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Abstract

Background: Cellular responses to extracellular perturbations require signaling pathways to capture and transmit
the signals. However, the underlying molecular mechanisms of signal transduction are not yet fully understood, thus
detailed and comprehensive models may not be available for all the signaling pathways. In particular, insufficient
knowledge of parameters, which is a long-standing hindrance for quantitative kinetic modeling necessitates the use
of parameter-free methods for modeling and simulation to capture dynamic properties of signaling pathways.

Results: We present a computational model that is able to simulate the graded responses to degradations, the
sigmoidal biological relationships between signaling molecules and the effects of scheduled perturbations to the
cells. The simulation results are validated using experimental data of protein phosphorylation, demonstrating that the
proposed model is capable of capturing the main trend of protein activities during the process of signal transduction.
Compared with existing simulators, our model has better performance on predicting the state transitions of signaling
networks.

Conclusion: The proposed simulation tool provides a valuable resource for modeling cellular signaling pathways
using a knowledge-based method.

Keywords: Generalized logical model, Signaling pathways, Dynamical system, Cancer

Introduction
Signal transduction plays an essential role in the cellular
processes in which cell responds to extracellular pertur-
bations (e.g., the exposure to drugs or ligands). Accord-
ing to the signals, the cell adjust its metabolism, shape,
gene expression, etc., to adapt to the environment. It is
widely believed that the dysregulation of signal trans-
duction is one of the most important pathogeneses of
many human diseases including cancer. Although high-
throughput experimental data show a great potential for
uncovering unprecedented details of biological systems,
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it is still challenging to understand signaling networks at
systems level. Therefore, computational simulation, which
is a systems biology approach, is highly desirable for the
analysis of the underlying mechanisms of how the signals
are transmitted through signaling pathways.
Many existing models are able to simulate the process

of signal transduction, such as Boolean network models,
fuzzy logic models and kinetic models based on ordinary
differential equations (ODEs). Boolean network is a sim-
ple and promising framework for the modeling of protein-
protein interactions and signaling pathways. It has been
used with some success in identifying stable states of a sys-
tem [1, 2], simulating the influence of deletion/knockout
of important nodes in a network [3], predicting carcino-
genesis and targeted therapy outcomes [4], reproducing
the dynamics of the yeast MAPK pathways [5], modeling
the mammalian cell cycle [6] and analyzing the behaviors
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of the apoptosis pathways [7, 8]. However, its inability
of encoding graded responses and the typically sigmoidal
biological relationships becomes a significant limitation
since it is able to handle only binary values, i.e., a sim-
ple on/off state which is over–simplified compared with
a real signaling network. To overcome this limitation,
fuzzy logic models, which generalize the on/off charac-
teristic to a continuous range from 0 to 1, have been
successfully applied to analyzing the crosstalk among the
TNF/EGF/Insulin-induced signaling pathways [9] and the
liver cell responses to inflammatory stimuli [10]. How-
ever, a large amount of prior knowledge is needed for
the assembly of the membership functions and logical
rules for the fuzzy logic models. On the other hand,
ODEs have also been applied to modeling various bio-
logical processes, such as the simulation of physiological
responses of mammalian cells to the control of cell cycle
[11], mathematical modeling of the mechanisms for regu-
lating the differentiation of hematopoietic stem cells [12],
discovery of signaling pathway rewiring [13] and exploring
the dynamics of the pathways controlling cell apoptosis
[14, 15]. However, ODEs-based models require a rela-
tively detailed knowledge of kinetic parameters which is
hardly available for all the pathways. Previously, we pro-
posed a simulation tool called SimBoolNet [16] which is
based on an extended Boolean network model. Although
the performance of SimBoolNet in predicting protein
activities was promising [17], it has limited capability of
dealing with blocking effects, degradations and sequenced
perturbations.
Here, we present a generalized logical model, which is

capable of revealing the process of degradation, the sig-
moidal biological relationships between molecules and
the effects of scheduled perturbations to signaling net-
works. Compared with SimBoolNet [16] and GINsim [1]
(a Boolean network based simulation tool), the proposed
simulator can not only predict the stable states of the sig-
nal transduction system but also dynamically simulate the
effects induced by various timing and ordering of pertur-
bations. The simulations are validated using experimental
phosphoproteomics data of breast cancer cells perturbed
by different combinations of drug additions [18]. The
simulated time-series data of protein activity levels show
significant correlations with the real time-course data,
thereby demonstrating that the proposed model is able to
capture the key features of the signaling pathways.

Methods
Computational model for dynamical simulation
Our model takes a directed graph as the input network to
do simulation. In the network, each node denotes amolec-
ular species (e.g., a protein) and each directed edge (u, v)
represents signal transduction from node u to node v. One
variable with a nonnegative value from 0 (fully inhibited)

to 1 (fully activated) is associated with each node to rep-
resent the activity level of the protein. The edge weight is
also a variable with the value between 0 and 1 to denote
the strength of the interaction and a sign (‘+’ or ‘–’) to
denote the type of the interaction (i.e., positive means
activation and negative blockage). Users can select input
nodes and a virtual node is added upstream of all the
input nodes. This virtual node is the abstraction of the
extracellular environment which is able to generate sig-
nals that can stimulate or inhibit the input nodes (e.g., the
receptors) of the signaling network. Given random initial
activities for all the nodes in the network, their states will
be updated synchronously based on their own previous
states and the incoming signals from their parent nodes,
according to Eq. (1). In this formula, Xt is the activity level
of node x at time t, d is a pre-defined parameter denoting
the degradation rate of the activated x from time t − 1 to
t, Ai (or Bj) is the signals (i.e., the activity level times the
edge weight) transmitted from the ith activating (or jth
inhibiting) parent node upstream of x;

[
1 − ∏

(1 − Ai)
]
is

the overall activating effect generated by all the incom-
ing activating signals and

∏
(1− Bj) is the probability that

the incoming inhibiting signals do not affect x. Altogether,
they act on the inactivated form of x at the (t − 1)th
iteration (i.e., (1 − Xt−1)). The blocking effect acting on
the activated form of x follows the similar logic. Over-
all, the updated state is defined by the nondegraded part
and the newly activated part minus the inhibited part.
Given a user-defined number of simulation iterations, the
discrete steps are employed to approximate the process
that the activity levels of the nodes change over time.
Figure 1 shows the workflow of the simulation using the
proposed model.

Xt = (1 − d) × Xt−1 +
[
1 −

∏
(1 − Ai)

]
×

∏
(1 − Bj)

× (1−Xt−1)−
∏

(1−Ai)×
[
1 −

∏
(1 − Bj)

]
× Xt−1

(1)

It is suggested that cells respond to external perturba-
tions through a time–dependent (e.g., the schedule and
duration of drug addition) process [18]. Wet–lab experi-
ments have shown that different ordering and timing of
drug additions have significantly different drug effects,
such as inducing specific alterations of signaling pathways
[10, 19, 20] and showing different efficiencies in killing
cancer cells [18]. However, most existing simulation tools
are not able to accommodate the time-staggered design of
drug treatments in biological experiments. Therefore, our
model introduces time-staggered perturbations to explore
the effects of not only dosage, but also the schedule and
duration of the perturbations to cellular systems with a
knowledge-based model. The timing and the order of
drug additions can be specified by users as parameters.
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Fig. 1 The workflow of simulation using the proposed model. The activity level of X is calculated based on its own previous activity with a
degradation rate, and the activation and inhibition effects produced by the signals transmitted from its parent nodes

For example, the drug can start to affect its target at the
kth simulation iteration with a user-defined k. The target,
input level, type of interaction (stimulation or inhibition)
and schedule of the perturbations can all be specified
according to user’s design of experiment.

Network structure
A signaling network [21] (Fig. 2) is constructed accord-
ing to well-known pathway databases (GeneGO Meta-
Core [22] and KEGG [23]). The network comprises 35
nodes, indicating 32 signaling proteins or stimuli and 3 cell
fates, and 57 edges denoting signal transduction from the
source nodes to the target nodes. Dark blue nodes in the
pathways represent 21 signaling proteins that have been
experimentally measured in [18]. Activation and inhibi-
tion interactions are denoted by green arrow and red
flat-head edges, respectively.

Results
Performance comparison on simulating signaling
responses to perturbations
For comparison, we run simulations using our program
based on SimBoolNet [16], GINsim [1] and the proposed
model on the same network in Fig. 2. Two different inputs
are introduced: (1) the input levels of EGFR and TNFR
are set to 0.5 and 0.8, respectively, (2) EGFR inhibitor is
added at the 10th iteration of simulation and TNFR is
activated with input level 0.8 at the 20th iteration. The
number of simulation iterations is set to 100. For the pro-
posed model, the full inhibition is denoted as -1 and the
perturbations can be executed at any iteration during the

simulation. The degradation rate d is set to 0.2. For Sim-
BoolNet andGINsim, the blocking effect is represented by
setting the activity level of EGFR to 0 from the very first
step of simulation which, to our understand, is unlikely
to be a precise representation. There should be a process
for the inhibitor to reduce the activity level of its target,
especially when the inhibitor is not added at the begin-
ning. The edge weights of activation and blockage are set
to 0.7 and 0.8, respectively. GINsim simulation, on the
other hand, does not accept parameters for edge weights
and the number of iterations, and executes synchronously
until the system reaches the stable state. GINsim also sup-
ports the asynchronous mode, but it is a time-consuming
task due to a much larger search space than with the syn-
chronous mode. We did not get any result from running
GINsim in asynchronous mode on our network (Fig. 2)
within endurable time using a desktop PC (Dell Precision
T3600 workstation with Intel Xeon CPU E5–1620, 8 GB
RAM and Windows 7 Professional 64–bit operating
system). We have also tried other different settings of
input level, edge weight and degradation rate, and the
results are shown in section “Model comparison and vali-
dation with real data”.
Figure 3a, b and c show the simulation results of three

proteins (i.e., EGFR, TNFR and ERK) using the proposed
model under the two different inputs. It can be seen
that the trends of the activities of the input nodes follow
an approximately sigmoidal function (the blue curves in
Fig. 3a and b). When the EGFR inhibitor is added at the
10th step, the EGFR activity drops sharply within a few
steps (the red curve in Fig. 3a). Consequently, the activity
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Fig. 2 Signaling pathways constructed based on the dataset in [18]. Round rectangles and ellipses represent signaling proteins (or stimuli) and cell
fates, respectively. The signals that have measurements in the dataset [18] are represented by dark blue nodes. Each activation interaction is
denoted as a green edge with an arrow head and each inhibition interaction is represented by a red edge with a flat-head

of its downstream node ERK (the red curve in Fig. 3c)
decreases with some time delay because it takes some time
for signals to be transmitted from EGFR to ERK. Under
input 2, the activity of TNFR first decreases from a ran-
dom initial value with a degradation rate (here is 0.2) and
increases to the maximum (the input level 0.8) almost
immediately at the 20th iteration (the red curve in Fig. 3b).
In contrast, SimBoolNet has a limited capability of dealing
with blocking effect, degradation or scheduled perturba-
tions. We can see from the blue curves in Fig. 3d, e and f
(which are outputs of SimBoolNet) that the activity levels
increase monotonically from 0 to a maximum, considered
as the stable state, which is unlikely to be precise in the
biochemical reactions. Moreover, the inhibiting effect in
SimBoolNet is represented by keeping the activity level of
the target node to 0, which is unlikely to be realistic espe-
cially when the inhibiting effect should be produced in
the middle of the simulation (red curves in Fig. 3d and f).
Given the initial states, GINsim is able to identify the

stable states [2]. However, it has similar limitations for
dealing with scheduled drug additions and degradations
(Fig. 3g to i).
We then compared the computational time of SimBool-

Net, GINsim (in asynchronous mode) and the proposed
model. In addition to the network shown in Fig. 2, a
small network with 5 nodes and a large network with
500 nodes were constructed. The edges of these two net-
works were randomly generated. Totally, the numbers of
the nodes/edges of the three networks are 5/13, 35/57 and
500/6124, respectively. The hardware being employed was
Dell Precision T3600 workstation with Intel Xeon CPU
E5–1620, 8 GB RAM and Windows 7 Professional 64–bit
operating system. Table 1 shows the computational time
of SimBoolNet, GINsim and our model on the three net-
works. It can be seen that the simulation with our model
is faster than SimBoolNet, whereas slightly slower than
GINsim when the network is small. However, GINsim has
its limitation for large networks. The simulation using
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Fig. 3 Comparison of simulation-based predictions made by using SimBoolNet, GINsim and the proposed simulator. Two different inputs are used:
(1) EGFR and TNFR are perturbed at the beginning of the simulation with input levels 0.5 and 0.8, respectively, and (2) EGFR is inhibited at the 10th
iteration with input level -1 and TNFR is activated at the 20th iteration with input level 0.8. The edge weights of activation and blockage are set to 0.7
and 0.8, respectively, for both inputs. The simulation is executed for 100 iterations. a–c The plots of simulation results using the proposed model for
EGFR, TNFR and ERK, under two different inputs. d–f The plots of SimBoolNet results under input 1 and 2, respectively. Please note that the two
curves are totally overlap for TNFR in (e). g–i GINsim simulation results for EGFR, TNFR and ERK. Each run of GINsim simulation executes 8 iterations
before reaching the stable state

GINsim (in synchronous mode) on the third network with
500 nodes did not produce any result within endurable
time.
The influence of different initial values on the simula-

tion results was explored. Figure 4a shows the simulation
curves of EGFR under the aforementioned input 1. Three
different initial values of EGFR, namely 0.1, 0.5 and 0.9,
were selected. Conclusions can be drawn from the plot
that the initial value affects the time spent in reaching the
stable state, but the overall trends of the state transitions
and the levels of the stable states remain stable.

Table 1 Comparison of the computational time required for
SimBoolNet, GINsim and the proposed model

Number of nodes/edges SimBoolNet GINsim Our model

5/13 9.51s < 0.1s 0.09s

35/57 10.73s < 0.1s 0.43s

500/6124 72.88s Not applicable 10.68s

Three networks are employed for simulation, where the numbers of the
nodes/edges are 5/13, 35/57 and 500/6124, respectively. The simulation using
GINsim on the third network could not finish within endurable time (hence marked
“Not applicable”)

We went on to explore the robustness of the proposed
model to the variations of edge weights. In principle, we
randomly generated the edge weights to run the simu-
lations, and then checked if the activity trend of each
protein remained unchanged. For a specific input (i.e., the
input levels of EGFR and TNFR are both 0.5), we first ran-
domized the weights of all the 57 edges and ran the sim-
ulation for 100 times as the background group. For each
protein, the mean activity at each time point was regarded
as the background trend over time. Next, we further gen-
erated 50 groups of simulations, each group consisting
of 100 simulations of randomly generated edge weights.
For each group, the mean activity trend of each protein
was used to calculate the correlation with the background
trend. Figure 4b gives the distribution of the 50 correla-
tions between the simulated and the background trends
for the 32 non-receptor nodes (ignoring the receptors
EGFR, TNFR and DNA Damage because they have no
incoming edges), and the proteins are ranked based on
the median of the correlations. It can be seen that 21 out
of 32 proteins (i.e., from PI3K to AKT) have the medi-
ans of the correlations larger than 0.8; 10 out of 32 have
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Fig. 4 a The influence of different initial values on simulations. The initial value does not change the main trend of the state transition and the level
of the stable state. b The influence of different edge weights to simulations. Each of the 32 signals shows a small range of the correlations between
the simulated and the background trends, indicating that the proposed model is robust to different edge weights

the medians falling into the interval 0.5 to 0.8; and only
one (i.e., Proliferation) has the median which is lower than
0.5. Moreover, all the 32 signaling proteins show small
ranges of the correlations between the simulated and the
background trends, indicating that the proposed model
is robust for capturing the dynamical trends of the sig-
nal transduction process under different settings of edge
weights.

Model comparison and validation with real data
To estimate the performance of the proposed model, the
simulated results using the network in Fig. 2 are com-
pared with a real signaling dataset [18] containing the
time-series phosphoproteomics data. In the dataset, per-
turbations (i.e., inhibitor of EGFR or stimuli of DNA
damage or both) were applied to cells of the breast can-
cer cell line BT20. For each perturbation, activity levels
of 32 signaling proteins (21 out of 35 are included in the
network in Fig. 2) were measured at 8 time points. To sim-
ulate the perturbations, we use (i) half activation input
signals (0.5) to represent the control situation where no

stimuli or inhibitor is added; (ii) activation input signals
(+1) to represent the addition of stimuli, i.e., the targets
are fully activated; and (iii) inhibition input signals (–1)
to represent the effect of inhibitors, i.e., the activity of the
targets are suppressed.
We first simulated the dynamics of signaling without

any drug addition, as a control dataset. The receptors
EGFR and TNFR were selected as the input nodes with
input levels both equal to 0.5. The edge weights of both
activation and inhibition were set to 0.8. The simulation
was executed for a number of iterations that is a multiple
of 8 since there are 8 time points in the real dataset (here
we chose 32 because most of the nodes reach the stable
states after 30 steps). We then used Spearman correla-
tion coefficient tomeasure the goodness of fit between the
simulated and real data to evaluate the performance of our
model. Since calculating Spearman correlation requires
the two vectors to have the same length, 8 time points
of the simulated data (which is the same as the real data)
were extracted from the simulated time-series with equal
interval, e.g., the 4th, the 8th, . . . and the 32nd time points.
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Table 2 Spearman correlations between simulated and real data

SMAC 4EBP1 p53 ERK S6 S6K CABL
Correlation 0.95 0.88 0.69 0.71 0.31 0.26 –0.90

Casp9 CDC25 CHK p27 PUMA AKT JNK
Correlation –0.60 0.62 0.21 –0.90 0.92 0.79 0.43

p38 BIM BID RIP1 CYCLIN Casp8 EGFR
Correlation 0.67 0.93 0.43 0.76 0.86 0.90 0.62

Table 2 gives the Spearman correlation coefficients for
the 21 measured signaling proteins. We can see that for
16 out of 21 signaling proteins the Spearman correlation
coefficients are relatively high (larger than 0.6) indicat-
ing that the simulation fits well to the real data. For the
proteins with relatively poor correlation coefficients, it
might because of over-simplification such asmissing some
cell line specific interactions in the network. For example,
both S6 and S6K have only one incoming edge which is
unlikely in the real cellular signaling network [24].
On the other hand, since the simulation is an approxi-

mately continuous process while the wet–lab experiment
measured only at a few selected time points, we can scale
the discrete dots in the real data to align with the 32 sim-
ulated steps by multiplying the index of each time point
in the real data by 4 to match the index of each iteration
in the simulation. For comparison, SimBoolNet was also
employed to do the simulation under the same inputs, i.e.,
the input levels of EGFR and TNFR are both 0.5 and the
edge weights are all 0.8. Figure 5 shows the plots of the
simulated (scatter plots each with a trend line) and real
data (scatter plots) for EGFR, Caspase 8, p53 and JNK.

The blue and green curves represent the simulated data
using the proposed model and SimBoolNet, respectively,
while the red dots represent the real data (normalized
to the same scale as the simulated data). In Fig. 5a, the
simulation curve of EGFR captures the trend of a quick
drop from a plateau to the flat bottom although there is a
time delay. The slow and small decrease of the activity of
Caspase 8 is also captured by our simulation as shown in
Fig. 5b. For p53, the simulation shows a high decreasing
rate at the beginning and the activity of p53 reaches the
stable state quickly, which agrees with the trend of the real
data. The gradient of the JNK simulation curve also fits
the real data although the starting point of the dropping
lags behind, which suggests that it is important to scale the
simulated timing to accurately match the real time points.
To address the issue of time scale would be an important
future work. By contrast, the simulated trends of SimBool-
Net are mainly monotonically increasing which cannot fit
the real data well.
We then simulated the state transitions of signaling

pathways under the perturbations in Table 3. For exam-
ple, we gave half activating (+0.5) and full blocking (–1)
signals to TNFR and EGFR, respectively, to simulate the
addition of EGFR inhibitor. The edge weights of activa-
tion and inhibition were set to 0.7 and 0.8, respectively.
The number of simulation iterations was set to 32, and the
degradation rate 0.2.
It has been known that the in vivo drug effect on the

signaling pathways is through the change of the activities
of the proteins downstream of the drug targets [20, 25].
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Fig. 5 The plots of the simulated and real data in the control group. The blue and green curves are the simulated data using the proposed model
and SimBoolNet, respectively. The red dots are the real data. The four panels (a), (b), (c) and (d) correspond to the plots of four proteins EGFR, Casp8,
p53 and JNK, respectively
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Table 3 Inputs of the simulation in section “Model comparison
and validation with real data”

EGFR TNFR DNA damage

Control +0.5 +0.5 random value

EGFR inhibitor –1 +0.5 random value

DNA damage stimuli random value +0.5 +1

Both drugs –1 +0.5 +1

The symbols ‘+’ and ‘–’ represent the perturbation types, i.e., activation and
inhibition. The columns are the input nodes of simulation and the rows are various
conditions including the treatments of biological experiments with drugs
corresponding to wet-lab experiments in [18]

Therefore, for these downstream proteins, if the simula-
tion data based on the perturbed inputs (rows 2 to 4 in
Table 3) fit the experimental data better than the sim-
ulations using the control input (rows 1 in Table 3), we
believe our simulator captures the main influences of the
drugs on the networks. For example, the second and the
third columns of Table 4 show the correlation coeffi-
cients between the real data and the simulations using
the control input and EGFR inhibitor input (rows 1 and
2 in Table 3), respectively. It can be seen that, for the
nodes downstream of EGFR (such as AKT, S6, S6K and
BIM), the fitness of simulations to the drugged data (bio-
logical measurements treated with drug which targets at
EGFR) is significantly improved when the control input
is replaced by the EGFR inhibitor input. A similar con-
clusion can be drawn for the proteins downstream of

Table 4 Goodness of fit of the simulations to the real
experimental measurements under drug treatments

Control EGFR Control DNA damage Control Both

input inhibitor input stimuli input drugs

AKT 0.64 0.81 –0.40 –0.54 0.75 0.93

ERK 0.32 0.40 –0.30 –0.39 0.19 0.23

S6 0.53 0.86 0.42 0.57 0.52 0.89

S6K 0.49 0.84 0.35 0.66 0.58 0.96

4EBP1 0.67 0.67 –0.33 -0.33 0.92 0.92

BIM 0.32 0.72 0.35 0.65 –0.15 –0.38

BID 0.30 0.37 0.03 0.03 0.16 0.16

JNK 0.02 –0.07 –0.47 –0.58 –0.06 0.01

p53 –0.04 –0.45 0.21 0.83 0.01 –0.09

CABL –0.45 –0.52 0.04 0.55 0.21 0.78

CHK –0.12 –0.18 –0.25 –0.28 –0.30 –0.69

CDC25 0.29 0.23 0.15 0.33 0.18 0.64

Casp8 0.06 –0.06 0.14 0.72 0.26 0.68

SMAC –0.05 0.08 –0.71 –0.87 0.48 0.99

For example, the second column is the correlation coefficients between the
simulations using control input (row 1 in Table 3) and the biological measurements
treated with the drug that targets EGFR

DNA damage, including p53, CABL and Caspase 8, when
the simulations using the control input and DNA dam-
age stimuli as input are employed to fit the real data
(the forth and the fifth columns of Table 4). Moveover,
it is believed that the treatment with both drugs have
a higher efficiency on killing cancer cells than that with
a single drug [18] which may be explained by the char-
acteristics of SMAC and Caspase 8 (both upstream of
Caspase 3), in that the improvement of fitness is mainly
achieved under the treatment of both drugs (the last
two columns of Table 4). There are proteins, such as
ERK and CHK (downstream of EGFR and DNA damage,
respectively), that do not follow the above patterns, prob-
ably due to our insufficient knowledge about signaling
pathways.

Discussion and conclusion
In this paper, we present a model to dynamically simulate
the process of intracellular signal transduction. Accord-
ing to a phosphoproteomics dataset [18], we constructed a
network, which comprises 35 nodes (21 nodes have exper-
imental measurements) and 57 edges, to do the simula-
tion. The state of each node is calculated based on its own
previous state with a degradation rate, and the activation
and inhibition effects produced by the signals transmitted
from its parent nodes. Different combinations of per-
turbations were applied to the network. The simulation
results have been evaluated with the real data, demon-
strating that our simulator has the ability to grasp themain
dynamical trends of signal transduction. Compared with
SimBoolNet [16] and GINsim [1], the proposed model
shows promising performance in revealing the graded
responses, the sigmoidal biological relationships and the
effects of scheduled perturbations to a signaling network.
Moreover, by testing the proposed model with different
values of parameters (e.g., the initial activities of the pro-
teins and the edge weights), we have shown that our
method performs robustly in revealing the dynamics of
the signaling pathways when the prior knowledge of the
network topology is reliable.
Studying the cell responses to extracellular perturba-

tions is a major endeavor for biomedical research and
pharmaceutical industry. With the development of high-
throughput experiments, large-scale data are available to
help uncover important biological mechanisms at systems
level. However, most existing data-driven methods [25]
have limitations in revealing underlying molecular mech-
anisms. Therefore, computational simulation based on the
integration of prior knowledge with data shows a great
potential for revealing insights into the dynamical sys-
tem of signal transduction, and thus would be a valuable
complement to the data-driven methods. Although the
proposed model is still limited in mapping the simulation
steps to the experimental time points, we believe that the
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integration of both knowledge and data, such as learn-
ing the edge weights from experimental data, would be a
powerful approach to understanding the signal transduc-
tion networks. In addition, generalization of the present
model, which uses the synchronous updating scheme,
such that it is able to deal with asynchronous dynamics,
e.g., updating a randomly selected node at each time
point, would also be a valuable future direction.
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