiple factors influence the differences in drug
effects. We measured the phenotypes of the same indi-
viduals before and after treatment with fenofibrate, and
genotypes and nongenetic data on these individuals are
available.
For a data set with paired observations, denote the re-

sponse or phenotype of interest (drug effect in this context)
before and after treatment with a drug as Ypre and Ypost.
The change ΔY = Ypost − Ypre is the “drug effect.” In this
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study, our interest is the raw difference in the level of tri-
glycerides at visit 4 (after the treatment) minus at visit 2
(before the treatment).
We first inspected the distribution of the drug effect

(ie, response) ΔY to characterize its average and variabil-
ity. Then, among s nongenetic factors C1, C2, …, Cs and
the top 10 principal components (PCs) of the genotypes
PC1, …, PC10 (ie ancestry variables), we checked the as-
sociation of these variables with drug effect in a multiple
regression framework. When there are different genetic
marker frequencies and different drug effects, there are
drug–ancestry interactions that influence the drug effects.
It was noted that factors influencing phenotype Y may

not be the factors influencing drug response ΔY. For ex-
ample, assume that before and after the treatment, factor
Z influences Y. We can model Ypre = β0, pre + βZ, preZ +…
and Ypost = β0, post + βZ, postZ +…. Then we have ΔY =
Ypost − Ypre = (β0, post − β0, pre) + (βZ, post − βZ, pre)Z +….

For Z to be a factor influencing ΔY, the factor Z has to
have different magnitude in its effect on Ypost and Ypre,
which is the drug-by-factor-Z interaction effect in the
expression of Y. This interaction effect captures, for ex-
ample, the situation in which Z has no effect on Ypre but
does affect Ypost.
We assessed genetic variants genome-wide to find

single-nucleotide polymorphisms (SNPs) associated with
ΔY. We divided the sets of SNPs into common SNPs and
rare SNPs. For common SNPs (minor allele frequency
[MAF] ≥5%), we conducted genome-wide association
studies based on familial data, controlling for covariates.
For rare SNPs (1% ≤MAF < 5%), we conducted both
gene-based and region-based rare variant tests based on
familial data, using the fast family-based sequencing ker-
nel association testing method (FFBSKAT), which is a
specific method to extend the sequence kernel associ-
ation test (SKAT) for unrelated individuals to familial

Fig. 1 Histogram of drug responses

Fig. 2 Histogram of MAFs
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data [3]. The FFBSKAT method was implemented using
the Family REGional Association Tests (FREGAT) R
package [4].

Results
Drug effects are triglyceride-lowering on average but
with big variations
There are 1105 participants with phenotypes and covari-
ates available, 4151 participants with pedigree information
available, and 822 participants with genotypes available for
a dense set of 718,542 SNPs from the Genetics of Lipid
Lowering Drugs and Diet Network (GOLDN) study in the
GAW20 data [5]. Our quality control (QC) step filtered
out SNPs and individuals with a success rate of less
than 97%, leaving 822 persons and 700,763 SNPs after
QC. Note that the maximum genotype missing rate for
an individual is 2.93% so that all 822 participants
passed QC. The intersection of the 822 participants
with genotypes, the 1105 participants with phenotype
and covariates, and the 4151 participants with pedigree
information includes 821 common individuals. Note
that these 821 individuals have missing values in geno-
types, phenotypes, and covariates, and we did not re-
strict our analysis only to the individuals with complete
data. The 821 individuals are from 173 families. Thus,
they are related individuals (familial data). We con-
ducted analysis using a linear mixed model considering
the relatedness within families. Nongenetic covariates
include gender, age, field center (Minnesota and Utah),
smoking status (never, past, and current smoker), meta-
bolic syndrome defined by the adult treatment panel
(ATP), and metabolic syndrome defined by the Inter-
national Diabetes Federation (IDF) in the GAW20 [5].
Figure 1 shows a histogram of drug response ΔY

(ie, changes in the level of triglycerides). We found
there was a 50.37 mg/dL decrease on average, indicat-
ing the overall drug effect is triglyceride-lowering.
However, there was a big variation in drug response
ΔY, implying differential drug effects.

Nongenetic factors and ancestry
We next studied the effects of nongenetic factors and
ancestry, that is, population structure. Ancestry was rep-
resented by the top 10 principal components (PCs) of
genotypes at independent SNPs. We first used PLINK to
prune SNPs based on linkage disequilibrium to generate
a set of independent SNPs using the default setting, that
is, squared correlation of < 0.1 [6]. Then we used the
eigenstate software to calculate PCs of genotypes [7].
We conducted multiple regressions with more than one

covariate considering that pairwise analyses (eg, the analysis
of a drug response and only one covariate) suffer from con-
founding effects, cannot control for other covariates, and
are less reliable. The regression of drug effects on nonge-
netic factors (age, center, gender, smoking, IDF, and
ATP) and ancestry (PC1 to PC10) was conducted. Linear
mixed-model–based testing was used because of the re-
latedness of individuals in familial data that was imple-
mented using the FREGAT package of R software. A
theoretical kinship matrix was calculated from pedigree
information using the R (version 3.3.1) package kinship2
[8]. We found statistical significance in center (p value =
0.013) and ATP (p value = 1.88 × 10− 5), but no significance

Fig. 3 Manhattan plot for common SNPs

Table 1 Top 10 SNPs in GWAS for common SNPs

Chr Base pair SNP name p value q value FDR < 5%

11 116,154,127 rs964184 1.73E-07 3.74E-02 Yes

11 116,208,850 rs5128 1.76E-07 3.74E-02 Yes

5 170,899,076 rs919758 2.02E-07 3.74E-02 Yes

13 96,316,286 rs9516776 3.91E-07 4.84E-02 Yes

11 119,259,136 rs503175 6.05E-07 5.44E-02 No

20 37,617,241 rs4812401 8.06E-07 5.77E-02 No

10 4,516,700 rs10795173 1.22E-06 6.14E-02 No

8 25,544,459 rs10081452 1.29E-06 6.19E-02 No

8 25,549,340 rs1425739 1.32E-06 6.21E-02 No

13 96,315,120 rs7332653 1.68E-06 6.37E-02 No
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in age (p value = 0.053), gender (p value = 0.126), smoking
(p value = 0.067), IDF (p value = 0.137), or PC1 to PC10.
These findings, especially the insignificance of PC1 to PC10,
were consistent with the results of other GAW20 groups,
even though different analysis frameworks were used.

Genome-wide association study of common SNPs
We divided SNPs with a MAF ≥ 0.01 into common
and rare SNPs. Figure 2 is a histogram of MAFs. Be-
cause we have only 821 related individuals from 173
families, making the effective sample size smaller than
821, we considered SNPs with a MAF ≥ 0.05 as com-
mon, and SNPs with 0.01 ≤MAF < 0.05 as rare [9].
There are 574,602 common SNPs in our analysis. We
conducted a genome-wide association study (GWAS)
for common SNPs for familial data, implemented
using the R package GWAF [10]. We converted p
values into false discovery rate (FDR) q values using
Benjamini and Hochberg’s method, implemented in
the R package fdrtool [11, 12]. We controlled for an
FDR ≤ 0.05 in our report. Figure 3 shows the Manhattan
plot and Table 1 lists the top 10 SNPs.

Gene-based and region-based rare-variant association
testing results
We used the R package FREGAT to conduct gene-based
and region-based rare-variant association testing based

on familial data [3, 4]. There are 63,689 rare SNPs (ie,
0.01 ≤MAF < 0.05) in our analysis. We downloaded gene
annotations (UCSC build hg19) including 57,816 genes.
SNPs that lie within 1 kb of the flanking region up-
stream and downstream of each gene were considered as
promoters are usually within 1 kb of the associated
gene transcription start site; 6138 genes included at
least one rare SNP for testing. Figure 4 shows a Man-
hattan plot using the midpoints of genes as base pair
locations and Table 2 lists the top 10 genes. There are 6
genes with an FDR < 0.05, namely, DNMT3L, SPATA22,
RP11-403H13.1, AC010740.1, OR52N4, and LRP1B.
We also conducted a region-based rare-variant test

with every 1 Mb as 1 region. The whole genome was di-
vided into 2686 regions. Figure 5 shows a Manhattan
plot using the midpoint of regions as base pair locations
and Table 3 lists the top 10 regions. There are 3 regions
with an FDR ≤ 0.05. They are Chr9: 94 M–95 M, Chr21:
45 M–46 M, and Chr19: 49 M–50 M. It is encouraging
that our previously discovered gene DNMT3L (Chr21:
45,666,222-45,682,099) also lies in our reported range
Chr21: 45 M–46 M.

Discussion
A lot of factors have the potential to influence drug re-
sponses, shown as a change in triglyceride levels, to
fenofibrate treatment. This study is based on a linear

Fig. 4 Manhattan plot for gene-based rare-variant testing

Table 2 Top 10 genes in gene-based rare-variant test

Gene Chr Base pair of midpoint p value q values FDR < 5%

DNMT3L 21 45,674,160 2.97E-07 1.81E-03 Yes

SPATA22 17 3,380,229 8.71E-07 2.66E-03 Yes

RP11-403H13.1 9 6,940,764 4.31E-06 8.76E-03 Yes

AC010740.1 2 141,656,333 2.14E-05 3.06E-02 Yes

OR52N4 11 5,776,441 4.74E-05 4.67E-02 Yes

LRP1B 2 141,939,131 4.94E-05 4.75E-02 Yes

RP11-722 M1.1 4 36,570,840 5.84E-05 5.09E-02 No

AHI1 6 135,711,792 1.07E-04 7.10E-02 No

FAM76B 11 95,512,839 1.33E-04 7.81E-02 No

NEIL3 4 178,257,543 1.35E-04 7.88E-02 No
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mixed-model multiple regression (1) for nongenetic fac-
tors and ancestry variables, (2) for common SNPs, and
(3) for rare SNPs. These analyses were performed using
the R packages FREGAT and GAWF, with sample re-
latedness represented by theoretical kinship matrix, cal-
culated using the R package kinship2.
Our analysis is based on 821 persons from 173 families.

The effective sample size of this familial data is smaller
than 821; consequently, there may not be enough power
to identify associated variants. In addition, our GWAS
analysis for common SNPs was based on a set of 574,602
SNPs without imputation. Imputation of genotype or
summary statistics may uncover more associated SNPs,
thereby increasing power [13, 14].
Despite a relatively small effective sample size, we still

found that for nongenetic factors, some variables had p
values < 5%, some had p values between 5 and 10%, and
other variables had p values > 10%; and that for SNPs,
there are 4 SNPs, 6 genes, and 3 regions of 1 Mb re-
ported with an FDR controlled at 5%.
The roles of the top SNP, rs964181, and the top gene,

DNMT3L, were also found in other published studies of
obesity and triglyceride levels. The top SNP, rs964184,
was found to be associated with hypertriglyceridemia

[15], as well as with a lipid-lowering response to another
medicine, statins [16]. The top gene, DNMT3L, is an en-
zymatically inactive regulatory factor, regulates DNA
methylation activity, and is closely associated with epi-
genetic functions influencing obesity from epigenetic
and regulation evidence [17]. DNMT3L encodes a DNA
(cytosine-5)-methyltransferase 3–like enzyme, and an in-
creased expression of DNA methyltransferase is found
in obese adipose tissue [18]. A DNA methylation study
revealed differential modification of many obesity
genes before and after gastric bypass and weight loss,
providing a model to investigate obesity and weight
loss in humans [19].
The above association results only suggest and

prioritize potential factors for future biological verifi-
cation. Some reported significant variables may be just
false positives. Following statistical analyses, functional
analyses via biologically experimental verification and
additional support from the published literature are
needed. Integrative genome browsers with the database
of GWAS catalog, gene annotations, and epigenetic
and regulatory information can be used for this pur-
pose [20, 21].

Conclusions
We conducted an assessment of nongenetic and genetic
factors that impact the drug response, shown as a
change in triglyceride level, to fenofibrate treatment
based on the GOLDN study data, and identified groups
of participants with different drug sensitivities. We re-
port significant associations of drug response with center
and ATP variables with p values less than 5%, and 4 com-
mon SNPs (rs964184, rs5128, rs919758, and rs9516776), 6
genes (DNMT3L, SPATA22, RP11-403H13.1, AC010740.1,
OR52N4, and LRP1B) and 3 regions of 1 Mb (Chr9: 94 M–
95 M, Chr21: 45 M–46 M, and Chr19: 49 M–50 M) at an
FDR controlled at 0.05. It is also encouraging that the re-
ported gene DNMT3L (Chr21: 45,666,222-45,682,099, from
a gene-based test) also lies in our reported range of Chr21:

Fig. 5 Manhattan plot for region-based rare-variant testing

Table 3 Top 10 regions in region-based rare-variant test

Chr Start base pair End base pair p value q value FDR < 5%

9 94M 95M 1.01E-07 1.36E-04 Yes

21 45M 46M 1.02E-07 1.36E-04 Yes

19 49M 50M 4.40E-05 3.66E-02 Yes

21 39M 40M 9.59E-05 5.53E-02 No

2 11M 12M 2.17E-04 7.30E-02 No

1 238M 239M 2.45E-04 7.52E-02 No

10 42M 43M 2.64E-04 7.64E-02 No

9 38M 39M 2.67E-04 7.66E-02 No

9 37M 38M 2.68E-04 7.67E-02 No
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45 M-46 Mb (from a range-based test). The roles of the
top SNP, rs964184, and the top gene, DNMT3L, were
also found in other studies on obesity and triglycerides.
Both gene-based and region-based tests implied that
DNMT3L plays a crucial role in influencing the mech-
anism and effects of triglyceride-lowering drugs treating
obesity. Our methodology can be applied to studying
other drugs, such as statins, and provides an approach
to the development of personalized medicine.
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