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Abstract

Background: Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily
determined by the histopathologic interpretation in combination with molecular diagnosis. However, the
relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to
predict patients’ chemotherapy response using the known clinical and histological variables.

Methods: We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary
serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and
functional omics findings and to predict patients’ response to platinum-based chemotherapy.

Results: Our convolutional neural networks identified the cancerous regions with areas under the receiver
operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis
revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are
associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different
response to platinum-based chemotherapy (P = 0.003).

Conclusions: These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor
cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor
types and treatment modalities.

Keywords: Digital pathology, Platinum response, Gene expression, Proteomics, Machine learning, Serous ovarian
carcinoma

Background
Ovarian cancer is one of the deadliest cancers in women
worldwide, causing 151,900 deaths per year [1]. The life-
time risk of a woman getting ovarian cancer is 1 in 78.
Serous ovarian carcinoma is the most common type of
ovarian cancer, accounting for 52% of all cases. Due to

the non-specific symptoms in the early stages, over 79%
of ovarian cancer patients are diagnosed at stage III or
IV [2], when tumor cells have spread to retroperitoneal
lymph nodes or distant organs [3], further contributing
to the unfavorable prognoses of this deadly disease [2].
Histopathology evaluation is the gold standard for

diagnosing ovarian cancer and identifying the histo-
logical types [4]. Interpretation of the cellular morph-
ology defines the various ovarian cancer types and
guides treatment planning [4]. Within the category of
serous ovarian carcinoma, are two subtypes, designated
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as high grade and low grade, that differ in pathogenesis,
histologic appearance, and clinical course [5]. There is
molecular lineage continuity, histologic, and clinical data
supporting fallopian tube origins for many high-grade tu-
mors, which are more aggressive and are associated with
shorter overall survival than low-grade serous cancers [5].
Grading of ovarian tumors is best performed by patholo-
gists with expertise in ovarian tumors, but inter-observer
variation in grading has been reported. For example, three
independent studies have reported the reproducibility for
grade classification as fair to moderate (κ = 0.25–0.58) [6–
8]. This variation in histopathologic interpretation would
contribute to inaccurate prognostic prediction, suboptimal
treatments, and loss of quality of life [9].
Platinum-based chemotherapy is the standard treat-

ment for patients with advanced stages of serous ovarian
carcinoma [10, 11]. Platinum-based therapy is unfortu-
nately associated with a wide range of adverse effects, in-
cluding myelosuppression, immunosuppression, hearing
loss, nephrotoxicity, and neurotoxicity, as well as nausea
and vomiting [12]. In addition, the clinical response to
platinum drugs varies across patients [13]. The platinum-
free interval (PFI), defined as the interval between the
completion of platinum-based chemotherapy and the clin-
ical detection of tumor relapse, is used to quantify the
chemotherapy response [14]. Currently, it is very difficult
to predict if a patient will respond to platinum-based
chemotherapy [15, 16]. While histopathology continues to
play a central role in diagnosing and subtyping ovarian
cancer [4], it is uncertain if any histopathologic patterns
are associated with a better or worse PFI. A reproducible
set of pathological features indicative of chemotherapy re-
sponse would facilitate treatment selection for advanced-
stage ovarian cancer patients [13].
With the recent advances in the reliability of whole-

slide histopathology scanners and high-throughput
omics profiling [17] coupled with innovative machine
learning algorithms and computer vision techniques, it is
now possible to discover the previously unknown associ-
ations between microscopic tumor cell morphology and
molecular pathways. Machine learning models have
shown great promise in associating histopathology pat-
terns with patients’ diagnoses and prognoses. Previously,
studies have identified the correlations between quanti-
tative morphological features and patient survival in
breast cancer [18] and lung cancer [17, 19, 20]. Recent
advances in convolutional neural networks employed
multiple convolutional layers to extract high-level fea-
tures from the images and used pooling layers to achieve
translational invariance [21]. Such methods have
attained human-level performance in diagnosing chest
radiographs, fundus photographs, and photographs of
skin lesions [21, 22]. Studies also showed that quantita-
tive histopathology analyses can provide correlations

between tumor tissue morphology and certain somatic
variations related to prognoses [19]. These results indi-
cate that high-resolution whole-slide pathology images
contain underutilized biological signals of clinical im-
portance. In addition, visualization approaches, such as
the gradient-weighted class activation maps (grad-
CAMs) [23], can facilitate the interpretation of machine
learning models and identify the image regions associ-
ated with the outcomes of interest [21].
In this study, we developed convolutional neural net-

work models to analyze cellular patterns and morph-
ology in a series of patients with serous ovarian
carcinoma. Our models successfully identified ovarian
cancer cells, classified histology grade and transcrip-
tomic subtypes, and predicted patients’ response to
platinum-based chemotherapy. We further conducted
differential expression and enrichment analyses to con-
nect findings from our quantitative histopathology stud-
ies with the underpinning molecular pathways.
Importantly, our approaches are completely data-driven
and can accommodate new categories of cancers or the
response to other novel treatment strategies. The devel-
opment of these prediction algorithms will contribute
invaluable information to precision cancer care [17].

Methods
Acquisition of histopathology, transcriptomics, and
proteomics data from ovarian cancer patients
Five hundred eighty-seven serous ovarian carcinoma pa-
tients participated in The Cancer Genome Atlas (TCGA)
[24] were included in this study. Whole-slide histopath-
ology scans, pathology reports, and RNA-sequencing
data were acquired from the Genomic Data Commons
[24]. Histopathology slides of the adjacent benign tissue
were also obtained. These slides contain high-resolution,
colored, and two-dimensional images stored in “.svs” file
format. All 587 patients have digital whole-slide histo-
pathology slides, and 305 of these patients have raw
RNA-sequencing information. Proteomics data gener-
ated by the Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC) [25] of 174 patients were obtained from
the CPTAC Data Coordinating Center.
Although the pathology samples were collected at dif-

ferent hospitals, all samples underwent multi-omics pro-
filing passed the required quality control requirements
(including having a board-certified pathologist to review
the histologic sections of the top and bottom portions of
the samples to confirm the diagnoses and to make sure
that the samples contained an average of 70% tumor cell
nuclei with less than 20% necrosis) [24]. RNA-seq of the
ovarian cancer samples were performed by the Cancer
Genomic Characterization Center (CGCC) at the Uni-
versity of North Carolina using the Illumina HiSeq plat-
form. The short reads generated by the sequencers were
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processed by a standard alignment pipeline using the
Spliced Transcripts Alignment to a Reference (STAR)
software. HTSeq with gene annotations from GEN-
CODE v22 was employed to compute the fragments per
kilobase of transcript per million mapped reads (FPKM)
for each gene in each sample [26]. Using the same ex-
perimental and bioinformatics procedures for all samples
ensures that the resulting transcriptomics data are com-
parable. Proteomics data were generated by the CPTAC
using LC-tandem mass spectrometry on an Orbitrap
mass spectrometer. Peptide identification was conducted
by database searching using the RefSeq human protein
sequence database, and the identified peptides were as-
sembled into proteins. Isobaric tags for relative and ab-
solute quantitation (iTRAQ) reporter ion intensities
were used for protein quantitation [25]. Transcriptomic
subtypes were defined by the method proposed by
TCGA Research Network, which was based on the
microarray profiling results (n = 553) [27]. Four different
subtypes, including differentiated, immunoreactive, mes-
enchymal, and proliferative subtypes, were identified. In
addition to the subtype categories, the transcriptomic
subtype scores were obtained for each sample from the
TCGA publication [27].

Convolutional neural networks for histopathology image
classification
AlexNet [28], GoogLeNet [29], and VGGNet (16-layer
configuration) [30] architectures were employed to build
classification models to distinguish the histopathology
slides with tumor cells from slides of adjacent benign tis-
sue. These multi-layer artificial neural networks are very
flexible and can easily overfit the training data, especially
when the size of the training dataset is small. To reduce
the risk of overfitting, pre-trained convolutional neural
networks with weights from the ImageNet dataset were
used as the baseline frameworks. Previous studies
showed that these frameworks trained on millions of im-
ages can capture the crucial visual elements in the im-
ages, such as edges, circles, and object bulbs, which can
serve as the building blocks for more complicated image
recognition tasks [31, 32]. To establish specialized histo-
pathology classification models, the weights of all neural
connections in the networks were fine-tuned by the
backpropagation algorithm [33], with the histopathology
images as the input and the diagnostic labels (cancerous
tissue versus adjacent benign tissue) in the training set
as the output. The same transfer learning approaches
were employed to predict the binarized histological
grades (grades 1–2 versus grade 3) and to identify the
four transcriptomic subtypes. Histological grades were
binarized due to the known inter-rater variability in
grade annotation [8].

The TCGA dataset was randomly divided into distinct
training (80% of all cases: 973 malignant and 127 benign
slides for the malignancy detection task; 396 high-grade
and 60 low-to-moderate-grade patients for the grade clas-
sification task) and test sets (20%: 243 malignant and 32
benign slides for the malignancy detection task; 99 high-
grade and 15 low-to-moderate-grade patients for the
grade classification task), in order to evaluate the classifi-
cation performance objectively. Patients without grade an-
notation (n = 16) or with anaplastic grade (n = 1) were
excluded from the grade classification task. The models
were developed using only the training set, and all hyper-
parameters (parameters that defined the neural network
design and the model training process) were optimized by
fivefold cross-validation on the training set. This approach
ensured that there was no information leakage in our
model training and optimization process. Thus, the test
set performance served as an objective measure of the ex-
ternal validity of our models. The optimal baseline learn-
ing rate was 0.001 for GoogLeNet and AlexNet, 0.0005 for
VGGNet. The optimal weight decay was 0.0005 for Alex-
Net, 0.0002 for GoogLeNet, and 0.0002 for VGGNet. The
optimal momentum was 0.9 for all models, and L2
regularization was used in all convolutional neural net-
work architectures. The final cancer detection and grade
classification models were evaluated by the untouched test
set. Fivefold cross-validation was used in transcriptomic
subtype classification due to the smaller number of sam-
ples in the four subtypes. To ensure the reproducibility of
the results, the training-test set partition and the model
optimization processes were repeated three times for each
classification task. The areas under the receiver operating
characteristic curves were computed and compared.
Modern deep convolutional neural networks possess

millions of parameters, making them very difficult to in-
terpret. To better visualize and understand the behaviors
of the trained neural network models, gradient-weighted
class activation maps (grad-CAMs) [23] were employed
to identify the relative importance of the regions in the
input image in each classification task. The grad-CAMs
algorithm visualized the impact of perturbations to the
input pixels on the output class, thereby quantifying the
relevance of each image region in the task [23]. The rela-
tive importance of each pixel was rescaled to a value be-
tween 0 and 1, and the “jet” colormap in the python
Matplotlib library [34] was used to visualize the results.
The grad-CAMs were generated using the keras-vis li-
brary in python.

Predicting platinum-free interval using histopathology
images
Platinum-free interval (PFI) is often used as a quantita-
tive estimate of the efficacy of platinum-based chemo-
therapy [14]. It is defined as the time interval between

Yu et al. BMC Medicine          (2020) 18:236 Page 3 of 14



the completion of chemotherapy treatment and the on-
set of tumor relapse [14]. To delineate the morpho-
logical patterns of tumor tissue associated with the
platinum response, a subset of patients with PFI infor-
mation was identified, and convolutional neural net-
works with a regression output were developed and
applied to their histopathology images. Given its robust
performance in the grade classification task, VGGNet
was employed to build the regression models. The root-
mean-square propagation algorithm (RMSProp) [35]
with the mean squared error loss function was employed
to train the machine learning models. Due to the limited
number of cases with platinum response information
(n = 277), fivefold cross-validation was used to evaluate
the performance of the neural networks. This cross-
validation design allowed each patient to serve in the
test set once and ensured that the data from the same
patients were not included in both the training and test
sets simultaneously, which enabled objective evaluation
of the model performance. The machine learning model
computed a predicted response index for each patient,
and the median index observed in the training set was
used to divide the patients in the test set into an early-
relapse group and a late-relapse group. The log-rank test
was used to examine the differences in platinum re-
sponse between the two predicted groups.

Connecting histopathology patterns with transcriptomic
and proteomic profiles
To connect the histopathology patterns with molecular
aberrations, differential expression, enrichment, and
pathway analyses were conducted using the transcripto-
mics and proteomics data to reveal the differences in
functional omics between patients with different grades
and response to platinum-based chemotherapy.
In the tumor grade analyses, the fold change of each

gene and protein between the high-grade group and the
low-to-moderate-grade group was computed. Explora-
tory analyses were conducted using the OASISPRO tool
[36]. Since none of the proteins attained more than two-
fold changes between the grade groups, genes and pro-
teins with fold changes in the 99th percentile or the 1st
percentile were identified. The gene and protein expres-
sion differences in the two grade groups were tested by
the Wilcoxon rank-sum test, with the P value corrected
by the Benjamini-Hochberg procedure. Gene Ontology
(GO) [37] and KEGG pathway [38] enrichment analyses
were performed to characterize the biological functions
and molecular pathways associated with the identified
genes and proteins. The STRING tool [39] was
employed to visualize the protein-protein interactions
among the identified proteins, with color-coded edges
showing the sources of the curated protein-protein in-
teractions in the STRING database. To investigate the

predictive values of proteomic and transcriptomic pro-
files for tumor grade, multi-layer neural networks were
built to distinguish tumor grades using the omics data,
and the prediction performance was evaluated by five-
fold cross-validation. Using the training data of each
fold, the optimal architecture of the neural networks
were determined by a hyperparameter search with one
to five hidden layers.
In the platinum response analyses, Spearman’s correl-

ation coefficient between the PFI groups and the expres-
sion level of each gene or protein was calculated, and a
correlation test was performed and corrected by the
Benjamini-Hochberg procedure. GO and KEGG pathway
analyses were conducted, and protein-protein interac-
tions among the most relevant proteins were examined
using the same tools. Similar multi-layer neural network
approaches were employed to evaluate the predictive
values of transcriptomics and proteomics data for the
PFI groups. All statistical analyses were performed using
R version 3.6.

Results
Patient characteristics
Five hundred eighty-seven ovarian cancer patients were
identified from The Cancer Genome Atlas [24]. The ma-
jority of the patients had grade 2 or grade 3 diseases.
Table 1 summarized the patient characteristics of our
study cohort. Figure 1a shows the model of our data in-
tegration and analytics workflow. Overall, we developed
histopathology-based machine learning models for can-
cer identification, grade classification, transcriptomic
subtype recognition, and chemotherapy response predic-
tion using digital whole-slide pathology images, and we
employed proteomics and transcriptomics data of the
same patients to link our quantitative pathology findings
with the relevant molecular pathways.

Convolutional neural networks identified histopathology
images with cancer cells
We used convolutional neural networks to detect histo-
pathology images with cancer cells. Results showed that
our method accurately identified the images with cancer
cells from those without tumor, with area under the re-
ceiver operating characteristics curve (AUC) > 0.95
(Fig. 1b; AlexNet AUC = 0.955 ± 0.010; GoogLeNet
AUC = 0.974 ± 0.004; VGGNet AUC = 0.975 ± 0.001).
Grad-CAMs [23] confirmed that clusters of tumor cells
received higher weights in differentiating malignant cells
from the adjacent dense benign tissue (Fig. 1c). These
results indicated that convolutional neural networks can
distinguish regions with serous ovarian carcinoma from
the unaffected regions of the ovaries.
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Convolutional neural networks predicted the
histopathology grade of the patients
Histopathology grade characterizes the differentiation
level of serous ovarian adenocarcinoma tissue, and it is
associated with the prognoses of ovarian cancer patients
[5]. However, inter-rater variability in grade annotations
has been reported [6–8]. To examine the utility of quan-
titative histopathology analysis on determining tumor

grade, we employed convolutional neural networks to
classify image patterns of patients with different histo-
pathology grades. We employed the same transfer learn-
ing approaches with the same set of neural network
architectures, but we retrained the models using the
tumor grade information to establish specialized ma-
chine learning models for grade classification. Results
showed that our methods accurately distinguished the
images of low-to-moderate-grade cancer from those of
high-grade cancer (Fig. 2a; AlexNet AUC = 0.760 ± 0.082;
GoogLeNet AUC = 0.810 ± 0.067; VGGNet AUC =
0.812 ± 0.088). Grad-CAM demonstrated that the convo-
lutional neural networks attended to the cancer cell
organization patterns when differentiating histopath-
ology images of tumors of different grades (Fig. 2b and
c), demonstrating that neural networks and pathologists
employed similar histology patterns in the identification
of cancer cell differentiation levels.
We further conducted proteomics analyses using the

same patient cohort to examine the molecular differences
between the tumor grade groups. Our results showed that
the expression levels of 32 proteins are significantly associ-
ated with the observed tumor grade under the micro-
scope. Figure 3a shows the expression heatmap of the
proteins associated with tumor grade. Gene Ontology
(GO) enrichment analyses revealed that these proteins are
enriched in the immune reaction and catabolic processes
(Supplemental Table 1). For instance, type I interferon,
cytokine-mediated, and interferon-gamma-mediated sig-
naling pathways are among the most enriched biological
processes. Collagen catabolic processes and extracellular
matrix (ECM) disassembly processes are also highly
enriched. KEGG pathway analyses confirmed the rele-
vance of protein digestion, ECM-receptor interaction, and
immune-related pathways to the differentiation levels of
serous ovarian carcinoma (Supplemental Table 2). The
enrichments of ECM-related molecular processes are con-
sistent with the observation that cancer cell organization
patterns received high weights in the grad-CAM analyses.
The proteins related to tumor grade possess significant
(enrichment P value = 6.66 × 10−16) protein-protein inter-
actions (PPI; Fig. 3b). Differential analyses of the RNA-seq
data identified 12 mRNA transcripts whose expression
levels are associated with tumor grade (Supplemental Fig-
ure 1A; Benjamini-Hochberg corrected P < 0.05). Interest-
ingly, many of these differentially expressed transcripts are
non-coding RNAs (such as MIR199A1 and MIR3681),
suggesting a role of post-transcriptional regulations in de-
termining the levels of tumor differentiation. We further
conducted machine learning analyses that employed pro-
teomics and RNA-seq data to predict tumor grade. Results
showed that these molecular profiles only have a weak
predictive value for tumor grade (AUC < 0.6; Supplemen-
tal Figure 1B), which suggested the difficulty in tumor

Table 1 Clinical characteristics of serous ovarian carcinoma
patients in this study

Clinical characteristics Summary

Serous Ovarian Carcinoma Patients with Clinical Data N=587

Number of Tumor Histopathology Image Series 1216

Number of Histopathology Image Series of Adjacent
Benign Tissue

159

Age 59.74 ± 11.53 years

Race

White 498 (84.84 %)

Black or African American 34 (5.79 %)

Asian 20 (3.41 %)

American Indian or Alaska Native 3 (0.51 %)

Native Hawaiian or Other Pacific Islander 1 (0.17 %)

Race Not Available 31 (5.28 %)

Anatomical subdivision of the tumor

Bilateral 400 (68.14 %)

Left 82 (13.97 %)

Right 71 (12.10 %)

Not Available 34 (5.79 %)

Stage

Stage I 17 (2.90 %)

Stage II 30 (5.11 %)

Stage III 446 (75.98 %)

Stage IV 89 (15.16 %)

Stage Not Available 5 (0.85 %)

Grade

Grade 1 6 (1.02 %)

Grade 2 69 (11.75 %)

Grade 3 495 (84.33 %)

Grade 4 1 (0.17 %)

Grade Not Available 16 (2.73 %)

Transcriptomic subtypes

Differentiated 140 (23.85 %)

Immunoreactive 159 (27.09 %)

Mesenchymal 104 (17.72 %)

Proliferative 150 (25.55 %)

Not Available 34 (5.79 %)
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grade prediction using molecular data and supported the
use of pathology evaluation for grade assessment.

Convolutional neural networks identified the
transcriptomic subtypes of ovarian cancer patients
The gene expression landscape of serous ovarian carcin-
oma samples varies across patients. Previous studies pro-
posed four transcriptomic subtypes related to the
dysregulation of genes and patient prognoses [27]. Here,
we trained a convolutional neural network to connect

histopathology images with the transcriptomic subtypes.
We employed the VGGNet-based neural network archi-
tecture as our base model due to its reliable performance
in the previous tasks, and we fine-tuned the neural con-
nection weights using the images and transcriptomic
subtype annotations to establish a specialized subtype
prediction model. Results showed that the histopath-
ology image features extracted by the model are signifi-
cantly associated with the four transcriptomic subtypes
(Kruskal-Wallis test P value < 0.0001 in PC1, P value =

Fig. 1 Integrative histopathology-functional omics analyses on serous ovarian carcinoma. a A model of the informatics workflow in this study. b
Convolutional neural networks identified regions with tumor cells of serous ovarian carcinoma. Receiver operating characteristic (ROC) curves of
convolutional neural networks that classified regions with tumor cells from those without tumor cells in the independent test set are shown. Areas under
the receiver operating characteristic curves (AUCs) in the independent test set: AlexNet = 0.955 ± 0.010; GoogLeNet = 0.974 ± 0.004; VGGNet = 0.975 ± 0.001.
c Gradient-weighted class activation maps (grad-CAMs) confirmed that the CNN models focused on the cancerous part of the histopathology slides when
classifying malignant tissues from benign ones. The original hematoxylin-and-eosin-stained histopathology image was also shown
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0.0001 in PC2), indicating a cogent relation between
histologic morphology and the molecular patterns
underpinning the subtypes (Supplemental Figure 2A).
Due to the fact that many samples received moderate-

to-high scores in more than one subtype, the definition of
transcriptomic subtypes is not clear-cut. To further exam-
ine the correlations between transcriptomic subtype

scores and histopathology patterns, we computed the cor-
relation coefficients between transcriptomics-based sub-
type scores and the histopathology-predicted subtype
scores. Results showed that there are moderate correla-
tions between the transcriptomics-based and the
histopathology-predicted scores (Spearman’s correlation:
0.235 for differentiated; 0.328 for immunoreactive; 0.576

Fig. 2 Quantitative histopathology analysis identified tumor grade. a ROC curves of convolutional neural networks that classified the pathology
grade of serous ovarian carcinoma. The sensitivity and specificity for identifying high-grade serous ovarian carcinoma are shown. AUC in the
independent test set: AlexNet = 0.760 ± 0.082; GoogLeNet = 0.810 ± 0.067; VGGNet = 0.812 ± 0.088. b The gradient-weighted class activation map
(grad-CAM) of a histopathology image of a low-grade ovarian cancer patient and the original hematoxylin-and-eosin-stained histopathology
image. Tumor cells and differentiated cellular structures received higher weighted in the grad-CAM. c The grad-CAM of a histopathology image
of a high-grade ovarian cancer patient and the original hematoxylin-and-eosin-stained histopathology image. Clusters of tumor cells with poor
differentiation were highlighted by the grad-CAM
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Fig. 3 Proteomics analyses revealed the molecular profiles associated with tumor grade. a The expression levels of 32 proteins are associated
with tumor grade. Sidebar: red indicates high-grade tumors; blue indicates low-to-moderate-grade tumors. b The protein-protein interaction (PPI)
network of the proteins associated with tumor grade. These 32 proteins have significantly enriched PPIs (P < 6.66 × 10−16). The color of the edges
shows the information source of the curated protein-protein interactions in the STRING database
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for mesenchymal; and 0.111 for proliferative subtypes;
Supplemental Figure 2B). Correlation testing showed that
the associations are statistically significant in the differen-
tiated, immunoreactive, and mesenchymal subtypes (P =
0.031 for differentiated; P = 0.002 for immunoreactive; P <
0.001 for mesenchymal subtypes).

Convolutional neural networks predicted the PFI of
ovarian cancer patients
Platinum-based chemotherapy is the standard treatment
for advanced-stage ovarian cancer patients [10, 11].
However, it is difficult to predict which patient will re-
spond to the treatment before administering this highly
toxic chemotherapy regimen. To identify the micro-
scopic morphological differences between patients with
different chemotherapy response, we redesigned our
deep learning framework to predict the PFI of each pa-
tient using their whole-slide digital histopathology im-
ages. We designed a neural network using the VGGNet
architecture as the backbone and replaced the last neural
layer with a regression node. Our data revealed that our
convolutional neural network method accurately distin-
guished the histopathology images of patients with
shorter PFI from those with longer PFI (log-rank test
P = 0.003; Fig. 4a). To identify the histopathology pat-
terns predictive of PFI, we employed grad-CAM to
visualize the images with high prediction confidence. Re-
sults showed that the convolutional neural networks
highlighted regions occupied by the cancer cells (Fig. 4b
and c), indicating cancer cell morphologies are associ-
ated with patients’ PFIs. However, neither tumor grade
nor stage is significantly associated with PFIs (log-rank
test P > 0.056). These results suggested that subtle histo-
logical changes in the cancer cells, which are not cap-
tured by the standard histopathology annotations or
pathological staging, are predictive of patients’ chemo-
therapy response.
We further conducted functional omics analyses to

characterize the genes and proteins related to patients’
PFI. Proteomics analysis revealed that the expression
levels of 72 proteins (including protein isoforms) are sig-
nificantly correlated with patients’ PFI (Fig. 5a; all pro-
teins shown in the figure have Benjamini-Hochberg
corrected P value < 0.05). These proteins form a tight
protein-protein interaction network (Fig. 5b; protein-
protein interaction enrichment P value = 7.86 × 10−9)
and are significantly enriched in purine ribonucleoside
metabolic processes, ATP metabolic process, and re-
spiratory electron transport chain (Supplemental
Table 3). KEGG pathway analyses revealed significant
enrichment in oxidative phosphorylation, actin regula-
tion, and metabolic pathways (Supplemental Table 4).
These molecular processes are involved in cell prolifera-
tion and cellular energetics, which are well-known

hallmarks of cancer cells. Thus, these results are consist-
ent with our findings that cancer cell histopathology, ra-
ther than the morphology of tumor stroma or
inflammatory cell infiltration, is predictive of patients’
response to platinum-based chemotherapy. To investi-
gate the extent of post-transcriptional regulations in-
volved in patients’ platinum response, we conducted
differential gene expression analyses using the RNA-
seq data, which revealed 1148 mRNA transcripts sig-
nificantly associated with platinum response (Supple-
mental Figure 3A; Benjamini-Hochberg corrected P
value < 0.05). However, the vast majority (99.8%) of
the differentially expressed genes do not have signifi-
cant differential expressions at the protein level, sug-
gesting substantial post-transcriptional regulations of
the identified transcripts. In addition, machine learn-
ing analyses showed that cancer proteomic profiles pos-
sess weak signals for predicting the platinum response
groups (AUC= 0.638 ± 0.014), and the predictive power of
the RNA-seq data is even weaker (AUC= 0.519 ± 0.003;
Supplemental Figure 3B), indicating the difficulty of plat-
inum response prediction. Taken together, results from
our functional omics analyses indicated the potential roles
of cell proliferation and deregulating cellular energetics in
the development of chemotherapy resistance among ser-
ous ovarian adenocarcinoma patients.

Trained models and software dependencies
To enhance the reproducibility of our results, we released
our trained machine learning models as well as our algo-
rithms for the associated transcriptomics and proteomics
analyses at https://github.com/khyu/ovarian_ca/. The
GitHub repository also contains the software dependen-
cies required to train and test the neural network models,
and we provided detailed instructions on installing the re-
quired packages and the usage of our models.

Discussion
This is the first study that associates quantitative histo-
pathology of serous ovarian carcinoma with patients’
platinum-based chemotherapy response. In our analyses,
we first demonstrated the utility of convolutional neural
networks in identifying tumor cells, classifying tumor
grades and transcriptomic subtypes, and we leveraged the
developed machine learning platform to connect histo-
pathology morphology with individual patients’ PFIs. We
complemented the image-based predictions with func-
tional omics analyses to further delineate the molecular
processes underpinning tumor cell differentiation and
treatment response. The identified correlations between
histopathology patterns and chemotherapy response could
facilitate treatment selection and prognosis prediction for
ovarian cancer patients.
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Fig. 4 Convolutional neural networks predicted the platinum-based chemotherapy response of patients with serous ovarian carcinoma. a
Convolutional neural networks stratified serous ovarian carcinoma patients with different platinum-based chemotherapy response (log-rank test
P = 0.003). Kaplan-Meier curves of the image-based stratification in the test cases are shown. b The gradient-weighted class activation map (grad-
CAM) of a histopathology image of a serous ovarian carcinoma patient with short platinum-free interval (PFI) and the original hematoxylin-and-
eosin-stained histopathology image. c The grad-CAM of a histopathology image of a serous ovarian carcinoma patient with long PFI and the
original hematoxylin-and-eosin-stained histopathology image. Grad-CAMs highlighted regions occupied by the tumor cells
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Fig. 5 Proteomic profiles are associated with platinum-based chemotherapy response. a 72 proteins are significantly associated with the
platinum-free interval (PFI) of serous ovarian cancer patients. b The interaction network of the proteins associated with PFI. Proteins associated
with platinum response have significantly enriched protein-protein interactions (P = 7.86 × 10−9). The color of the edges shows the information
source of the curated protein-protein interactions in the STRING database
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We successfully discovered morphological patterns as-
sociated with patients’ response to platinum-based
chemotherapy using deep learning approaches and pro-
vide molecular explanations of the identified associa-
tions. The prediction of chemotherapy response is
crucial, and many research groups have proposed bio-
chemical and proteomic biomarkers that predict individ-
ual patient’s response [40–42]. However, the previously
proposed biomarkers required additional profiling of the
serum or tumor tissue, and none of them are routinely
used in the clinical settings thus far. In this analysis, we
identified histopathology patterns associated with plat-
inum response and characterized the functional omics
profiles and biological pathways underpinning the differ-
ential response to platinum-based chemotherapy. For in-
stance, we demonstrated that proteins involved with
purine metabolic processes and respiratory electron
transport chain are significantly associated with patients’
platinum response. These molecular insights shed light
on the biological pathways related to the development of
platinum resistance. As the treatment strategies for ovar-
ian cancer patients evolve, researchers can apply our
computational approaches to identify the morphological
and molecular signals indicative of response to newer
treatments, such as neoadjuvant chemotherapy or
immunotherapy.
Since histopathology evaluation is routinely used in

the diagnosis of serous ovarian cancer [4], computer
vision analysis on the collected histopathology slides
does not require additional laboratory measurement
of the tumor sample, such as sequencing or biochem-
ical profiling [25]. Our results indicated that the mor-
phological patterns of tumor tissue may contain
previously overlooked signals related to molecular
subtypes and clinical prognoses. The differential ex-
pression analyses further pointed to the molecular
processes underpinning tumor grade and platinum re-
sponse, such as ECM-receptor interactions in tumor
grade and oxidative phosphorylation in platinum re-
sponse, which suggested the biological mechanisms
leading to the divergent microscopic tumor pheno-
types of ovarian cancer patients. In addition, we
found that the differentially expressed mRNA tran-
scripts and proteins are not the same, although they
are often involved in similar biological pathways.
These results suggested post-transcriptional regula-
tions play an important role in the molecular pro-
cesses associated with cancer cell differentiation and
chemotherapy response.
We further compared the performance of different

neural network architectures in our classification tasks.
Results showed that VGGNet-based models attained the
best performance overall, closely followed by GoogLe-
Net, while AlexNet generally had the lowest AUC.

VGGNet is an award-winning convolutional neural net-
work known for its symmetrical design and high per-
formance in image classification and object localization
tasks [30]. It has the largest number of parameters
among the model architectures we evaluated and used
L2 regularization to reduce overfitting [30]. GoogLeNet
has a similar number of neural layers but contains much
fewer parameters [29], making it faster to train and
evaluate. AlexNet has the fewest number of neural layers
(5 convolutional layers and 3 fully connected layers)
[28], which permits fast prototyping but suffers from
limited performance. Recent studies showed that al-
though very deep convolutional neural network models
may attain better performance than VGGNet when
trained on millions of images [43], their performance
varied in smaller datasets [44]. Thus, VGGNet may be a
reasonable starting point for biomedical datasets, which
generally have a relatively small sample size. Future
studies on automated model architecture search and
optimization [45] may further improve the performance
of prediction models trained with limited amounts of
data.
It is worth noting that modest inter-rater agreement

(κ = 0.24–0.58) in grade classification among pathologists
has been reported for ovarian carcinoma [8], which con-
tributes to the lower accuracy in machine learning
models trained on the manually labeled grade annota-
tions. Further studies on tumor classification based on
objective clinical outcomes have the potential for better
informing treatment selection. In addition, our study fo-
cused on serous ovarian carcinoma and did not include
samples of other types of epithelial ovarian carcinoma,
germ cell tumor, or distant metastases of cancers arising
from other organs. Future works include extending our
machine learning approaches to other rarer types of
ovarian cancer as well as all cancer types. Another limi-
tation of this study is that the treatment strategy, mo-
lecular subtypes [46], and grading guidelines evolve over
time, which may render any developed model using
retrospective data obsolete. Nonetheless, here, we
propose a flexible machine learning training process that
could accommodate categorical and continuous clinical
outcomes of interest, and we can aptly retrain the diag-
nostic and prognostic models with histopathology im-
ages and their updated clinical labels.

Conclusions
Our study showed that convolutional neural networks
accurately predicted the cancerous regions, grade, tran-
scriptomic subtypes, and chemotherapy response of ser-
ous ovarian carcinoma patients. Our machine learning-
based approach is extensible to other tumor types and
treatment modalities.
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12916-020-01684-w.

Additional file 1: Figure S1. Relations between tumor grade and
functional omics profiles. (A) Transcriptomics analysis uncovered the 12
transcripts whose expression levels are associated with tumor grade.
Sidebar: red indicates high-grade tumors; blue indicates low-to-
moderate-grade tumors. (B) Proteomics and RNA-seq data have weak
predictive power for tumor grade. Cross-validation AUC using proteomics
data = 0.566 ± 0.016. Cross-validation AUC using RNA-seq data = 0.516 ±
0.005. Figure S2. Convolutional neural networks associated histopath-
ology image patterns with the transcriptomic subtypes of serous ovarian
carcinoma. (A) Features extracted by a convolutional neural network (16-
layer VGGNet) are associated with transcriptomic subtypes (Kruskal-Wallis
test P value < 0.0001 in PC1, P value = 0.0001 in PC2). Triangular dots rep-
resent the mean PC1 and PC2 of the four subtypes. (B) The
histopathology-predicted subtype scores are moderately correlated with
the subtype scores defined by the transcriptomics data (Spearman’s cor-
relation: 0.235 for differentiated; 0.328 for immunoreactive; 0.576 for mes-
enchymal; and 0.111 for proliferative subtypes). The red line in each
figure panel shows the regression line of the RNA-seq-defined transcrip-
tomic subtype scores and the histopathology-predicted scores. Figure
S3. Relations between platinum response and functional omics profiles.
(A) Transcriptomic profiles of 1148 transcripts are significantly associated
with the PFI of serous ovarian cancer patients. (B) Proteomics and RNA-
seq data have weak predictive power for platinum response groups.
Cross-validation AUC using proteomics data = 0.638 ± 0.014. Cross-
validation AUC using RNA-seq data = 0.519 ± 0.003.

Additional file 2: Table S1. Gene Ontology (GO) enrichment analysis
results of proteins associated with the grade of serous ovarian
adenocarcinoma patients. Table S2. KEGG pathway enrichment analysis
results of proteins associated with the grade of serous ovarian
adenocarcinoma patients. Table S3. Gene Ontology (GO) enrichment
analysis results of proteins associated with platinum-free interval of serous
ovarian adenocarcinoma patients. Table S4. KEGG pathway enrichment
analysis results of proteins associated with platinum-free interval of serous
ovarian adenocarcinoma patients.
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