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Abstract

Background: A unifying feature of the bacterial Candidate Phyla Radiation (CPR) is a limited and highly variable
repertoire of biosynthetic capabilities. However, the distribution of metabolic traits across the CPR and the
evolutionary processes underlying them are incompletely resolved.

Results: Here, we selected ~ 1000 genomes of CPR bacteria from diverse environments to construct a robust internal
phylogeny that was consistent across two unlinked marker sets. Mapping of glycolysis, the pentose phosphate pathway,
and pyruvate metabolism onto the tree showed that some components of these pathways are sparsely distributed and
that similarity between metabolic platforms is only partially predicted by phylogenetic relationships. To evaluate the extent
to which gene loss and lateral gene transfer have shaped trait distribution, we analyzed the patchiness of gene presence
in a phylogenetic context, examined the phylogenetic depth of clades with shared traits, and compared the reference
tree topology with those of specific metabolic proteins. While the central glycolytic pathway in CPR is widely conserved
and has likely been shaped primarily by vertical transmission, there is evidence for both gene loss and transfer especially in
steps that convert glucose into fructose 1,6-bisphosphate and glycerate 3P into pyruvate. Additionally, the distribution of
Group 3 and Group 4-related NiFe hydrogenases is patchy and suggests multiple events of ancient gene transfer.

Conclusions: We infer that patterns of gene gain and loss in CPR, including acquisition of accessory traits in independent
transfer events, could have been driven by shifts in host-derived resources and led to sparse but varied genetic
inventories.

Keywords: Candidate Phyla Radiation, Metabolic evolution, Lateral gene transfer, Bacterial carbon metabolism, NiFe
hydrogenase, Phylogenomics, Comparative genomics

Background
Metagenomics approaches have been extremely fruitful
in the discovery of new lineages across the tree of life
[1–4]. Genomes recovered from poorly represented or
novel groups have helped greatly to elucidate the evolu-
tionary processes contributing both to broad bacterial
and archaeal diversity and also to the distribution of
metabolic capacities over various lineages [5–7].

The Candidate Phyla Radiation is a large group of bac-
terial lineages that lack pure isolate cultures and have
been primarily defined through genome-resolved meta-
genomics [1, 8]. While estimates vary depending on the
methods used [9, 10], CPR bacteria are predicted to con-
stitute a significant portion of bacterial diversity that is
distinct and divergent from other groups [11]. Addition-
ally, CPR bacteria generally have relatively small genome
and cell sizes, have extremely reduced genomic reper-
toires, and often lack the capacity to synthesize lipids,
amino acids, and nucleotides [1, 8, 12]. The CPR may
have diverged early from other bacteria and subse-
quently diversified over long periods of time, or they
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may have arisen via rapid evolution involving genome
streamlining/reduction [13]. Arguing against recent di-
versification from other bacteria are the observations
that CPR bacteria do not share genomic features associ-
ated with recent genome reduction, have uniformly
small genomes, cluster independently from other meta-
bolically reduced symbionts, and possess metabolic plat-
forms consistent with projections for the anaerobic
environment of the early Earth [13–15].
Recently, an analysis of entire proteomes showed that

genetic capacities encoded by CPR bacteria are combined
in an enormous number of different ways, yet those com-
binations tend to recapitulate inferred phylogenetic rela-
tionships between groups [15]. These analyses also
revealed that some lineages have relatively minimal core
gene sets compared to others within the CPR [5, 15], sug-
gesting variation in the degree of genome reduction across
the radiation. Additionally, previous work has shown that
lateral gene transfer probably underlies distributions of
specific protein families in CPR bacteria, including Ru-
BisCO [16, 17]. The observation that organisms from this
group also encode genes for nitrogen, hydrogen, and sul-
fur compound transformations at a low frequency [5, 18–
21] raises the possibility that these capacities may also
have been shaped by lateral transfer. Overall, the extent to
which lateral transfer, genomic loss, and vertical transfer
have interacted to shape evolution of metabolic reper-
toires across the CPR is still unknown [13].
Here, we integrate insights from CPR bacterial ge-

nomes from diverse environments with a robustly re-
solved internal phylogeny to investigate the processes
governing the evolution of metabolic pathways in this
group. A key aspect of our approach was the develop-
ment of custom cutoffs for HMM-based metabolic an-
notation that are sensitive to the divergent nature of
proteins from CPR organisms. We investigated central
carbon metabolism (glycolysis and the pentose phos-
phate pathway), hypothesizing that these pathways may
be primarily shaped by vertical inheritance, as well as
sparsely distributed traits (nitrogen, hydrogen, sulfur
metabolism) that we predicted were shaped by lateral
transfer. Mapping of metabolic capacities onto the re-
constructed reference tree and gene-species tree recon-
ciliations showed that a mixture of vertical inheritance,
gene loss, and lateral transfer have differentially shaped
the distribution of functionally linked gene sets. Infor-
mation about the evolution of gene content may help to
shed light on evolutionary scenarios that shaped the
characteristics of extant CPR bacteria.

Results
A robust reference phylogeny for the CPR
We gathered a large set of curated genomes of CPR bac-
teria from diverse environments, including both previously

published and newly assembled sequences (the “Materials
and methods” section). Quality filtration of this curated
genome set at ≥ 70% completeness and ≤ 10% contamin-
ation and subsequent de-replication yielded a non-
redundant set of 991 genomes for downstream phylogen-
etic and metabolic analysis (Additional file 1, Table S1).
To improve recovery of phylogenetic markers from the
collected set of genomes, we combined visualization of
HMM bitscores with a phylogenetic approach to set sensi-
tive, custom thresholds for two independent sets of
markers composed of 16 syntenic ribosomal proteins
(rp16) and the two RNA polymerase subunits (RNAp)
(the “Materials and methods” section; Additional file 2,
Fig. S1). Phylogenies based on these two marker sets were
generally congruent for deep relationships within the
CPR, with both trees supporting the distinction of CPR
from the bacterial outgroup and the monophyly of the
Microgenomates and Parcubacteria superphyla, respect-
ively (Fig. 1a; Additional file 2, Fig. S2). Some clades were
also supported by the absence of particular ribosomal pro-
teins—the Microgenomates, along with the Dojkabacteria
and Katanobacteria, lacked ribosomal protein L9 (rpL9),
while a subset of Parcubacteria lacked the ribosomal pro-
tein L1 (rpL1), as observed previously [1]. Our results also
suggested the presence of four generally well-supported
(≥ 95% ultrafast bootstrap in three of four cases), mono-
phyletic subgroups within the Parcubacteria (Fig. 1a, Par-
cubacteria 1–4). Although internal relationships between
these subgroups varied slightly between trees (Additional
file 2, Fig. S2), in both cases, Parcubacteria 1 (comprising
9 lineages) was the deepest clade, whereas Parcubacteria 4
(10 lineages) was the most shallow (Fig. 1a). Ten other lin-
eages of Parcubacteria formed paraphyletic clades outside
of these subgroups. We also show that Dojkabacteria
(WS6), Katanobacteria (WWE3), Peregrinibacteria, Kazan-
bacteria, and Berkelbacteria are among the most deeply
rooting clades outside the established superphyla (Fig. 1a).

CPR bacteria encode variable and overlapping metabolic
repertoires
We next leveraged the robust reference tree of the CPR to
evaluate the distribution and combinations of capacities
across the radiation. While CPR bacteria lack some core
biosynthetic capacities, they do in fact possess numerous
metabolic capacities involved in carbon, hydrogen, and pos-
sibly sulfur and nitrogen cycling [5, 12, 18, 20]. We focused
on these traits for our subsequent analysis, reasoning that
they are most likely to impact the ability of CPR bacteria to
derive energy from organic compounds and contribute to
biogeochemical transformations in conjunction with their
hosts and other community members. To overcome the
challenges inherent to metabolic annotation of divergent
lineages and minimize the chance of false negatives, we ex-
tended our custom HMM thresholding approach to the
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selected set of biogeochemically relevant traits (the “Mate-
rials and methods” section; Additional file 2, Fig. S3; Add-
itional file 3, Table S2) and mapped the resulting binary
presence/absence profiles for specific functionalities onto
the reconstructed rp16 tree. Looking across the selected
traits, we observed a high degree of variation in the overall
repertoires of lineages within the CPR, including some with
extremely minimal metabolic complements like Dojkabac-
teria and Gracilibacteria. This is consistent with both obser-
vations from genomic studies of these lineages [12] as well
as more recent insights examining entire proteomes [15].
An important open question is whether clades of CPR

bacteria within broad phylogenetic groupings possess
similar combinations of metabolic capacities. To investi-
gate this, we used the distributions of the targeted traits to
compute the frequency at which each trait was found
within lineages. We then generated a distance matrix from
the results and performed a principal coordinate analysis
to visualize clustering of lineages based on the similarity
of their overall metabolic platforms (Fig. 1b, the “Materials
and methods” section). We reasoned that genes missing
due to genome incompleteness could impact clustering,
particularly for small lineages with only several members.
Thus, we restricted the analysis to those groups with at

least 8 member genomes. The results suggest that mem-
ber lineages within some broad phylogenetic groupings
are metabolically similar (e.g., Parcubacteria 3 and 4) but
others clustered more closely with lineages that are dis-
tantly related. For example, lineages within the Microge-
nomates and Parcubacteria 1 were highly dispersed across
the axes of variation (Fig. 1b), suggesting that member
groups encode highly variable combinations of traits.

Functionally linked metabolic genes display different
evolutionary profiles
The observation that distributions of traits are variable
and potentially decoupled from phylogenetic relatedness
raises the possibility that more complex, enzyme-specific
patterns might underlie metabolic diversity in the CPR. To
address this, we drew upon trait distributions to compute
two metrics across the reference tree—the first to quantify
the average branch length of clades in which a trait is con-
served (phylogenetic depth) and the second to analyze trait
patchiness, related to the number of gains/losses of a bin-
ary trait over a tree (the “Materials and methods” section)
[22]. Generally, traits with a high phylogenetic depth cor-
respond to those that are conserved in more deeply root-
ing clades, whereas traits with lower depth correspond to

Fig. 1 Phylogenetic relationships and metabolic similarity among Candidate Phyla Radiation bacteria. a Maximum-likelihood tree based on the
concatenated set of 16 ribosomal proteins (1427 amino acids, LG+R10 model). Scale bar represents the average number of substitutions per site.
Monophyletic subgroups within the Parcubacteria also supported in the concatenated RNA polymerase tree are indicated as Parcubacteria 1–4.
The presence/absence of a subset of targeted metabolic traits is indicated as concentric rings. Abbreviations: aldo., aldolase; dehydr.,
dehydrogenase, PRPP, phosphoribosylpyrophosphate, PEP, phosphoenolpyruvate; PFOR, pyruvate:ferredoxin oxidoreductase; acetyltrans.,
acetyltransferase; Hyd, hydrogenase. Fully annotated trees with all included lineages are available in Additional file 2, Fig. S2. b Principal
coordinates analysis describing similarity between metabolic platforms of CPR lineages with 8 or more representative genomes
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those that occur primarily among shallow clades. Similarly,
high patchiness is expected when a given trait is more ran-
domly dispersed across a clade, whereas traits with low
patchiness scores correspond to those that are highly con-
served within groups. These two metrics are therefore
complementary and were integrated to create an “evolu-
tionary profile” for each trait. Among CPR bacteria, we ob-
served that an increase in phylogenetic depth generally
correlates with a decrease in patchiness (Fig. 2a). High-
depth traits also corresponded to larger protein families
more frequently observed across the radiation (family
size), though several smaller protein families (phosphate
acetyltransferase, AMP phosphorylase, RuBisCO) reached
relatively high phylogenetic depths because they were con-
served in deeply rooting clades like the Dojkabacteria and
Peregrinibacteria. On the other hand, hydrogen/sulfur me-
tabolism, acetate/lactate metabolism, and the oxidative
pentose phosphate pathway exhibited relatively high
patchiness and low phylogenetic depth, consistent with
their sparse but also wide distributions across distantly re-
lated groups (Fig. 2). Intriguingly, some traits displayed a
relatively low phylogenetic depth but were less patchily
distributed than would be predicted from the overall trend
(e.g., genes involved in aerobic metabolism).
As our analysis drew upon draft genomes (≥ 70% of

genome markers present), it is possible that genome in-
completeness impacted estimates of presence/absence
for metabolic genes. We reasoned that the patchiness
metric in particular would be sensitive to this issue, as it
is computed (unlike the phylogenetic depth metric)
using the number of state transitions of binary charac-
ters over the tree. To address this possibility, we

undertook a parameter sensitivity analysis that tested the
robustness of patchiness scores to genome completeness.
We iteratively subsampled the genome set at increasing
thresholds of completeness and re-computed trait
patchiness over a pruned version of the reference tree
(the “Materials and methods” section), observing only
modest decreases in patchiness for individual compo-
nents of the target pathways as genome completeness in-
creased to 95% (Additional file 2, Fig. S4a). Specific
glycolytic enzymes showed a similar pattern, with the ex-
ception of triose phosphate isomerase (TIM), glyceralde-
hyde 3-phospate (GADPH), and phosphoglycerate kinase
(PGK), which were already essentially universal in CPR
bacteria at the lowest completeness threshold (Fig. 3b;
Additional file 2, Figure S4ab). Taken together, these re-
sults suggest that while genome incompleteness probably
impacts calculations of patchiness to a small extent, our
observations are mostly due to a biological, not meth-
odological, signal.
Surprisingly, metabolic genes within the same pathway

often showed disparate evolutionary profiles—for ex-
ample, enzymes involved in glycolysis displayed a wide
range in depth and patchiness (Fig. 2a). Similar patterns
were observed for the nucleotide salvage pathway and
non-oxidative pentose phosphate pathway (Fig. 2a).
These observations might suggest that evolutionary his-
tories of the component enzymes of these pathways are
decoupled; specifically, that traits with high phylogenetic
depth and low patchiness are likely ancient and con-
served (low loss), whereas those with lower depth and
higher patchiness are more likely to have been impacted
by loss and/or horizontal gene transfer. To test these

Fig. 2 Metabolic traits encoded by CPR bacteria exhibit varying evolutionary profiles, including those in the same pathway (e.g., glycolysis genes).
a Evolutionary profiles generated from phylogenetic depth and patchiness of gene distributions over the rp16 topology. Each point represents a
metabolic gene shaded to match the functional category/pathway in b, schematic representing a generalized metabolic platform for
CPR bacteria
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hypotheses, we investigated two cases in more detail—
first, glycolysis, as an example of a core pathway with a
wide range of phylogenetic depth and patchiness among
component enzymes, and second, NiFe hydrogenases, an
accessory trait with high patchiness and low depth.

Gene trees for glycolytic enzymes reflect different
patterns of gene loss and transfer
We first examined glycolysis, noticing that three en-
zymes from the central part of the pathway—TIM,
GAPDH, and PGK—were found in nearly all CPR bac-
teria with little to no patchiness (Fig. 3a). With the pos-
sible exception of ultra-reduced forms like the
Gracilibacteria, which is represented by one complete,
curated genome that completely lacks the glycolysis
pathway [23], the absence of these enzymes in a very
small number of genomes is likely due to missing gen-
omic information. A second group of enzymes, com-
prised of fructose bisphosphate aldolase (FBA), enolase
(ENO), and phosphoglucose isomerase (PGI), was in-
stead generally more patchily distributed among CPR

bacteria and missing in some lineages. Phosphoglycerate
mutase (PGM), responsible for converting glycerate 1,3-
P2 to glycerate 2P in lower glycolysis, fell between the
two groups—while present in deeply rooting clades
(thus, a high phylogenetic depth), it is absent in several
shallow clades of Parcubacteria, possibly because these
forms were too divergent to be recovered with the man-
ual HMM threshold. Finally, several enzymes, including
glucokinase/hexokinase, phosphofructokinase (PFK), and
pyruvate kinase, exhibited profiles that were highly
patchy and lower depth among CPR lineages. Notably,
these enzymes are thought to catalyze irreversible reac-
tions and thus act as important sites of regulation for
metabolic flux [5, 24]. In particular, glucokinase/hexoki-
nase and PFK were found very infrequently in CPR bac-
teria, though many have the potential to bypass PFK
using a metabolic shunt through the non-oxidative pen-
tose phosphate pathway (Fig. 3b) [12]. To confirm this
result, we also searched genomes for alternative forms of
PFK, finding that while some CPR bacteria encode ROK
(repressor, open reading frame, kinase) family proteins

Fig. 3 Patterns of distribution and gene trees for glycolytic enzymes across the CPR. a Evolutionary profiles based on patchiness and
phylogenetic depth and b presence/absence profiles over the rp16 tree. c Protein-specific molecular phylogenies for triose phosphate isomerase
(tim) and enolase (eno). Abbreviations: hex, hexokinase; pfk, phosphofructokinase; pk, pyruvate kinase; fba, fructose bisphosphate aldolase; eno,
enolase; pgi, phosphoglucose isomerase; pgm, phosphoglycerate mutase; tim, triose phosphate isomerase; gapdh, glyceraldehyde 3-phosphate
dehydrogenase; pgk, phosphoglycerate kinase; G3P, glyceraldehyde 3-phosphate; PEP, phosphoenolpyruvate; PPP, pentose phosphate pathway.
Scale bars represent the average number of substitutions per site

Jaffe et al. BMC Biology           (2020) 18:69 Page 5 of 15



(TIGR00744), we could not establish close phylogenetic
relationships to family members functioning as putative
glucokinases. Likewise, we found no evidence for the al-
ternative versions of ADP-dependent glucokinase/phos-
phofructokinase employed in the modified glycolytic
pathways of some archaea (PF04587) [25].
To further test the impact of genome incompleteness

on the apparent patchiness of glycolytic enzymes across
the CPR and investigate whether this pattern is unique,
we undertook a comparative analysis of other major bac-
terial phyla. We reasoned that if high patchiness of gly-
colysis in CPR bacteria is due primarily to genome
incompleteness, enzymes from these organisms should
have similar patchiness to their counterparts in genomes
from other groups with more typical metabolic plat-
forms. On the contrary, if our initial results are indica-
tive of a true biological signal, we would expect enzymes
of CPR bacteria to show consistently higher patchiness
than observed across other bacterial phyla. We gathered
several thousand genomes from metagenomes that were
assembled and binned with similar methods to those
used to reconstruct genomes of CPR bacteria, corre-
sponding to large phylogenetic groups—Proteobacteria
(n = 1090), Firmicutes (n = 680), and Bacteroidetes (n =
578) (the “Materials and methods” section). To ensure
comparability of our results, we used the same method-
ology for genome completeness assessment, metabolic
annotation, and analysis of glycolysis as for the CPR. We
show that individual glycolysis enzymes from CPR bac-
teria generally attain the highest patchiness among the
lineages examined, particularly for the enzymes at path-
way termini (Additional file 2, Fig. S4c). Exceptions in-
clude the three glycolysis enzymes that we consider to
be a core, essentially universal module across the CPR
(TIM, GAPDH, and PGK), and for enolase, where Firmi-
cutes also showed significant patchiness (Additional file
2, Fig. S4c). These findings further confirm that the de-
gree of patchiness observed for glycolytic enzymes in
CPR bacteria is robust to issues arising from genome in-
completeness and is unusual across major bacterial
lineages.
To investigate which specific processes impacted the

disparate evolution of glycolytic enzymes in CPR bac-
teria, we reconstructed single-protein phylogenies and
performed gene-species tree reconciliations (the “Mate-
rials and methods” section). We reasoned that enzymes
whose evolutionary histories were shaped primarily by
vertical transfer paired with genomic loss, rather than
transfer, would display phylogenetic patterns roughly
congruent with our resolved reference species tree,
whereas those impacted by horizontal transfer (with ei-
ther CPR or non-CPR groups) would exhibit incongru-
ent relationships. Gene trees for well-conserved
glycolytic capacities like TIM and PGK generally

recapitulated phylogenetic groupings at a coarse level
(Fig. 3c; Additional file 2, Fig. S5). However, even for
these enzymes, inconsistencies with the species tree were
present—for example, some TIM sequences from the
Microgenomates, Katanobacteria, and Peregrinibacteria
clustered with archaeal reference sequences (Fig. 3c).
These results were replicated across multiple genomes,
and the phylogenetic associations of surrounding ORFs
on the same scaffold were verified by BLAST to ensure
that the scaffold originated from a CPR organism. Simi-
larly, in the enolase phylogeny, large, monophyletic clus-
ters representing sequences from the Microgenomates
and Parcubacteria 1 were resolved; however, other se-
quences from the Microgenomates and many from Par-
cubacteria 3 and 4 fell into smaller, fragmented groups
that clustered with more distantly related lineages
(Fig. 3c). Gene trees for other glycolytic enzymes dis-
played a range of patterns (Additional file 2, Fig. S5). On
the whole, gene-species tree inconsistencies suggest that
lateral gene transfer, either between CPR bacteria and
other taxa or among different CPR bacteria, has also im-
pacted the evolution of glycolytic enzymes alongside the
gene loss apparent from presence/absence profiles
(Fig. 3a).
Supporting the possibility of horizontal gene transfer

is the observation that multiple distinct enzyme forms
underlie the distributions of several glycolytic functions.
For example, we recovered unique hits to three individ-
ual HMMs representing various versions of PGI—one
describing a general, cross-domain version (PF00342),
another a bifunctional PGI/phosphomannose isomerase
present in some bacteria and archaea (TIGR02128) [26],
and, finally, an unrelated cupin-based enzyme originally
described from archaea (PF06560) [27, 28]. Interestingly,
all three enzymes were scattered across the broad CPR
groups, though very few CPR organisms (~ 2% of ge-
nomes) encoded more than one version. About 15 ge-
nomes, mostly belonging to the Nealsonbacteria, encode
only the cupin-related version. These sequences form a
sibling clade to those from archaeal reference genomes
in the corresponding gene tree (Additional file 2, Fig.
S5). Sequences from CPR organisms with highest simi-
larity to archaeal versions were also recovered for PGM
(TIGR00306) and for TIM, although in the latter case
sequences did not correspond to a separate HMM (Add-
itional file 2, Fig. S5). Similarly, while most CPR bacteria
encode a class II FBA enzyme, some, particularly Kaiser-
bacteria and Woesebacteria, also encode a class I en-
zyme that functions via a distinct reaction mechanism
[29]. Finally, in gene tree reconstructions for the class II
aldolase, sequences from CPR bacteria do not appear to
be monophyletic, with small subgroups dispersed among
sequences from other bacteria. Taken together, these re-
sults indicate that enzymes of multiple evolutionary
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origins underlie the distributions of core carbon metab-
olism, and support the idea that their distributions have
been shaped by episodes of lateral gene transfer, poten-
tially from non-CPR bacteria or archaea.

CPR bacteria encode phylogenetically distinct forms of
NiFe hydrogenases with variable genomic context
We next investigated the impact of lateral transfer on
metabolisms sparsely distributed across the CPR, focus-
ing on the NiFe hydrogenases as a case study because of
their possible role in hydrogen economy and/or electron
flux [5, 18]. Most sequences from CPR bacteria were
previously reported to fall within the Group 3b hydroge-
nases, cytoplasmic enzymes that may catalyze the revers-
ible oxidation of H2 coupled to regeneration of NADPH
or reduction of polysulfide when available [30, 31]. Here,
a revised gene tree that broadly samples the CPR reveals
the presence of two subclades, which we term hyd1 and
hyd2, forming a larger clade of Group 3b hydrogenase
from CPR organisms (Fig. 4a). Both groups are related
to, but distinct from, Group 3b versions in other bacteria
and archaea, particularly hyd2, which is separated from
its sibling clades by a relatively long branch (Fig. 4a).
Biochemically characterized Group 3b NiFe hydrogenases

are known to be tetrameric enzymes [32]. To examine
whether subunit associations were consistent across hydro-
genase classes, we probed the genomic context of the large
subunits from CPR bacteria using a paired HMM-protein
clustering approach (the “Materials and methods” section).
Intriguingly, while both enzyme types were generally associ-
ated with the small subunit hydrogenase (fam019) in
addition to the catalytic subunit, only hyd1 co-located with
genes encoding protein families resembling the two other
subunits involved in NAD(P)+-binding (gamma, fam034)
and electron transfer (beta, fam012) (Fig. 4a). HMM
searches revealed that these subunits also have homology
to anaerobic sulfide reductase A and B, suggesting that the
entire complex could be involved in sulfur metabolism
through the reduction of reduced sulfur compounds like
polysulfide [32, 33]. However, in some cases, the gamma
and beta subunits were not immediately upstream from the
gene encoding the small subunit (Fig. 4b), and, in others,
were not detected at all (Fig. 4a). This inconsistency might
be due to genome incompleteness or lineage-specific losses
within the hyd1 clade.
Although genomes with hyd2 also encoded the small

subunit protein (fam019), the sequences were consist-
ently truncated (mean 164 amino acids) relative to those
associated with hyd1 and non-CPR bacteria (mean 250
amino acids) (Additional file 2, Fig. S6a) [34]. Both
forms also shared fam002 in their genomic context,
some members of which displayed homology to the
hydrogenase-associated chaperone hypC. Outside these
families, immediate genomic context differed for hyd2:

while an HMM search recovered sequences with the
NAD-binding motif (gamma subunit) in the vicinity of
some hyd2, protein clustering showed that these pro-
teins were neither proximal to nor on the same strand
as the catalytic subunit (Fig. 4ab). However, some mem-
bers of fam013 that were in the genomic context of hyd2
apparently possessed an NAD(P)-binding domain situ-
ated within a larger FAD-binding domain (PF07992).
Similarly, while HMM searches did not recover evidence
for a putative beta subunit near hyd2, we found one pro-
tein family (fam390) in proximity to a subset of hyd2
that contained one of two iron-sulfur-binding domains.
These domains were distinct from those associated with
the putative beta subunit near hyd1. Ultimately, it is un-
clear whether hyd2 consistently possesses (or lacks) the
gamma and beta subunits, and thus, its function remains
uncertain.
Intriguingly, both hyd1 and hyd2 were dispersed across

many lineages of the CPR, and some lineages contained
both subtypes in closely related but distinct genomes
(Fig. 4a). For example, genomes from the Roizmanbac-
teria, which harbored the largest total number of Group
3b-related NiFe hydrogenases (n = 15), individually con-
tained either hyd1 or hyd2 sequences. Mapping of gen-
ome taxonomy onto the 3b-related hydrogenase tree
confirmed incongruencies with the CPR species tree
(Fig. 4a). A similar pattern was observed for sequences
from CPR bacteria that fell within a subclade of Group 4
references representing energy-converting hydrogenase-
related complexes (Ehr). Notably, the sequences from
CPR bacteria were monophyletic and clustered separ-
ately from other Ehr proteins, although they also lacked
the cysteine residues that bind the metal cofactors in
other Group 4 enzymes (Additional file 2, Fig. S6b). This
observation suggests that Ehr proteins from CPR organ-
isms likely cannot interact with H2.

Discussion
Initially described as a radiation of phylum-level clades
based on analyses of 16S rRNA divergence [1], the CPR
was initially suggested to comprise at least 15% of bac-
terial phylum-level groups [1]. Subsequent analyses have
suggested that its scale potentially matches that of all
other bacterial diversity [10]. Attempts to adjust for
lineage-specific evolutionary rates have suggested the
collapse of the CPR into a single phylum [9], but more
recent analyses with balanced taxonomic sampling con-
tinue to depict it as a large component part of bacterial
diversity [11]. Here, we combined new and previously
reported genomes to construct a robust reference phyl-
ogeny for the CPR using two unlinked, concatenated
marker sets (Fig. 1a, Additional file 2, Fig. S2). The re-
constructed trees are generally consistent with, and
more clearly define, the topology originally described for
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the CPR [1], although definitive resolution of some deep
nodes, particularly those connecting divergent groups
like the Saccharibacteria, Gracilibacteria, and Abscondi-
tabacteria (SR1), remain elusive, possibly due to under-
sampling of the latter two lineages. Both gene trees
support the presence of several monophyletic subgroups
within the Parcubacteria, motivating subdivision of this
large clade into smaller, taxonomically relevant units.
Here, we evaluated metabolic platforms across the

CPR by mapping genomically encoded functions onto
the reference tree. Analysis of metabolic capacity among

CPR organisms presents several challenges, primarily
due to the fact that homologs of metabolic genes are
often highly divergent compared to known reference se-
quences. Our custom approach for determining suitable
cutoffs for HMMs indicates that manual threshold cur-
ation is important when proteins are only distantly re-
lated to biochemically characterized versions (Additional
file 2, Figs. S1 and S3). We found that metabolic plat-
forms for CPR lineages only partially mirror phylogen-
etic relationships (Fig. 1a, c), at least for the subset of
metabolic traits examined here. In other words,

Fig. 4 NiFe hydrogenase enzymes encoded by CPR bacteria. a Inset of the unrooted large subunit hydrogenase tree showing putative Group 3b
hydrogenases across the CPR, along with the presence/absence of HMM hits corresponding to other subunits. b Genomic context for
hydrogenase gene clusters, where position 0 corresponds to the location of the ORF encoding the large subunit of the NiFe hydrogenase. Only
protein families on the same strand as the large subunit are represented in the plots, whereas genome diagrams below the charts include all
proximal families regardless of strand orientation. c Inset of large subunit tree within Group 4 hydrogenases. Ehr, energy-converting hydrogenase-
related complexes. Scale bars represent the average number of substitutions per site
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phylogenetically distant lineages often possessed combi-
nations of metabolic capacities that were more similar to
each other than to those of more closely related clades
(Fig. 1c). Thus, we hypothesize that diverse lineages
within the CPR may have converged upon similar meta-
bolic platforms, potentially via combinations of lateral
gene transfer and gene loss of genes involved in the
same function(s). This finding is intriguing, given that
overall protein presence/absence patterns in both CPR
and other bacteria generally recapitulate phylogenetic re-
lationships when entire proteomes are considered [15].
To account for this difference, we infer that other pro-
tein families not included in the current study must
show patterns of presence/absence that are generally
congruent with the CPR species tree.
Exploration of patterns of gene distribution revealed

that patchiness and phylogenetic depth varied for the se-
lected metabolisms and even for enzymes in the same
pathway (Fig. 2). This finding was validated by additional
analyses of how trait patchiness varied with increasing
completeness of the underlying genomes, and, for gly-
colysis in particular, by a comparison to other major
bacterial groups. Based on the combination of these ana-
lyses, we conclude that incompleteness of genomes from
metagenomes used in this study only minimally alters
the relative relationships between traits when examining
depth and patchiness and that the unusual patterns ob-
served for CPR organisms are indeed atypical. Similarly,
while mis-binning can also complicate any analysis that
relies upon metagenome-derived genomes, the similarity
of findings for multiple closely related genomes indicates
that it likely does not greatly obscure the major patterns
presented here. While the increased availability of
complete genomes will best help to further clarify the
patterns explored in this study, our general approach to
testing the robustness of signal as a function of genome
completeness might serve as a valuable way to augment
future analyses of gene content in other lineages as well.
We then used gene-species tree reconciliation to valid-

ate the prediction that proteins with variable “evolution-
ary profiles” might have been shaped by different
combinations of lateral transfer and vertical inheritance.
For a subset of core carbon metabolism, here repre-
sented by glycolysis, gene trees were roughly congruent
with the reconstructed organismal phylogeny, suggesting
that vertical inheritance has primarily shaped distribu-
tions of these enzymes (Fig. 3). However, the discovery
of a divergent subclade of TIM from CPR bacteria that
is more closely related to archaeal versions than bacterial
ones provides clear evidence of lateral transfer even for
the most widely distributed glycolytic enzymes. Interest-
ingly, two enzymes involved in the early steps of the
glycolytic pathway (hexokinase/glucokinase and phos-
phofructokinase) were notably absent in nearly all

lineages. Where present, they were likely acquired by lat-
eral gene transfer, potentially following ancestral loss.
These sequences separate from those of other bacteria,
obscuring the source and suggesting that transfers of
phosphofructokinase and hexokinase to CPR were also
ancient. In contrast, enolase and pyruvate kinase, the last
two steps of the pathway, are only somewhat widespread
and show relatively low phylogenetic congruence. This
pattern may reflect a mixture of genomic loss in addition
to lateral transfer among unrelated CPR organisms.
In archaea, glycolysis is known to be modified in a

number of ways, including metabolic shunting [35] and
rewiring of steps through novel enzymes [36, 37]. These
observations have led to suggestions that evolutionary
“tinkering” has shaped glycolysis at least in some ar-
chaeal lineages [38]. Paralleling this, we found that sev-
eral glycolytic steps in CPR bacteria are apparently
carried out by different enzyme forms, and, in some
cases, by types that are traditionally associated with ar-
chaea. This was particularly striking in the case of PGI,
which converts glucose 6-P to fructose 6-P, where three
different enzyme forms accounted for the wide distribu-
tion of the function (Fig. 3a). Acquisition of variant en-
zymes may have preceded loss of the ancestral enzyme
or occurred afterwards, complementing a loss in func-
tion. Overall, our findings suggest that glycolysis among
CPR organisms is partly an evolutionary mosaic, as de-
scribed in at least one eukaryotic organism (the flagellate
Trimastix pyriformis) [39], and, further, that gene loss
and acquisition may have remodeled their glycolytic
pathways over time.
Given the patchy distribution of enzymes involved in

upper glycolysis, carbon flux through this portion of the
pathway remains unclear. CPR bacteria without glucoki-
nase/hexokinase (hex) or PGI might rely on the uptake
of glycolytic intermediates, like fructose 6P or fructose 1,
6-P2 from associated cells or released by cell lysis. These
compounds could be shunted through the pentose phos-
phate pathway to bypass the largely absent phosphofruc-
tokinase and into the conserved central module of
glycolysis (Fig. 3a) [5]. Alternatively, near universal con-
servation of TIM and GAPDH across the CPR suggests
that either glycerone or G3P could also be important
points of input for carbon flow in these organisms. Con-
sistent with this is the fact that CPR organisms encoding
FormIII-related RuBisCO are predicted to introduce
G3P to central/lower glycolysis as a product of their pre-
dicted nucleotide salvage pathway [21, 40]. The subset of
CPR organisms that encode both hexokinase and PGI,
on the other hand, could potentially perform a more di-
verse set of transformations, utilizing glucose precursors
taken up from the environment or host. As for lower
glycolysis, the observed patchiness in distributions of
PGM, enolase, and pyruvate kinase suggests alternative
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fates for intermediates produced after the step catalyzed
by PGK (Fig. 3a). In the absence of pyruvate kinase,
which was found only in about a third of genomes here,
CPR could use phosphoenolpyruvate (PEP) synthetase
(PEPS) to instead interconvert PEP and pyruvate or in-
stead generate oxaloacetate [41]. Of course, with the
data presented here, we cannot rule out the possibility
that novel, divergent enzymes undetected by our HMM
approach functionally substitute for those with patchy or
nearly absent distributions among CPR lineages. How-
ever, we found no evidence for the presence of archaeal
PFK/glucokinase nor strong support for functioning of
CPR ROK family proteins as putative glucokinases. Add-
itionally, CPR bacteria are not currently known to em-
ploy alternative pathways like the Entner-Doudoroff
pathway, as some other bacteria that lack PFK [42]. Fu-
ture work subjecting CPR organisms in culture/co-cul-
ture to carbon flux analysis should help to validate
genomic predictions and shed light on the metabolic
configurations utilized in vivo.
Our second case study investigated the evolutionary

history of specialized metabolism in CPR bacteria, focus-
ing on Group 4 and 3b NiFe hydrogenases (Fig. 4).
These genes, like those putatively involved in nitrite re-
duction, electron transport, and AMP metabolism [16,
20, 43], are sparsely distributed across the CPR and were
likely subjected to lateral gene transfer. Notably, we re-
port phylogenetic and genomic evidence for distinct
monophyletic clades of Group 3b hydrogenases that are
specific to the CPR. This suggests that transfer events
were ancient or that these hydrogenase sequences
evolved very rapidly. The variable genomic contexts of
the 3b-related hyd1 and hyd2 suggest at least two evolu-
tionary scenarios: that individual, ancient transfers from
non-CPR microorganisms occurred with the associated
proteins intact, or that CPR bacteria encoding hyd2 ac-
quired only the large and small subunit and currently
support function with unknown genes. The scattered
distribution of both forms, phylogenetically incongruent
with the CPR species tree, further suggests that intra-
CPR exchange and/or loss also occurred over time. Simi-
larly, we hypothesize that other sparsely distributed pro-
tein families among the CPR, like pyruvate:ferredoxin
oxidoreductase, cytochrome oxidase, and nirK (nitrite
metabolism), may also be the result of lateral transfer
followed by further evolution within the CPR. The ac-
quisition of cytochrome oxidase by some Saccharibac-
teria is presumably an adaptation to aerobic or
microaerophilic environments [5, 12, 44].
In contemplating modes of evolution of CPR bacteria,

it is important to consider the processes of gene gain
and loss in the context of the largely symbiotic lifestyles
of these organisms. The dynamic evolution of glycolysis
might reflect reduced selection for complete pathways

due to metabolic opportunities provided by the host,
constraints which probably changed over time. Further,
acquisition of new capacities via lateral transfer could
have opened new niches, potentially including a change
in or adaptation to new hosts in different environments.
However, the observation that sequences from CPR bac-
teria coding for rarer functions are often distinct from
those of other bacteria suggests that these transfers
probably occurred relatively early in the history of the
radiation, or evolved rapidly once acquired. Distantly re-
lated lineages within CPR may have independently
undergone loss or gain of the same set of protein fam-
ilies, leading to similarly reduced metabolic platforms
over time. These evolutionary constraints may be unique
compared to those shaping minimal metabolism in other
non-CPR bacterial groups with reduced genomes, like
endosymbionts of insects. In contrast to these relatively
recently evolved (linked to the appearance of eukaryotic
hosts) associations that probably involve irreversible gen-
ome reduction trajectories [45], the potential for CPR or-
ganisms to associate with other bacteria raises the
possibility of long-established symbioses in which gene
sets remain in flux. The resulting pattern of “diversity
within sparsity” appears to be characteristic of the CPR.

Materials and methods
Genome collection and construction of phylogenetic
marker sets
We compiled a large set of genomes from metagenomes
from CPR bacteria from several previous studies of vari-
ous environments. We also binned an additional set of
genomes from metagenomes previously generated from
sediment from Rifle, Colorado [4], groundwater from
Crystal Geyser [46, 47], a cyanobacterial mat from the
Eel River network in northern California [48], ground-
water from a cold sulfide spring in Alum Rock, CA, and
human saliva. Binning methods and taxonomic assign-
ment followed Anantharaman et al. [4]. The total set
was initially filtered for genomes that had been manually
curated by any method to reduce the occurrence of mis-
binning, yielding a starting set of approximately 3800 ge-
nomes. We next computed contamination and com-
pleteness for all genomes using a set of 43 marker genes
sensitive to described lineage-specific losses in the CPR
[1, 4] using the custom workflow in checkm [49]. Results
were then used to secondarily filter the genome set to
those with ≥ 70% of the 43 marker genes present
and ≤ 10% of marker genes duplicated. The resulting
~ 2300 genomes were de-replicated at 95% ANI using
dRep (-sa 0.95 -comp 70 -con 10) [50], yielding a set
of 991 non-redundant genomes used for downstream
analysis. These genomes along with their associated
information, including accession numbers/links, are
listed in Additional file 1, Table S1.
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We re-predicted genes for each genome using Prodigal
(“single” mode) [51], adjusting the translation table (-g
25) for CPR lineages (Gracilibacteria and Absconditabac-
teria) known to utilize an alternative genetic code. Next,
we assembled two sets of HMMs, representing the 16
syntenic ribosomal proteins (rp16) and, separately, the
two subunits of RNA polymerase (RNAp), from the
TIGRFAMs and Pfams databases and ran each against
predicted proteins using HMMER v3.1b2 (http://hmmer.
org). To maximize extracted phylogenetic information,
including partial genes with robust homology to the
marker genes, we set custom thresholds for each HMM
using trees generated from all significant (e < 0.05) hits
to a given HMM (aligned using MAFFT, tree inference
with FastTreeMP) [52, 53]. Thresholds were usually set
at the highest bitscore attained by proteins outside the
clade of interest (Additional file 2, Fig. S1), which were
verified with BLASTp. HMM results and thresholds
were visualized by in bitscore vs. e value plots (Add-
itional file 2, Figure S1ab). Phylogenetic analysis of
HMM hits revealed that many proteins below model-
specific thresholds were legitimate, often partial hits to
the targeted HMM (Additional file 2, Fig. S1b).
Next, we curated phylogenetic marker sets for both rp16

and RNAp by addressing marker genes present in multiple
copies in a given genomic bin. Multi-copy genes can result
from remnant contamination after filtering, ambiguous
bases in assembly leading to erroneous gene prediction
[49], or legitimate biological features. We first identified
marker genes fragmented by errors in gene prediction by
searching for contiguous, above-threshold hits to the same
HMM on the same assembled contig. This issue was par-
ticularly prevalent for rpoB and rpoB’, possibly due to re-
petitive regions in that gene impacting accurate assembly.
For upstream fragments, we removed protein residues after
stretches of ambiguous sequence to avoid introducing mis-
translated bases into the alignment stage while maximizing
phylogenetic information. If additional stretches of ambigu-
ous sequence were present in downstream fragments, we
removed them. Finally, we built a corrected, non-redundant
marker set for each genome by selecting the 16 ribosomal
proteins and, separately, 2 RNA polymerase subunits that
firstly maximized the number of marker genes on the same
stretch of assembled DNA and, secondarily, maximized the
combined length of encoded marker genes.

Species tree inference, curation, and analysis
Results for each marker gene in the rp16 and RNAp sets
were individually aligned with MAFFT [52] and subse-
quently trimmed for phylogenetically informative regions
using BMGE (-m BLOSUM30) [54]. Gene trees for each
marker were then constructed using IQTREE’s model
selection and inference (-m TEST -nt AUTO -st AA) and
manually inspected for major incongruencies.

In preparation for creating a concatenated alignment
for each marker set, we next extracted corresponding
rp16 and RNAp marker sets for a diverse bacterial out-
group consisting of ~ 170 bacterial genomes from Gen-
Bank sampled evenly across characterized taxonomic
divisions. We then merged the outgroup dataset with
the existing marker gene sets, individually aligning hits
for each marker gene and trimming them as described
above. We then concatenated individual protein align-
ments, retaining only those with both RNAp subunits
and at least 8 of 16 syntenic ribosomal proteins.
Maximum-likelihood trees were inferred for both the
concatenated rp16 (1427 AA) and RNAp (1652 AA) sets
using ultrafast bootstrap and IQTREE’s extended Free-
Rate model selection (-m MFP -st AA -bb 1500) [55–57],
given the importance of allowing for site pattern hetero-
geneity in concatenated alignments [58]. FASTA-
formatted files for the masked alignment and newick-
formatted trees for both rp16 and RNAp datasets are
available in Additional file 4.
We next identified phylogenetic outliers in the re-

solved maximum-likelihood topologies by searching for
genomes that did not form a monophyletic clade with
other organisms of the same taxonomy. These genomes,
potentially due to mixed phylogenetic signal or under-
sampling, were retained only if they were assigned to a
previously described novel lineage, or formed a con-
served, uncharacterized clade with > 1 member in both
rp16 and RNAp trees. Genomes that did not fit these
criteria were pruned. Concatenated trees were then re-
inferred with the modified genome set. Where possible,
we manually curated taxonomic assignments for ge-
nomes that clearly resolved within monophyletic clades
of different taxonomic classification in both the rp16
and RNAp trees. Finally, we assessed broad-scale phylo-
genetic patterning within the CPR by examining the dis-
tribution of ribosomal proteins L1 and L9 employing the
same HMM-based approach as described above.

Metabolic annotation, analysis, and gene tree inference
To probe metabolism within CPR bacteria, we assem-
bled a broad set of HMMs from TIGRFAMs (tigrfams.
jcvi.org/cgi-bin/Listing.cgi), Pfam (pfam.xfam.org), and a
previous publication [4] representing metabolisms rele-
vant for biogeochemical cycling and energy production
in this clade [5, 12, 18] (Additional file 3, Table S2). We
interrogated protein sequences from each genome with
the HMM set using HMMER and set custom bitscore
thresholds as described above to ensure that divergent
but functionally valid proteins were retained. Model-
specific thresholds were often much higher than max-
imum bitscores of hits, even in cases where we were able
to assign putative function to relatively high scoring
clusters through BLAST and phylogenetic analyses. In a
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few cases (PRPP, PEP synthase, PGI, ROK family), we
secondarily annotated HMM-protein hits with additional
Pfam domains or manually inspected placement within a
reference tree to guide setting of accurate manual cut-
offs. These additional domain HMMs and all custom
thresholds are specific to this dataset and are listed in
Additional file 3, Table S2. If a protein had multiple
above-threshold hits to a set of HMMs, we selected the
HMM with the highest bitscore. We additionally se-
lected the highest-scoring HMM hit within a genome
bin for each HMM to generate a final set of metabolic
markers for downstream analysis.
We next analyzed distributions of metabolic capacities

in two ways: first, we created a presence/absence matrix
for all metabolisms with at least one hit among the genome
set, combining profiles for HMMs representing the same
function (e.g., PGI, FBA, RuBisCO) into a single merged
category. We then filtered the matrix to include only line-
ages with eight or more genomes and traits that were de-
tected at least three times over all genomes. Finally, we
averaged presence/absence across lineages, generating a fre-
quency at which that trait was present among genomes of a
particular taxonomy. We then used this information to
generate a Bray-Curtis distance matrix using the ecopy
package in Python. Finally, we performed a principal coor-
dinates analysis using scikit-bio learn and plotted the result-
ing axes to examine clustering and variation within and
among metabolic platforms of CPR bacteria. Second, we
measured phylogenetic conservation and patchiness over
the rp16 tree using the consenTRAIT algorithm (Npermu-
tations = 1000, count_singletons = F, min_fraction = 0.90)
[59] as implemented in the R package castor and
consistency index (CI) as implemented in the R package
phangorn and proposed in [22] (sitewise = T). We inte-
grated these two metrics to generate an “evolutionary pro-
file” for each gene.
To assess how patchiness of given metabolisms varied

with genome completeness, we subsampled the genome
set iteratively at increasing thresholds from 70% through
95% and, for each iteration, pruned down the existing
rp16 reference tree to include only those genomes. We
then re-computed patchiness for each trait as done pre-
viously. For the comparative analysis of patchiness
among glycolytic enzymes, we gathered all non-CPR
bacterial genomes from three major studies of ground-
water microbial communities from which the majority of
CPR bacterial genomes were assembled [4, 46, 47]. To
increase our phylogenetic sampling, we combined this
set with additional genomes-from-metagenomes from a
large-scale study of multiple environments that used
similar methods [2] and selected three major lineages
with adequate size to use for downstream analysis (Pro-
teobacteria, Firmicutes, and Bacteroidetes). We calcu-
lated completeness and contamination for the non-CPR

genomes using the same set of 43 markers as before and
de-replicated them at 95% ANI with dRep, using the cal-
culated completeness and contamination to again filter
at 70% completeness and 10% contamination. We next
extracted the rp16 phylogenetic markers using a similar
approach (though, for simplicity, HMMs were thre-
sholded using model-specific noise cutoffs) and proc-
essed as before. Next, a random subsample of 50 CPR
bacterial genomes was taken and their phylogenetic
markers were separately concatenated with those of each
non-CPR lineage. Alignment, alignment trimming, and
tree building were performed as previously for each set
of sequences. For each of the three non-CPR groups,
HMMs corresponding to glycolytic enzymes were run
against predicted proteins and manually re-thresholded.
Finally, genome sets for each lineage were subsampled at
increasing completeness thresholds as for CPR bacteria,
and patchiness was computed for each glycolysis enzyme
over each tree as above. Results were combined with
those obtained for CPR organisms and visualized.
To build reference protein sets for the metabolic genes

of interest, we queried proteins from the set of ~ 170
bacterial reference genomes with same HMMs described
above and applied the model-specific noise cutoff (for
Pfam or TIGRFAMs HMMs) or the published cutoff (for
custom HMMs). These proteins were then concatenated
with the corresponding above-threshold hits from the
CPR bacterial genomes and aligned as described above
with MAFFT. Additionally, for four HMMs correspond-
ing to glycolytic functions (PF06560, TIGR02128,
TIGR00306, TIGR00419), we also queried a set of pro-
teins from ~ 300 archaeal reference genomes assembled
in a similar fashion to the bacterial reference set. Result-
ing protein hits were concatenated with the bacterial se-
quences. For all single-gene alignments, columns with
95% or more gaps were trimmed using Geneious.
Maximum-likelihood gene trees were then inferred using
IQTREE with the following parameters: -m TEST -st AA
-bb 1500. Trees were rooted on the largest monophyletic
group of reference sequences present in the topology; if
multiple monophyletic groups of reference sequences
were present, trees were rooted at the midpoint.
To generate a gene tree for the NiFe hydrogenases, we

assembled a comprehensive reference set of large sub-
unit sequences from several published sources [60–62],
de-replicated them at 95% amino acid identity using
usearch --cluster_fast, and concatenated the resulting
centroids with large subunit sequences recovered from
CPR bacteria. Sequences were aligned, alignments were
trimmed, and the gene tree was inferred as described
above for other metabolic genes. The trimmed align-
ment is available in Additional file 4. We next manually
identified sequences within the immediate genomic con-
text of 3b-related catalytic subunits that also scored
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highly against HMMs for anaerobic sulfite reductase A/
B, as described previously for subunits in the Group 3b
hydrogenases of Pyrococcus furiosus [32, 33] and
searched them for conserved domains in phmmer
(https://www.ebi.ac.uk/Tools/hmmer/search/phmmer).
We identified one iron-sulfur cluster and one NAD-
binding domain that were conserved among these prox-
imal proteins (Additional file 3, Table S2), and then
queried all proteins from CPR bacteria with these
HMMs to identify putative 3b-related subunits across
the entire genome set. We performed the same search
for an additional Pfam domain associated with the 3b-
hydrogenase small subunit (Additional file 3, Table S2).
For all three HMMs, manual thresholds were set using
the paired visualization-phylogenetic approach described
above. Finally, the presence/absence of putative subunits
was mapped onto the resolved tree of large subunit se-
quences to examine patterns of association with phylo-
genetic clades of 3b-related hydrogenase using iTol [63].
For the genomic context analysis of 3b-related forms,

we gathered protein sequences within a 20 ORF radius
(or less, if the scaffold ended) in both directions of the
identified large subunits. Each ORF was assigned a gen-
omic position relative to the large subunit (position 0).
All recovered proteins were concatenated into a single
file and passed through a two-part, de novo protein
clustering pipeline recently applied to CPR genomes, in
which proteins are first clustered into “subfamilies” and
highly similar/overlapping subfamilies are merged using
and HMM-HMM comparison approach (--coverage 0.50)
[15] (https://github.com/raphael-upmc/proteinClustering-
Pipeline). Recovered protein families were compared with
subunit HMM results and linked if the majority of pro-
teins within the family had above-threshold hits to a given
HMM. An alignment and gene tree for those proteins la-
beled as the small subunit hydrogenase (fam019) were
made as described above.
Finally, counts for genes encoding the recovered fam-

ilies were plotted as a function of their relative position
to the focal catalytic subunit of the hydrogenase across
all CPR bacterial genomes. This was performed only if
there were instances of the genes on the same strand (as
predicted by Prodigal) as the large subunit hydrogenase.
The relative positions of genes were multiplied by their
strand orientation such that a negative position would
signify being “upstream” of the focal catalytic subunit,
whereas a positive position would signify being “down-
stream.” Positions were also adjusted in several cases
where the focal subunit was split into multiple consecu-
tive fragments, possibly due to local assembly errors.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-020-00804-5.
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study. (TSV 127 kb)
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RNA polymerase, subunit beta (TIGR02013). c) Molecular phylogeny for
significant (e > 0.05) TIGR02013 hits onto which HMM scores from b) are
mapped. Figure S2. Consistent tree topology for the CPR recovered
individually by a concatenation of a) 16 ribosomal proteins and b) B and
B′ subunits of RNA polymerase. Clade shading corresponds to that in Fig.
1a. Scale bars represent the average number of substitutions per site.
Ultrafast bootstrap support is indicated by the number attached to each
tree node. Figure S3. Visual and phylogenetic approach to setting
sensitive manual thresholds for metabolic genes of interest. HMM rank vs.
bitscore/e-value plot for a) fructose 1,6-bisphosphatase (PF00316) and b)
triose phosphate isomerase (TIGR00419). Molecular phylogeny for
significant (e > 0.05) hits to c) PF00316 and d) TIGR00419 onto which
HMM scores are mapped. Figure S4. Impact of genome completeness
on patchiness for a) all enzymes within the major pathways in CPR
bacteria examined in this study and b) individual enzymes within CPR
glycolysis. Part c) shows the patchiness of each individual glycolytic
enzyme as a function of genome completeness for four major lineages,
including the CPR. PPP=Pentose Phosphate Pathway. dh =
dehydrogenase. Figure S5. Maximum-likelihood gene trees for glycolytic
enzymes in CPR bacteria. Different HMMs representing the same func-
tions are grouped together by boxes. Scale bars represent the average
number of substitutions per site. Black dots indicate tree nodes with > =
95% ultrafast bootstrap support. Figure S6. a) Maximum-likelihood gene
tree for 3b-related NiFe hydrogenase small subunit (SSU) (fam019) with
trimmed protein alignment for SSU sequences. Scale bar represents the
average number of substitutions per site. Black dots indicate tree nodes
with > = 95% ultrafast bootstrap support. b) Partial alignment of the L1
and L2 regions of putative Group 4-related NiFe hydrogenases. Ehr = en-
ergy-converting hydrogenases-related complexes. Red asterisk indicates
cysteine residues associated with metal cofactor binding. N.B. for visual
clarity, only a subset of sequences and sites are shown.

Additional file 3: Table S2. Description of metabolic HMMs and
thresholds used in this study. (TSV 22 kb)

Additional file 4. Trimmed alignments and inferred maximum-
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