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Abstract

The heritability of a phenotype is an estimation of the percent of variance in that phenotype that is attributable

to additive genetic factors. Heritability is optimally estimated in family-based sample populations. Traditionally,

this involves use of a pedigree-based kinship coefficient generated from the collected genealogical relationships
between family members. An alternative, when dense genotype data are available, is to directly measure the
empirical kinship between samples. This study compares the use of pedigree and empirical kinships in the GAW20
data set. Two phenotypes were assessed: triglyceride levels and high-density lipoprotein cholesterol (HDL-C) levels
pre- and postintervention with the cholesterol-reducing drug fenofibrate. Using SOLAR (Sequential Oligogenic
Linkage Analysis Routines), pedigree-based kinships and empirically calculated kinships (using IBDLD and LDAK)
were used to calculate phenotype heritability. In addition, a genome-wide association study was conducted using
each kinship model for each phenotype to identify genetic variants significantly associated with phenotypic variation.
The variant rs247617 was significantly associated with HDL-C levels both pre- and post-fenofibrate intervention. Overall,
the phenotype heritabilities calculated using pedigree based kinships or either of the empirical kinships generated
using IBDLD or LDAK were comparable. Phenotype heritabilities estimated from empirical kinships generated using
IBDLD were closest to the pedigree-based estimations. Given that there was not an appreciable amount of unknown
relatedness between the pedigrees in this data set, a large increase in heritability in using empirical kinship was not
expected, and our calculations support this. Importantly, these results demonstrate that when sufficient genotypic data
are available, empirical kinship estimation is a practical alternative to using pedigree-based kinships.

Background

SOLAR (Sequential Oligogenic Linkage Analysis Routines)
[1], software developed for the genetic analysis of pedigrees,
can be used to calculate the heritability (h%) of a phenotype.
This calculation requires the phenotype measurement,
relevant covariates, and a kinship matrix. Traditionally, the
kinship matrix is derived from a carefully curated pedigree
(or pedigrees) joining together the individuals with pheno-
types by their self-reported genealogical relationships. The
use of self-reported genealogical relationships has one
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obvious drawback: incorrectly specified relationships. These
pedigree errors can arise for multiple reasons, including pa-
ternity, recording errors, as well as cultural differences in
the understanding of the definition of biological kinship
relationships. In addition, when a cohort of pedigrees is
recruited from the same geographical region, it's possible
that there may be unknown kinship connections between
seemingly discrete pedigrees.

Accurate biological relationships are necessary for the
calculation of phenotype heritability. Uncertainty sur-
rounding pedigree relationships in a data set reduces the
power of heritability calculations and leads to inaccurate
results at best, or false results at worst.

With the availability of dense genotyping array data, a
potential solution to this problem is to employ the use
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of empirical kinship estimates. Empirical kinship is when
the kinship between each individual in a cohort is esti-
mated using dense genotyping data from single-nucleotide
polymorphism (SNP) arrays or next-generation sequen-
cing. Empirical kinship estimates will overall closely align
with the kinship calculated from pedigrees, but, import-
antly, are also able to clarify pedigree relationships,
provide an additional quality-control measure to iden-
tify sample swaps or duplicates, identify unknown or
distant relationships, and overall remove the need to
rely on genealogical records. Furthermore, where indi-
viduals are unrelated in a pedigree kinship matrix, some
level of empirical kinship can be calculated for all pairs
in the data set.

Intuitively, the use of a matrix of empirical kinship
estimates should improve heritability calculations as
the observed kinship measurement is used rather than
the kinship expectation based on genealogy. We exam-
ined in the GAW20 data set from the Genetics of Lipid
Lowering Drugs and Diet Network (GOLDN) study [2]
how employing empirical kinship specifically affects
heritability calculations. We used SOLAR for all herit-
ability calculations and for the calculation of the pedi-
gree kinship matrix using the pedigrees provided in the
GAW20 data set. To calculate the empirical kinship
matrices we used 2 established methods: LDAK [3] and
IBDLD [4]. We further extended this analysis by using
measured genotype-association testing in SOLAR to
identify variants that are associated with the pheno-
types under examination. We hypothesize that using
empirical kinships will strengthen the association re-
sults and effect sizes detected in comparison to the use
of pedigree kinships.

Methods

Data set

The distributed GAW20 genotypes of 718,544 auto-
somal SNPs were converted to their corresponding DNA

Page 130 of 258

nucleotide bases and the hgl8 mapping coordinates were
uplifted to hgl9. This resulted in 718,407 SNPs for ana-
lysis, with 135 excluded because of failing the conversion
to hgl9. The pedigree distributed with the GAW20 data
set was converted to SOLAR format. The phenotype data
distributed with the GAW20 data set was merged into a
single SOLAR format phenotype file.

Prest-plus analysis within-pedigrees and across-pedigrees
Prest-Plus [5] was used to assess recorded pedigree rela-
tionships and to identify evidence of relatedness outside
of the GAW?20 pedigrees. Using PLINK (v1.90b3m) [6],
GAW20 genotypes were linkage disequilibrium pruned
(—-indep-pairwise 2000 10 0.1) and Hardy-Weinberg
equilibrium pruned (nominal significance of P =0.05
used as the threshold) resulting in 22,697 SNPs for
within-pedigree and across-pedigree Prest-Plus analysis.

Empirical kinship calculation

LDAK version 4.9 [3] and IBDLD version 3.33 [4] were
used to derive 2 empirical kinship matrices based on
the GAW?20 genotype data. For LDAK, in principle, this
kernel should correspond to a genetic relationship
matrix; in practice, however, we observed that LDAK
estimates of self-relatedness were widely spread around
their expectation of 1 (Fig. 1a). For IBDLD the estimates
of self-relatedness were closer to 1 (Fig. 1b). The empirical
kinship estimate matrices from LDAK and IBDLD were
postprocessed to remove negative nonzero values and
scaled to have a diagonal equal to 1.

SOLAR heritability analysis

The 2 phenotypes assessed were triglyceride levels and
high-density lipoprotein cholesterol (HDL-C) levels pre-
and post-fenofibrate intervention. For an individual, when
multiple phenotype measurements were available at the 2
visits pre- or 2 visits post-fenofibrate intervention, these
were averaged into single pre- and postintervention
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phenotype values; otherwise, the single pre- or postmea-
surement was used. Phenotypes were analyzed using
SOLAR (SOLAR Eclipse version 7.6.4) [1]. All phenotypes
were residualized with SOLAR for the available covariates,
including age, sex, their interactions (age x sex, age’,
age” x sex), study center, smoking, and principal compo-
nents 1 to 4 (to control for possible population stratifica-
tion, estimated only on pedigree founders using the SNP
data in R and projected to the full sample set). Residua-
lized phenotypes were inverse-normalized in SOLAR to
prevent nonnormal distribution errors during analysis,
ensuring that all phenotypes had a mean of 0 and SD of
unity. Heritability was estimated using SOLAR’s vari-
ance components framework. These analyses were
completed separately using the pedigree kinship matrix
derived from SOLAR and each of the empirical kinship
matrices.

Measured genotype analysis

Single-variant association testing was conducted using
measured genotype analysis (MGA) in SOLAR for the
718,407 SNPs available for analysis in the GAW?20 data
set. This analysis takes into account the nonindependence
of participants, using the kinship matrix, incorporating
each SNP separately into the analysis model as a covariate
measured as a genotype dosage (0, 1, 2) and evaluating the
genotype-specific difference in the phenotype means. For
genome-wide suggestive significance a P-value threshold
of P<1.00 x 10~> was used, and for Bonferroni-corrected
genome-wide significance a threshold of P<6.9x 10" ®
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was applied. Manhattan plots of MGA results were con-
structed in R using qgman [7].

Results

Within-pedigree relationship analysis and detection of
distant relationships between unrelated samples
Prest-Plus identified unexpected relationships within
the GAW20 data set when assessing relationships
within-pedigrees (Fig. 2a), and limited evidence of distant
relationships outside of the pedigree between “unrelated”
individuals (Fig. 2b). The unexpected relationships based
on the within-pedigree analysis suggest sample swap
issues and the samples contributing to these errors were
excluded from the data set (samples circled in Fig. 2a and
summarized in Table 1).

Heritability of triglyceride and HDL-C levels pre- and
post-fenofibrate intervention, using SOLAR with
pedigree-based and empirical kinship

Heritability estimates using SOLAR identified that both
triglyceride levels and HDL-C were significantly and
highly heritable pre- and post-fenofibrate intervention
(Table 2), regardless of whether IBDLD, LDAK, or pedi-
gree kinship was used. General observations that can be
made are that LDAK consistently estimated the lowest
heritability of the 3 methods with pedigree-based and
IBDLD-based estimates comparably similar. A decrease in
sample size for triglyceride post-fenofibrate intervention,
which is a factor of the samples measured and genotyped
in the GOLDN data set, correspondingly decreases the
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Table 1 Erroneous samples identified through Prest-Plus within-
pedigree analysis

Family ID  Individual IDs  Expected relationship Measured relationship

198 5604, 8117 Avuncular Parent-offspring
375 1927, 4078 Full-sibling Unknown
198 3621, 8117 First cousin Full-sibling

magnitude of heritability estimates for the phenotype, ex-
cept for estimates using LDAK.

Measured genotype association analysis using SOLAR of
triglyceride and HDL-C measurements, using both
pedigree-based and empirical kinship

MGA of 718,407 SNPs across both triglyceride and
HDL-C, pre- and post-fenofibrate intervention identified
1 genome-wide significant SNP, rs247617 on chromosome
16, associated with HDL-C pre- and post-fenofibrate
intervention under all 3 kinship models. Figure 3 shows
the Manhattan and quantile—quantile (Q-Q) plots for the
MGA results of HDL-C measurements for the pre- and
post-fenofibrate interventions for pedigree-based kinship
(IBDLD and LDAK results not shown). Table 3 summa-
rizes the association results for rs247617. Even though the
data are not shown here, associations with suggestive
significance were observed for triglyceride levels both pre-
and post-fenofibrate intervention. Indeed, in the compan-
ion paper by Peralta et al. in which a genome-wide linkage
analysis of the triglyceride levels from the GAW20
GOLDN data set was conducted, a linkage peak was de-
tected on chromosome 10, covering the region of the
strongest MGA association for that phenotype in this
study [8].

Discussion
The analysis presented here using the GAW20 data set
from the GOLDN study sought to examine whether the
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use of empirical kinship for the estimation of phenotype
heritability and genetic associations in a data set of re-
lated individuals was an improvement over relying on
pedigree-based kinship. From this analysis, we deter-
mined that empirical kinship is analogous, if not equiva-
lent, to pedigree-based kinship. A limitation of the
current data set was the minimal unknown relatedness
outside of the known pedigrees. It could be expected
that in a data set with greater unknown relatedness, or
incorrect relatedness (eg, full-siblings reported, when
empirically the pair are half-siblings) that heritability es-
timations from pedigree-based and empirical kinships
would be more divergent, with the empirical more
accurate.

Pedigree-based kinship in this data set resulted in the
highest heritability estimates, with empirical kinships from
LDAK generating the lowest heritability estimates. IBDLD
empirical kinship resulted in heritability estimates most
similar to the pedigree-based estimates. Both phenotypes
used from this data set, triglyceride and HDL-C measure-
ments, were significantly heritable pre- and post-fenofibrate
intervention, indicating a strong genetic component to
phenotype variation.

MGA in SOLAR, accounting for the nonindepen-
dence of related samples, identified 1 genome-wide sig-
nificant SNP, rs247617, associated with HDL-C levels
(see Fig. 3). rs247617 has previously shown evidence of
association with HDL-C levels [9], low-density lipopro-
tein (LDL) levels [10] and metabolic syndrome [11].
rs247617 is located upstream of the gene CETP (choles-
teryl ester transfer protein). The protein product of CETP
is found in the plasma and has the role of transferring
cholesterol esters from HDL-C to LDL [12]. Defects
in CETP are reported to be the cause of hyperalphali-
poproteinemia 1 (HALP1), a disease characterized by
abnormally elevated levels of HDL-C [13, 14]. Genetic
associations of suggestive genome-wide significance,

Table 2 Heritability estimates of triglyceride and HDL-C phenotypes using pedigree-based and empirical kinships

Phenotype Kinship h? p Value h? SE Sample size
Triglyceride pre-fenofibrate Pedigree 0424 6.09E-11 0.076 817
IBDLD 0443 471E-11 0.075 817
LDAK 0.335 8.79E-10 0.064 817
Triglyceride post-fenofibrate Pedigree 0.397 1.59E-09 0.078 774
IBDLD 0404 3.75E-09 0.078 774
LDAK 0.350 4.20E-10 0.065 774
HDL-C pre-fenofibrate Pedigree 0.553 4.05E-20 0.068 817
IBDLD 0.545 1.17E-19 0.065 817
LDAK 0480 2.02E-18 0.059 817
HDL-C post-fenofibrate Pedigree 0.580 8.82E-21 0.068 817
IBDLD 0.561 6.79E-20 0.064 817
LDAK 0472 9.38E-17 0.061 817
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not reported here, were observed in a linkage peak identi-
fied in the companion paper by Peralta et al. [8]. Further-
more, the companion paper by Porto et al. shows that
genetic association studies can benefit from the use of
empirical genetic values in the context of genomic predic-
tions [15]. Using the empirical genetic values calculated
for triglyceride and HDL-C may identify additional
genome-wide significant associations.

To further examine the strength of using empirical
kinship, the known pedigrees in this data set could be
selectively broken into smaller pedigrees, to reduce the
pedigree kinship matrix. We could then assess whether

Table 3 MGA identifies SNP rs247617 associated with HDL-C levels

the triglyceride and HDL-C phenotypes remain signifi-
cantly heritable, whether genetic associations detected
using the full pedigree kinship matrix are replicated and
whether in this context whether stronger support is pro-
vided for using empirical kinship in phenotype heritabil-
ity estimation and genetic association studies.

Conclusions

The analysis presented here on the GAW20 data set
from the GOLDN study has shown that empirical kin-
ship is a practical alternative to pedigree-based kinships,
when dense genotypic data are available, within the

Phenotype Kinship model Chi p.SNP Beta SNP Beta SNP (SE)
HDL-C pre-fenofibrate Pedigree 3197 156x 1078 0314 0.056

IBDLD 32.27 134x107°® 0315 0.055

LDAK 32.55 116x 1078 0.309 0.054
HDL-C post-fenofibrate Pedigree 35.07 318%x 1077 0329 0.055

IBDLD 35.97 200% 1077 0332 0.055

LDAK 35.60 243%107° 0324 0.054
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limitations of this study of a data set with little unknown
kinship. Although we only examined phenotypes with
moderate heritability, it is likely that the near functional
equivalence of empirical and pedigree relatedness matrices
holds across the spectrum of heritabilities. Analytical the-
ory supports this as the expected power across heritabil-
ities is determined by the eigenvalues of the relatedness
kernel itself [16]. In this data set heritability estimates of
triglyceride and HDL-C phenotypes obtained using empir-
ical kinships from IBDLD more closely resembled those
obtained with the pedigree based kinship estimations than
those obtained using LDAK-based empirical kinships. The
phenotypes assessed here were found to be highly and sig-
nificantly heritable and measured genotype association
testing identified a single variant, rs247617, as significantly
associated with variation in HDL-C in line with the known
biology of the gene closest to this variant, CETP.
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