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Analysis of a dynamic model of guard cell
signaling reveals the stability of signal
propagation
Xiao Gan and Réka Albert*

Abstract

Background: Analyzing the long-term behaviors (attractors) of dynamic models of biological systems can provide
valuable insight into biological phenotypes and their stability. In this paper we identify the allowed long-term
behaviors of a multi-level, 70-node dynamic model of the stomatal opening process in plants.

Results: We start by reducing the model’s huge state space. We first reduce unregulated nodes and simple mediator
nodes, then simplify the regulatory functions of selected nodes while keeping the model consistent with experimental
observations. We perform attractor analysis on the resulting 32-node reduced model by two methods: 1. converting it
into a Boolean model, then applying two attractor-finding algorithms; 2. theoretical analysis of the regulatory functions.
We further demonstrate the robustness of signal propagation by showing that a large percentage of single-node
knockouts does not affect the stomatal opening level.

Conclusions: Combining both methods with analysis of perturbation scenarios, we conclude that all nodes except two
in the reduced model have a single attractor; and only two nodes can admit oscillations. The multistability or oscillations
of these four nodes do not affect the stomatal opening level in any situation. This conclusion applies to the original
model as well in all the biologically meaningful cases. In addition, the stomatal opening level is resilient against single-
node knockouts. Thus, we conclude that the complex structure of this signal transduction network provides multiple
information propagation pathways while not allowing extensive multistability or oscillations, resulting in robust signal
propagation. Our innovative combination of methods offers a promising way to analyze multi-level models.

Keywords: Network model, Discrete dynamic model, Biological network, Signal transduction, Plant signaling, Attractor,
Stomatal opening, Network reduction, Boolean conversion, Stable motif

Background
Modeling offers a comprehensive way to understand bio-
logical processes by integrating the components involved
in them and the interactions between components.
Models can recapitulate and explain the emergent out-
come(s) of the process [1, 2]. Representing cellular pro-
cesses that involve many proteins and small molecules
by a signal transduction network can reveal indirect rela-
tionships between components and provide new insight
[3–5]. Such network usually consists of nodes represent-
ing biological entities, and edges representing interac-
tions. Once a network has been constructed, dynamic

modeling, where each node in the network is associated
with a variable representing its abundance or activity,
can further describe the behavior of the network. Dy-
namic models can have continuous variables whose
change is described by differential equations [6], discrete
variables described by discrete (logical) regulatory func-
tions [7, 8], or a combination of continuous and discrete
variables [9]. The major advantage of discrete dynamic
and continuous-discrete hybrid models is that they use
many fewer parameters than continuous models and
thus need less parameter estimation [10–12]. Modeling
allows one to analyze the biological system represented
by the network in silico, when performing the relevant
experiment is infeasible. It also helps identify general
principles of biological systems [13, 14].* Correspondence: rza1@psu.edu
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The biological process of stomatal opening in plants is
a good example of a complex system wherein modeling
leads to significant gain in understanding [15, 16]. Sto-
mata are pores on leaf surfaces that allow the plant to
exchange carbon dioxide (CO2) and oxygen with the at-
mosphere. Stomata are formed by two guard cells that
can change shape: swelling of guard cells leads to stoma-
tal opening; their shrinking leads to stomatal closure.
The shape of each guard cell is directly controlled by
water flow through the membrane, which is in turn con-
trolled by ion flow. Different signals can affect the guard
cell, changing its ion concentration in direct and indirect
ways, resulting in stomatal opening or closure [17–19].
These signals include light of different wavelengths, CO2

concentration in the air, and plant hormones like absci-
sic acid (ABA). The regulation of stomatal opening is es-
sential to plants, as it controls vital activities like the
uptake of CO2 for photosynthesis, and the unavoidable
water loss through evaporation [20]. Through extensive
experimentation over several decades, more than 70

proteins and small molecules have been identified to
participate in this process.
Sun et al. [15] recently constructed a signal transduc-

tion network based on conclusions from more than 85
articles in the literature, describing how more than 70
nodes (proteins, small molecules, ions) interact with
each other in the stomatal opening process. The net-
work, reproduced as Fig. 1 [15], includes four source
nodes that correspond to the signals red light, blue light,
CO2, and ABA. The more than 150 edges are directed
and signed, with arrowheads indicating activation and
terminal black circles indicating inhibition.
Translating this network into a dynamic model, Sun et

al. characterized each node with a discrete variable de-
scribing its activity and with a discrete (logical) regula-
tory function describing its regulation. Twenty-one out
of the 70 nodes in the model are multi-level, the rest are
Boolean (binary). The levels reflect relative and qualita-
tive information: a level of 2 is a higher level than 1, but
should not be interpreted as twice as high. A few

Fig. 1 The signal transduction network responsible for stomatal opening, as reconstructed by Sun et al. [15]. The color of a node marks which
signal regulates this node. Red nodes are regulated solely by red light. Blue nodes are regulated solely by blue light. Yellow nodes are regulated
solely by ABA. Grey nodes are regulated by CO2. Purple nodes are regulated by both blue and red light. Green nodes are regulated by blue (and
potentially, red) light and ABA. White nodes are source nodes not regulated by any of the four signals. To improve visualization, certain pairs of
edges with the same starting or end nodes overlap. Nodes with multiple levels in the dynamic model are represented by red shadows; the
others are Boolean. The full names of the network components denoted by abbreviated node names are given in Table 1. This figure and part of
its caption is reproduced from Sun Z, Jin X, Albert R, Assmann SM (2014) Multi-level Modeling of Light-Induced Stomatal Opening Offers New
Insights into Its Regulation by Drought. PLoS Comput Biol 10(11): e1003930. doi:10.1371/journal.pcbi.1003930
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discrete values are not integers; e.g. stomatal opening is
a weighted sum with non-integer weights. The dynamic
model has ~1031 states. The logical regulatory functions,
describing each node’s future state based on the states of
the node’s regulators, use a combination of Boolean logic
operators (And, Or, Not), algebraic operations, and
input-output tables. For example, the regulatory function
of PRSL1 is:

PRSL1� ¼ phot1complexOr phot2:

Here for simplicity the node states are denoted by the
node names; the asterisk in “PRSL1*” indicates that this
will be the next state of the PRSL1. The “Or” Boolean
operator expresses that either of the blue light receptors,
i.e. the phot1 complex or phot2, can independently acti-
vate PRSL1.
The Sun et al. model starts from an initial condition

representative of closed stomata. Then a combination of
the four input signals is applied. Red light, blue light,
and ABA are represented as binary variables, and exter-
nal CO2 is represented with three states: 0 (CO2 free
air), 1 (ambient CO2) and 2 (high CO2). The system’s re-
sponse is simulated through repetitive re-evaluation of
each node’s state until a stable value of stomatal opening
is observed. The model successfully captures stomatal
opening in response to combinations of the signals. It
also successfully reproduces stomatal opening under
most of the experimentally studied perturbation scenar-
ios (i.e. genetic knockouts or external supply of compo-
nents). In total, the model is consistent with 63 out of
66 experimental observations collected by Sun et al.
[15]. The model predicts the outcome of a large number
of scenarios that have not been explored experimentally
so far. It also revealed a gap of knowledge regarding the
cross-talk of red light and ABA signaling, and filled it
with a newly predicted interaction.
Although the Sun et al. model recapitulates existing

knowledge and offers new predictions, the model’s full
dynamic repertoire could not be characterized due to its
large state space. Instead, Sun et al. focused on tracking the
output node, stomatal opening, and a few selected internal
nodes, in time. In this paper we apply multiple methods to
analyze the model and aim to fully map all its potential
long-term behaviors, or in other words, attractors.

Methods
Attractors of a dynamical system
An attractor is a set of states from which only states in
the same set can be reached. Attractors that consist of a
single state are called stable steady states or fixed points;
attractors that contain multiple states are called complex
attractors or oscillations [10]. In biological networks,
attractors often have significant biological meaning. In a

cell signaling network, attractors correspond to cell
types, cell fates or behaviors [21]. For example, one at-
tractor can represent a healthy differentiated cell, while
another attractor can represent an abnormally motile
cancer cell [22].

Update scheme of a discrete time model
In the Sun et al. model, as in most discrete dynamic
models, time is an implicit variable. As there is very little
information about the kinetics of the nodes in the sto-
matal opening network, the model incorporates an elem-
ent of stochasticity in timing. The timing does not affect
a system’s fixed point attractors, but it can change the
complex attractors and the possibility of reaching a
given attractor from a given initial state [10]. In the Sun
et al. model, a random–order asynchronous update is
used. Specifically, at each time step, a random order of
nodes (excluding the four input nodes and the output
node stomatal opening) is generated, and each node’s
state is reevaluated in this order; stomatal opening is al-
ways updated last. In the next time step a different order
is generated randomly. In this paper, we use a different
type of stochastic update, called general asynchronous
update, wherein a randomly selected node is updated at
each time step. This is required by the network reduc-
tion method we use. Although this theoretically could
cause a difference in complex attractors, we will show
that in this specific model the two update methods yield
the same attractors.

Network reduction
To reduce the Sun et al. model’s state space, we apply a
network reduction method developed by Saadatpour et
al. [23] that is proven to preserve the attractors of a
Boolean model. Two types of nodes can be reduced
(eliminated or merged): source nodes with no incoming
edges, and simple mediator nodes that have one incom-
ing and/or one outgoing edge. In the reduction, the
source node’s state is directly plugged into the regulatory
function of all of its direct successor nodes; then the
source node is eliminated. For a simple mediator node
with one predecessor (regulator) and one successor (tar-
get), its regulator is connected to its target and the me-
diator node is merged into the regulator. If there is one
regulator and several targets of the mediator node, but
no direct edges between the regulator and any of the tar-
gets, the mediator node is merged into the regulator.
Conversely, if there are several regulators and one target
of the mediator node, but no direct edges among any of
the regulators and the target, the mediator node is
merged into its target. Although this method is not
proven in the multi-level case, we conjecture that attrac-
tors are also conserved for a multi-level model, and will
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show from the results that in the Sun et al. model this
reduction method preserved all attractors.

Elimination of redundant edges
During the process of creating a discrete dynamic model
from biological data, when an influence is weaker than
other influences, the modeler may choose to omit this
influence or, alternatively, include it a redundant way.
The latter choice was made by Sun et al. in four cases,
leading to four regulatory functions that contain an in-
put that does not affect the outcome of the regulatory
function. One of these is

ROS� ¼ NADPH And AtrbohD=F Or NADPH

And AtrbohD=F And CDPK Or Not Atnoa1

The italicized words “And”, “Or” and “Not” are Bool-
ean logic operators; the non-italicized words represent
node names. In this regulatory function every node is
Boolean (binary). The first clause “NADPH And Atr-
bohD/F” and the second “NADPH And AtrbohD/F
And CDPK” are connected with an “Or” rule, with the
result that the node “CDPK” does not have any influence
on the outcome. Therefore, we can prune the edge from
CDPK to ROS without changing the model’s dynamics.
We similarly prune three additional redundant edges.

Converting a multi-level model to Boolean
There are several possibilities to convert a multi-level
model to Boolean [24]. The standard method used in the
case of logical models of regulatory networks is the Van
Ham mapping [25, 26]. It preserves the dynamics of the
original model if the variables in the original model can
be represented by integers and if the original model only
allows state transitions in which one node changes its
state by one level [26]. The Sun et al. model does not
satisfy these criteria. However there still is a conclusion
that we can use: All types of conversions maintain the
fixed points and the reachability of states (i.e. if there is
a sequence of state transitions from state A to state B
before conversion, there must be a sequence of state
transitions from the corresponding state A’ to state B’
after the conversion) [26]. So the worst distortion of
attractors due to the conversion is the merging of two
complex attractors into one. In this light we choose to
use an economic mapping of each multi-level node into
as many Boolean nodes as necessary for the binary rep-
resentation of the corresponding integer. We will show
that in this specific model, the conversion did not
change the attractors.

Abbreviations
Table 1 summarizes the full names of the network com-
ponents denoted by abbreviated node names in Fig. 1.

The same abbreviations are used in the original Sun et
al. model and the reduced model developed in this
paper.

Results
Network reduction
The Sun et al. model has a huge state space of ~1031

states, making its analysis difficult. To obtain a smaller
state space, we reduce the size of the network by applying
a network reduction technique developed by Saadatpour
et al. [23] that is proven to preserve the attractors of Bool-
ean models (see Methods). All source nodes other than
the four signals (blue light, red light, CO2, and abscisic
acid) and all simple mediator nodes are identified and re-
duced. This process is done iteratively until it cannot be
done any more. A total of 7 source nodes (14-3-3 protein-
phot1, PIP2C, AtNOA1, Nitrate, PP1cn, mitochondria, and
CHL1), and 19 simple mediator nodes (phot1, phot2,
NIA1, H+-ATPase, LPL, ATP, acid. of apoplast, [NO3

−]v,
[Cl−]v, NADPH, [malate2−]v, PA, ABA receptors, OST1,
PRSL1, PIP2PM, AtrbohD/F, Nitrite, and phot1complex) are
eliminated. Several of the simple mediator nodes form lin-
ear paths (e.g. phot1, OST1) thus their iterative reduction
shortens the linear paths in the network. In addition, 16 of
the 19 reduced mediators have a regulatory function of
the form “B* = A”. It is intuitive that reduction of this node
type preserves the attractors.
We do not eliminate the four signal nodes because we

want to simultaneously explore all the combinations of
input signals. We also choose to not reduce the five
nodes (Kin, Kout, Kc, Ca

2+-ATPase, mesophyll cell photo-
synthesis) whose merging with their sole regulator would
result in a self-loop (self-regulation), because such self-
loops may be difficult to interpret. Two additional nodes
with significant biological meaning to the network
(sucrose, stomatal opening), are not reduced either.
Another form of network reduction is the elimination

of redundant edges (see Methods). After removal of re-
dundant edges, the node CDPK becomes a sink node,
thus it can also be eliminated. The reduction of the
above-described nodes and redundant edges simplifies
the network from 70 nodes to 42 nodes, with an esti-
mated state space of ~1022 states.

Simplification of regulatory functions
In order to further reduce the state space from ~1022 to
a manageable size, we grouped state values so that nodes
are represented with fewer states. This grouping was
guided by the 66 experimental observations summarized
in Sun et al.; we aimed to maintain the reduced model’s
results consistent with these experimental observations.
For example, in the Sun et al. model [15] the regula-

tory function of Stomatal Opening is a weighted sum of
different ions and sucrose:
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Stomatal opening� ¼ ½Cl−�vcontribution
þ ½NO3

−�vcontributionþ ½Kþ�v
þ ½malate2−�vcontributionþ sucrose−RIC7=6

The weights of the anion contributions to the
osmotic potential were chosen based on the literature.
Also, the anion contributions must not exceed a pro-
portion of [K+]v due to charge balance. The anion
contributions are [malate2−]v contribution ≤ 0.425 × [K+]v;
[NO3

−]v contribution ≤0.10 × [K+]v; [Cl
−]v contribution ≤

0.05 × [K+]v. The primary contributions come from [K+]v
and sucrose. We grouped the stomatal opening values into
6 groups with different [K+]v and sucrose values (see
Table 2 and Additional file 1).
The first two columns indicate the [K+]v and su-

crose levels. The third column is the possible values
of stomatal opening in the Sun et al. model for the
given [K+]v and sucrose levels. Note that here we only
show [K+]v, sucrose and stomatal opening value com-
binations observed in the simulations of the 66

Table 1 Full names of the network components denoted by abbreviated node names in Fig. 1

Abbreviation Full name Abbreviation Full name

14-3-3
proteinH-
ATPase

14-3-3 protein that binds to the H+-ATPase 14-3-3
proteinphot1

14-3-3 protein that binds to phototropin 1

ABA abscisic acid ABI1 2C-type protein phosphatase

acid. of
apoplast

the acidification of the apoplast AnionCh anion efflux channels at the plasma
membrane

AtABCB14 ABC transporter gene AtABCB14 Atnoa1 protein nitric oxide-associated 1

AtrbohD/F NADPH oxidase D/F AtSTP1 H-monosaccharide symporter gene AtSTP1

Ca2+-ATPase Ca2+-ATPases and Ca2+/H+ antiporters responsible for Ca2+ efflux from
the cytosol

CaIC inward Ca2+ permeable channels

CaR Ca2+ release from intracellular stores carbon fixation light-independent reactions of
photosynthesis

CDPK Ca2+-dependent protein kinases CHL1 dual-affinity nitrate transporter gene
AtNRT1.1

Ci intercellular CO2 concentration FFA free fatty acids

H+-ATPase the phosphorylated H+-ATPase at the plasma membrane prior to the
binding of the H+-ATPase 14-3-3 protein

H
+-ATPasecomplex

14-3-3 protein bound H+-ATPase

KEV K+ efflux from the vacuole to the cytosol Kin K+ inward channels at the plasma
membrane

Kout K+ outward channels at plasma membrane LPL lysophospholipids

NADPH reduced form of nicotinamide adenine dinucleotide phosphate NIA1 nitrate reductase

NO nitric oxide OST1 protein kinase open stomata 1

PA phosphatidic acid PEPC phosphoenolpyruvate carboxylase

phot1 phototropin 1 phot1complex 14-3-3 protein bound phototropin 1

phot2 phototropin 2 Photophos-
phorylation

light-dependent reactions of
photosynthesis

PIP2C phosphatidylinositol 4,5-bisphosphate located in the cytosol PIP2PM phosphatidylinositol 4,5-bisphosphate
located at the plasma membrane

PLA2β phospholipase A2β PLC phospholipase C

PLD phospholipase D PMV electric potential difference across the
plasma membrane

PP1cn the catalytic subunit of type 1 phosphatase located in the nucleus PP1cc the catalytic subunit of type 1 phosphatase
located in the cytosol

protein
kinase

a serine/threonine protein kinase that directly phosphorylates the
plasma membrane H-ATPase

PRSL1 type 1 protein phosphatase regulatory
subunit 2-like protein1

RIC7 ROP-interactive CRIB motif-containing protein 7 ROP2 small GTPase ROP2

ROS reactive oxygen species [Ca2+]c cytosolic Ca2+ concentration

[Cl−]c/v cytosolic/vacuolar Cl− concentration [K+]c/v cytosolic/vacuolar K+ concentration

[malate2−]a/c/v apoplastic/ cytosolic/vacuolar malate2− concentration [NO3
−]a/c/v apoplastic/cytosolic/vacuolar nitrate

concentration
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experimentally studied scenarios reported by Sun et
al. [15]. More stomatal opening values are possible
when considering node perturbations. The 4th col-
umn shows the simplified stomatal opening level after
grouping. The update function for the simplified sto-
matal opening level covers all possible values of [K+]v
and sucrose (see Additional file 1).
Similarly to the original model, the simplified states

represent qualitative, relative categories. For example, a
stomatal opening level of 2 is not twice as high as level
1. We choose the simplified stomatal opening values so
that there is no state “4”, to better reflect an experimen-
tally observed synergistic effect between blue and red
light [18, 19, 27]. Simulation results with the simplified
regulatory function are that under monochromatic red
light stomatal opening =1; under monochromatic blue
light stomatal opening =3; under dual beam the stomatal
opening =5, which is larger than the sum “1 + 3”. This
qualitatively reproduces the experimental observation
that under dual beam illumination stomata open to a
size much larger than the sum of opening under mono-
chromatic blue or red light.
We find by simulation of the reduced model, using

the same initial condition as the Sun et al. model,
that the simplification of the stomatal opening regula-
tory function results in only 3 additional cases of in-
consistency with experimental observations out of a
total of 66 experimentally studied scenarios. Add-
itional file 2 lists all experimental observations and com-
pares them to the relevant simulation results. Ignoring the
contribution of malate2−, NO3

−, and RIC7 to stomatal open-
ing each causes one additional discrepancy; ignoring Cl−

does not cause any additional discrepancy. Ignoring these
nodes trades a decrease in accuracy for a significant in-
crease in simplicity.
The simplification of the stomatal opening regulatory

function eliminates the effect of vacuolar anions and of

RIC7 on stomatal opening. As a result we can further
simplify the Sun et al. model by eliminating 10 nodes in
total, [malate2−]a, [malate2−]c, starch, [Cl−]c, [NO3

−]c,
[NO3

−]a, ROP2, RIC7, ABC, and PEPC. The only edge
from these nodes to other nodes is [malate2−]a→
AnionCh. In section 3 of Additional file 3 we show that
eliminating this edge does not change the system’s long-
term behavior, i.e. attractors. Also, the regulatory func-
tion describing the cytosolic K+ concentration, [K+]c, can
be simplified without loss, as described in section 3 of
Additional file 3. After this simplification we have a net-
work of 32 nodes, 81 edges, indicated on Fig. 2. We will
refer to this model as the “reduced model”. A list of
nodes and their regulatory functions is provided in
Additional file 1.
Identifying strongly connected components (SCCs)

is important for attractor analysis, as complex dy-
namic behavior such as oscillations or multi-stability
requires feedback loops [7]. There are three SCCs in
the network of the reduced model, as marked in
Fig. 2. The NO cycle contains three nodes and three
positive edges. The Ci SCC contains three nodes,
which form two negative feedback loops. The Ion
SCC is the most complex, containing 13 nodes and
26 edges, 7 of which are negative.
Next we perform attractor analysis using two

methods: 1. by converting the reduced model to Boolean
and applying two analysis tools; 2. by analyzing the regula-
tory functions theoretically. The former method finds all
stable steady states and candidate oscillations; the latter
confirms the results of the first method and gives insight
about perturbation scenarios.

Conversion of nodes from multi-level to Boolean states
and attractor analysis
We perform the conversion to Boolean to enable at-
tractor analysis by existing software tools. Zañudo et al.
[28] proposed an algorithm to find the attractors of a
Boolean network based on the concept of “stable motif”,
a strongly-connected group of nodes that can stabilize
regardless of their inputs. The algorithm finds all stable
motifs, which determine the part of the network that
stabilizes in an attractor. After a stable motif is found,
one can plug in its stabilized state into the network, and
obtain a smaller remaining network. After repeating this,
eventually the remaining part is either nothing (indicat-
ing a fixed point/stable steady state) or a candidate oscil-
lating sub-network. Compared with other software tools
[29, 30], the major advantage of this algorithm is that it
finds all the attractors of Boolean networks with hun-
dreds of nodes [28]. Application of this powerful method
requires a Boolean model, so we convert the multi-level
model into Boolean first (see Methods). An example of
conversion is given in Table 3.

Table 2 Grouping of the stomatal opening values by the level
of [K+]v and sucrose

[K+]v Sucrose Stomatal opening value
in the Sun et al. model

Simplified stomatal
opening value

0 0 0 0

0 1 or 2 1 or 2 1

1 0 1.58 1

1.8 1 3.84 2

1.5 2 4.36 2

2 0 or 1 3.15 or 4.15 3

4.5 0 or 2 5.18 or 8.92 3

6 0 9.28 or 9.45 5

6 2 11.28 or 11.45 5

9 0 or 2 14.01 or 16.01 6

Gan and Albert BMC Systems Biology  (2016) 10:78 Page 6 of 14



More detailed examples of the conversion of the states
and regulatory function of specific nodes are given in
the Additional file 4. We will refer to the reduced model
after conversion to Boolean variables as the “Boolean-

converted reduced model”. The regulatory functions of
the Boolean-converted reduced model are available in
Additional file 5. When simulating the Boolean-
converted reduced model, all the Boolean nodes that

Fig. 2 The stomatal opening network after model reduction, with 32 nodes and 81 edges. Nodes with shadows have multiple states; other nodes
are binary. The three strongly-connected components (SCCs) of the network are indicated by rectangles with dashed contours
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represent the same entity (the same multi-level node)
are updated simultaneously. In this way the state transi-
tions of the reduced model will be kept the same in the
Boolean-converted reduced model, and therefore the
Boolean conversion will not cause additional discrepan-
cies from experimental observations.
We apply the stable motif algorithm’s implementation,

downloaded from http://github.com/jgtz/StableMotifs/
[28], to the Boolean-converted reduced model. The algo-
rithm uses the Boolean regulatory functions of the con-
verted model (given in Additional files 5 and 6) as input.
We consider every combination of sustained states of
the five signal nodes (blue light, red light, ABA, CO2,
CO2_high). We find two possible stable motifs, corre-
sponding to the self-regulatory node PMV_pos (one of
the two Boolean nodes associated with the multi-level
node PMV, see Additional files 4 and 5), in conditions
where the H+-ATPasecomplex is inactive. These two stable
motifs indicate the bistability of PMV. Under its influ-
ence, another node, Kout, will also be bistable. The algo-
rithm also indicates that for any signal combination,
every node, except [Ca2+]c and Ca2+-ATPase, will
stabilize in a fixed state. [Ca2+]c has three states, and in
the Boolean-converted model it is represented by two
nodes, Cac and Cac_high. Cac_high, which represents
the higher level of [Ca2+]c, stabilizes at zero in all situa-
tions. Cac and Ca2+-ATPase may oscillate in conditions
where blue light is present and ABA is absent (a total of
six cases, two of which allow PMV bistability). Table 4
summarizes key features of the attractors found by the
stable motif algorithm for all 24 input combinations.
Attractors where Ca2+ oscillation is not possible are
fixed points (stable steady states).
We verified the obtained attractors with GINsim [12],

a software suite capable of model construction, simula-
tion, and analysis. GINsim can compute all stable steady
states (called stable states in GINsim), or determine
complex attractors by mapping the state transitions. The
stable steady states found by GINsim are identical to
those found by the stable motif algorithm. To verify and
further explore the complex attractors, we use the simu-
lation function of GINsim, starting from a state in the
complex attractor. The result that the system oscillates

between four states, where only the state of Cac and Ca2
+-ATPase changes, agrees with the findings of the stable
motif algorithm. We summarize the GINsim computa-
tion/simulation results in Additional file 7. Additional
file 8 indicates the Boolean-converted reduced model in
SBML-qual format [29], a general format for biological
model to be analyzed using various tools including
GINsim.
We can also connect the stable motif analysis results

to network reduction. We have previously decided to
not reduce the four nodes that correspond to input sig-
nals. If we do consider a specific input combination
when using network reduction, e.g. blue light and red
light with normal CO2 without ABA, we can reduce
much more of the network: two of the three SCCs,
namely the NO cycle and the Ci SCC, will stabilize and
can be eliminated. Only the Ion SCC and its sole output
stomatal opening remain, indicating that this SCC is not
driven solely by the external signals and has the capacity
for oscillations or multi-stability. This is consistent with
the results found by stable motif analysis, according to
which the NO cycle and the Ci SCC attain a steady state
and the Ion SCC admits a [Ca2+]c - Ca

2+-ATPase oscilla-
tion and PMV bistability. This consistency supports the
appropriateness of the network reduction method and of
the Boolean conversion.

Theoretical analysis of the reduced model
To gain additional insight into the attractors of the re-
duced model and their potential changes due to node
perturbations, we analyze the reduced model theoretic-
ally. Specifically, we aim to answer the question: Can
there be other types of oscillation, or can there be add-
itional multi-stability, if a node is knocked out (fixed in
the OFF state) or is constitutive active (fixed in the high-
est state)?
We first test whether the network and regulatory rules

allow multi-stability or oscillations. This analysis is based
on R. Thomas’s conjectures [7]: The presence of a positive
(negative) feedback loop - a cycle with an even (odd) num-
ber of inhibitory edges - in the network is a necessary but
not sufficient condition for the occurrence of multiple
steady states (oscillations). The conjectures have been
proven in the case of discrete dynamic systems [31–34].
Since only feedback loops are candidates for potential
multi-stability or oscillations, we analyze the regulatory
functions of each strongly connected component of the
network. For each feedback loop, we identify a sufficient
condition for the nodes to stabilize in a specific state. The
violation of this condition becomes a further necessary
condition of multi-stability or oscillation. Here we de-
scribe the main steps and results of the analysis; the de-
tailed analysis is in Additional file 3.

Table 3 Example of Boolean conversion

Level of the original
node

State of Boolean
node_2

State of Boolean
node_1

0 0 0

1 0 1

2 1 0

3 1 1

The multi-level node shown in the 1st column is mapped into two Boolean
nodes, shown in the 2nd and 3rd columns, using the binary representation of
the corresponding integer.
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The NO cycle is composed of the nodes PLD, ROS,
NO, and the three positive edges between them. It does
not have any negative edges, so it cannot oscillate. A
fixed ABA value is sufficient to stabilize each node of
the cycle in a specific state, thus the cycle does not
admit multi-stability under any perturbation.
The Ci SCC has three nodes, Ci, mesophyll cell photo-

synthesis (MCPS), carbon fixation, and four edges that
form two negative feedback loops, one between carbon
fixation and Ci, and the other between Ci and MCPS.
Despite the existence of negative feedback, this cycle will
stabilize if given a fixed CO2 value. From this we know
that this cycle cannot oscillate or admit multi-stability
under any perturbation.
The Ion SCC has 13 nodes. To reduce its complexity

we show that the key node [Ca2+]c, which has states 0,1,
and 2, cannot enter state 2 in the long term under any
perturbation. Since most nodes respond to [Ca2+]c only
if [Ca2+]c =2, we can eliminate all edges that depend
only on “[Ca2+]c =2”, and obtain a simplified Ion SCC,
as shown in Fig. 3. The Ca2+ SCC ([Ca2+]c, Ca

2+ ATPase,
PLC, CaR) now becomes a sink SCC. The only negative
edge in this sub-network is from Ca2+-ATPase to [Ca2+]c.
These two nodes are known to oscillate. The positive feed-
back loop formed by [Ca2+]c, PLC, and CaR will stabilize if
given fixed inputs. So there cannot be multi-stability. For
the nodes outside of the Ca2+ feedback loops, we show that
the edges from KEV and [K+]v are redundant in the long
term, so there are no feedback loops except the PMV self-
loop. PMV is not capable of having oscillations, but can
have bistability (as also indicated by the stable motif

analysis). The bistability can affect at most one other node,
Kout, under any perturbation. This means that the bistability
has very limited effect on the attractor of the reduced
model.
Now we can summarize our conclusions and return to

the question we sought to answer: there is no oscillation
except in the calcium nodes; there is no multi-stability
except in the nodes PMV and Kout. These statements are
true under any perturbation. Moreover, for the calcium
oscillation, [Ca2+]c cannot enter the state 2, so the sub-
network between [Ca2+]c and Ca2+-ATPase is a negative
feedback loop between two Boolean nodes, with the
regulatory functions Ca2+ ATPase* = [Ca2+]c; [Ca

2+]c* =
not Ca2+ ATPase. It results in the simplest type of oscil-
lation, as also found by GINsim simulation. For the
PMV bistability, even if the bistability exists, most nodes,
especially the output node stomatal opening, still have a
unique value. Thus the theoretical analysis, in agreement
with the computational analysis, leads to very strong
conclusions about the reduced model’s dynamic
repertoire.
We can also show that the reduction or Boolean con-

version did not change the attractors of the Sun et al.
model. Although the reduction we used is only proven
in the Boolean case, Naldi et al. showed that for multi-
valued models, removal of non-autoregulated nodes, like
in our reduction, preserves crucial dynamical properties
[35], including fixed point attractors and the two-node
simple oscillation we found. So our reduction is valid in
this specific model. To confirm that the Boolean conver-
sion preserved attractors, we note that in the Boolean-

Table 4 Summary of the attractors found using the stable motif algorithm

BL RL CO2 CO2_high ABA SO (Bool) SO Ca2+ Oscillation Possible? PMV_pos bistability

0 0 Any Any Any 000 0 No Yes

0 1 0 0 1 000 0 No No

0 1 1 Any 1 000 0 No Yes

1 Any 1 0 1 000 0 No No

1 Any 1 1 1 000 0 No Yes

0 1 1 Any 0 010 1 No Yes

1 Any 1 1 0 010 1 Yes Yes

0 1 0 0 0 101 3 No No

1 0 1 0 0 101 3 Yes No

1 Any 0 0 1 101 3 No No

1 0 0 0 0 110 5 Yes No

1 1 1 0 0 110 5 Yes No

1 1 0 0 0 111 6 Yes No

The first five columns indicate the input signal combination. The setting CO2_high = 1 and CO2 = 0 is not included because it is not biologically meaningful. The
“SO (Bool)” column indicates the state of the Boolean node combination representing stomatal opening. The “SO” column is the state of stomatal opening when
converted back to an integer. Note that the stomatal opening level of four is not defined, and no attractors have a stomatal opening level of two. The next
column indicates whether Ca2+ oscillation can possibly happen under the given signal combination. The last column indicates whether bistability of PMV_pos can
be observed under this setting. In those cases, two stable steady states with (PMV_pos = 0, Kout = 0) and (PMV_pos = 1, Kout = 1) can be observed. The rest of the
nodes are unaffected by this two-node bistability
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converted reduced model we found fixed point attractors
and a complex attractor in which only two nodes oscil-
late. Because the only potential change to attractors as a
consequence of the conversion is merging of complex
attractors [26], it is straightforward that the attractors
have been conserved during the conversion, as the two-
node oscillation found is the simplest type of complex
attractor and cannot be a result of attractor merging. In
addition, using general asynchronous update instead of
random order asynchronous update does not cause any
changes to the attractor, because the update schemes do
not affect fixed points or the two-node simple oscillation
we found.

Stability of guard cell signal transduction
Our previous results indicate the stability of the system
in the sense that all the initial conditions lead to the
same attractor except for up to four nodes. We also
examine another facet of the system’s stability: the ro-
bustness of the stomatal opening in response to node
perturbations that render them non-functional. We per-
form a systematic analysis of single-node knockouts of
every non-signal node in the reduced model, under all
combinations of light, CO2 and ABA conditions. For
each signal combination, we set the perturbed node’s ini-
tial state and regulatory function to 0, initialize the rest

of the nodes in the condition representative of closed
stomata, and then simulate the reduced model until it
reaches its attractor. In the absence of ABA under each
light and CO2 condition, 60–90 % perturbation scenarios
produce the same stomatal opening value as the unper-
turbed system (Table 5). These results are similar to
those reported by Sun et al. for the original model [15]
(see Additional file 9). In the presence of ABA 50–90 %
perturbation scenarios produce the same stomatal open-
ing value as the unperturbed system, and 4–16 % knock-
outs lead to a higher stomatal opening value.
Perturbations in the ABA = 1 case were not studied by
Sun et al., but our simulations of the original model give
the same qualitative results as the reduced model. These
results indicate the closeness of the perturbed attractor
(at least in terms of the stomatal opening value) to the
unperturbed attractor in more than 50 % of single node
perturbations. They also suggest the resilience of the sto-
matal opening process against internal failures and
perturbations.

Extending the conclusions to the original model
We found that in the reduced model there is no oscilla-
tion except in the calcium nodes; there is no multi-
stability except in the nodes PMV and Kout. Because the
reduction we used has been shown to conserve

Fig. 3 The Ion SCC after reducing all edges that depend on calcium. All regulators of this sub-network have been omitted. On the left, [Ca2+]c
related nodes form a sink sub-network
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attractors [23, 35], we know that our attractor conclu-
sions can be immediately extended to all nodes in the
original model except the reduced nodes and stomatal
opening. Next we extend the attractor analysis to include
the reduced nodes as well.
First we consider the nodes reduced during the first

step of network reduction, i.e. non-signal source nodes
and simple mediator nodes. These nodes are trivially in-
capable of having multi-stability and oscillations them-
selves, so we need only to consider their perturbations.
Perturbation of a simple mediator node can always be
replaced by a corresponding (set of ) perturbation(s) in
the mediator node’s direct successor(s), so these pertur-
bations have already been considered. Perturbing a non-
signal source node may theoretically cause a difference,
however the nodes in this category in the Sun et al.
model represent molecules that are abundant in the cell
or cell environment, thus their perturbation is not bio-
logically relevant or practical.
Next we consider the anion nodes reduced due to the

simplified stomatal opening rule. Recall that these nodes
do not affect other nodes except stomatal opening in the
long term. There cannot be multi-stability in anion
nodes unless the assumptions of sufficient initial [NO3

−]a
and starch concentration, and sufficient initial mito-
chondrial TCA cycle activity are violated (details are
provided in Additional file 3, section 5 and 6). Since

there is no support for interventions that would lead to
the violation of these assumptions, it is reasonable to
conclude that no multi-stability can be found in the re-
duced nodes under biologically relevant situations. We
also found that there can be an additional oscillation in
the RIC7 path (involving the nodes ROP2, RIC7 and SO)
when a special set of perturbations is applied. Under that
case, the nodes RIC7 and SO will oscillate. Since the ef-
fect of this behavior is small (within 5 % of the unper-
turbed SO value in the Sun et al. model [15]), it has
little biological significance. There are no more possible
oscillations as there are no more negative feedback
loops. To conclude, the original Sun et al. model has os-
cillations only in cytosolic Ca2+ ([Ca2+]c) and Ca2+

ATPase, and has multi-stability only in PMV and Kout,
under situations that are biologically meaningful.

Discussion
The conclusions we obtained can tell us how to control
this network model. Generally in engineering applica-
tions, control means to drive a system into an arbitrary
state [36, 37]. However in biological systems, it is more
meaningful to drive the system into one of its natural
attractors rather than into an arbitrary state, as the
attractors correspond to stable phenotypes [38]. To con-
trol the attractor of a Boolean system, one needs to con-
trol only its input nodes and a subset of nodes in each

Table 5 Summary of systematic perturbation results

Light, CO2 and ABA condition Unperturbed
SO level

Simplified SO level Percentage
of cases
with
unchanged
SO value

0 1 2 3 5 6

Percentage of single knockouts that lead to each SO level

Dual Beam Mod. CO2 ABA OFF 5 4 % 31 % 65 % 65 %

Low CO2 6 31 % 4 % 65 % 65 %

High CO2 1 4 % 96 % 96 %

Blue Light Mod. CO2 3 35 % 65 % 65 %

Low CO2 5 31 % 4 % 65 % 65 %

High CO2 1 4 % 96 % 96 %

Red Light Mod. CO2 1 4 % 96 % 96 %

Low CO2 3 35 % 65 % 65 %

High CO2 1 4 % 96 % 96 %

Dual Beam Mod. CO2 ABA ON 0 85 % 4 % 8 % 4 % 85 %

Low CO2 3 46 % 50 % 4 % 50 %

Blue Light Mod. CO2 0 85 % 4 % 8 % 4 % 85 %

Low CO2 3 46 % 50 % 4 % 50 %

Red Light Low CO2 0 96 % 4 % 96 %

The first set of columns, with the header ‘Light, CO2 and ABA condition’, indicate the input signal combinations. The abbreviation “Mod.” means moderate CO2

concentration. Note that we do not list the four input combinations (high CO2 with ABA and with any type of light, or moderate CO2 with ABA and red light)
wherein all simulated stomatal opening values are zero. The 2nd column is the simulated stomatal opening (SO) level in the unperturbed system. The 3rd column
set shows the percentage of single-node knockouts that yield the corresponding SO level. There is no stomatal opening level 4 in the reduced model. No entry
means zero percentage. The last column is the percentage of settings where the stomatal opening remains at the same level as the unperturbed case. A complete
table of perturbation results is provided in Additional file 9
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stable motif [39]. Our integrated analysis, involving
Boolean conversion, indicates that to control the at-
tractor that the stomatal opening network evolves into,
one only needs to control the input signals and PMV,
even in case of perturbations. In particular, to control
the stomatal opening value, one only needs to control
the input signals, under any perturbation.
The reduced model provides new biological insights.

Normally, when ABA is present, stomata will close.
However in some knockout mutants stomata can
open to a certain extent in the presence of ABA, al-
though the opening level is not as much as in the
case without ABA [15]. Such partial reversals of the
effect of ABA are important for understanding the
mechanism of stomatal opening. For example, Sun et
al. reported that OST1 knockout (OST1 is kept 0)
and inhibition of the NADPH oxidase (AtrbohD/F is
kept 0) yielded partially restored SO level in simula-
tions, in agreement with experimental observations
(see Additional file 2 for the comparison of the
equivalent simulations in the reduced model with
experiments). Simplification of the Sun et al. model
allows easier simulation of more perturbation scenar-
ios, e.g. the systematic identification of possible par-
tial reversals. Table 6 indicates all the partial reversals
due to single node knockouts in the reduced model.
Our results reproduce the observation that knockout

of nodes in the ABA pathway (PLD, NO, ROS) can cause
partial reversals of ABA’s effect. We find that AnionCh
knockout can partially restore stomatal opening inhib-
ited by ABA, a result not reported by Sun et al., but
which is supported by experimental evidence [40]. In
addition, Table 6 offers a new biological prediction: low
CO2 concentration can partially restore stomatal open-
ing when ABA is present. This is consistent with the
knowledge that CO2-free air promotes stomatal opening
in the absence of ABA [41]. This CO2 effect suggests a
mechanism of cross-talk between CO2 and ABA. Im-
portantly, apart from the five nodes listed in Table 6, no
other node’s knockout can reverse ABA’s inhibition of
stomatal opening. The perturbation results of Table 5
offer many more new predictions.
Our combination of techniques offers a powerful frame-

work for determining the dynamic repertoire of a multi-

level dynamic model. Multi-level models are more accur-
ate than Boolean models in describing the quantitative
characteristics of dynamic systems, but there are few gen-
eral methods to analyze multi-level models [10, 12]. By
combining different existing methods, we were able to
overcome the limitations of each method. Our successful
combination of existing methods offers a promising way
to analyze multi-level models, and might point towards a
general strategy to analyze the attractors of multi-level
models, biological or non-biological.
A notable future direction for this work is to develop

an alternative way to determine the attractors of multi-
level models by extending the concept of stable motifs.
Compared with conversion to a Boolean model, then ap-
plying Boolean stable motif algorithm, extending the
stable motif algorithm to multi-level models can avoid
potential attractor change issues. Development of such a
technique will allow easy and powerful attractor analysis
for multi-level models.

Conclusions
We obtained a very strong conclusion about the attrac-
tors of the Sun et al. stomatal opening model: under any
combination of sustained signals, all nodes in the model
converge into steady states, with the potential exception
of the cytosolic Ca2+ ([Ca2+]c) and Ca2+ ATPase. Varia-
tions in the initial condition of non-source nodes or in
process timing (node update sequence) can drive at most
two nodes, PMV and Kout, into a different attractor. This
high degree of attractor similarity is somewhat unex-
pected, as the network has a large strongly connected
component and several feedback loops. Thus, despite the
decidedly non-linear structure of the network, most parts
of the system behave in the consistent manner of a linear
pathway. This is a distinct feature of the stomatal opening
model: many dynamic models of biological systems have
multiple, diverse attractors [22, 42]. The models of these
systems will evolve into drastically different attractors
when starting from different initial conditions, sometimes
even when starting from the same initial condition, dem-
onstrating different biological trajectories. In the stomatal
opening model, however, the uniqueness of the steady
state stomatal opening level suggests that the final extent
of the stomatal opening response is robust and resilient

Table 6 Nodes whose knockouts diminish ABA’s inhibition of stomatal opening

Light, CO2 and ABA condition Unperturbed
SO level

Nodes whose knockout results in a partially restored SO, and the corresponding SO value

CO2 NO PLD ROS AnionCh

Dual Beam

Moderate CO2, ABA is present

0 3 3 5 3 2

Blue Light 0 3 2 3 2 1

Red Light 0 3 1

The first set of columns, with the header ‘Light, CO2 and ABA condition’, indicate the input signal combinations. The 2nd column is the stomatal opening without
perturbations. The 3rd column set indicates the nodes whose knockout would yield a stomatal opening level that is higher than the unperturbed value of 0. CO2

knockout means CO2 being set to zero (CO2 free air). No entry means the setting does not cause partial reversal
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against changes in initial conditions or in timing. Note
that although a change in the initial condition will not
change the steady-state opening level, it may change the
steady state of PMV and Kout, and may change how fast
the system converges to an attractor.
We also showed that the reduced stomatal opening

model does not admit additional, emergent oscillations or
multi-stability under any biologically relevant node per-
turbation (knockout or constitutive activity). We further
demonstrate the robustness of the system by examining
the stomatal opening level under single node knockouts: in
most cases the signals are still likely to propagate and lead
to a similar degree of stomatal opening as in the absence of
perturbation. This robustness is unlike a single linear path-
way, which would be very sensitive to node disruption. We
suggest that the role of the strongly connected components
in the network could be to provide multiple paths for the
signal to propagate, but at the same time not allowing ex-
tensive multistability or oscillations. Our innovative com-
bination of existing methods offers a promising way to
analyze multi-level models.
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