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Abstract

Background: Multiple RNA samples are frequently processed together and often mixed before multiplex sequencing
in the same sequencing run. While different samples can be separated post sequencing using sample barcodes, the
possibility of cross contamination between biological samples from different species that have been processed or
sequenced in parallel has the potential to be extremely deleterious for downstream analyses.

Results: We present CroCo, a software package for identifying and removing such cross contaminants from assembled
transcriptomes. Using multiple, recently published sequence datasets, we show that cross contamination is
consistently present at varying levels in real data. Using real and simulated data, we demonstrate that CroCo
detects contaminants efficiently and correctly. Using a real example from a molecular phylogenetic dataset, we
show that contaminants, if not eliminated, can have a decisive, deleterious impact on downstream comparative

analyses.

Conclusions: Cross contamination is pervasive in new and published datasets and, if undetected, can have serious
deleterious effects on downstream analyses. CroCo is a database-independent, multi-platform tool, designed for ease
of use, that efficiently and accurately detects and removes cross contamination in assembled transcriptomes to avoid
these problems. We suggest that the use of CroCo should become a standard cleaning step when processing multiple

samples for transcriptome sequencing.
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Background

Contamination between nucleic acid samples has long
been recognised as a potential problem in molecular biol-
ogy. The use of amplification by polymerase chain reaction
(PCR) and, more recently, high-throughput sequencing,
implies that even very low levels of contaminating nucleic
acids, regardless of their sources, can be sequenced at suffi-
cient coverage to be present in downstream datasets [1-9].
Various tools have already been developed in order to dis-
criminate between the sequences of the organism of inter-
est and contaminant sequences originating from parasites,
gut bacteria, endosymbionts or the environment. These
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algorithms usually identify the contaminant sequences
based on specific criteria and infer the taxonomic source of
the contaminant using a reference database. The Blobtools
pipeline [10] detects contaminant sequences based on their
GC content, read coverage and taxonomic assignment
(using Basic Local Alignment Search Tool (BLAST) against
the National Center for Biotechnology Information (NCBI)
non-redundant database). A slightly different method,
Anvi'o [11], first automatically bins contigs based on read
coverage and/or k-mer frequencies, then identifies the con-
taminant bins. Lastly, the algorithm Model-based Categor-
ical Sequence Clustering (MCSC) [5] uses a clustering
method based on the frequent patterns observed in the
sequences (divisive hierarchical clustering) and then identi-
fies the contaminant clusters by blasting against the Uni-
Ref90 database. These methods (except for MCSC) focus
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on genomic data; however, they partially rely on public da-
tabases that are not always devoid of contamination and
are designed to detect contamination from distant organ-
isms. As transcriptomic data are currently widely used in
evolutionary biology, we designed a new tool, CroCo, de-
signed for RNA sequencing (RNA-seq) data; it relies on
expression level estimates, it is reference-free, and it targets
another type of contamination: cross contamination.

Cross contamination is defined as contamination across
samples handled in parallel in a given sequencing project. It
is of experimental origin and can potentially arise at
multiple benchwork steps: sample handling, DNA/RNA
extraction, library preparation and amplification, sample
multiplexing and inaccurate barcode sequencing. Our
empirical observations show that some amount of cross
contamination seems unavoidable when multiplexing
complementary DNA (cDNA) libraries for high-throughput
transcriptome sequencing of multiple species (for instance,
for subsequent phylogenetic tree reconstruction). The
phenomenon is obvious when finding sequences that are
identical or almost identical at the nucleotide level in as-
sembled transcriptomes of two or more sufficiently
distantly related species (for an example, see Additional file
1: Figure S1). Such cases have already been detected in sev-
eral recent evolutionary biology studies [9, 12-16]. Cross
contamination creates false similarities between species,
with obvious deleterious consequences for any kind of
downstream comparative analysis.

Implementation

Methods

In order to determine whether a given sequence in a se-
quencing experiment involving multiple species is likely
to be a contaminant, we have developed a procedure
that uses transcript quantification estimates. Our ap-
proach is independent from any public database. In
short, a sequence present in the assembled transcrip-
tome of species A will be considered a contaminant if
the same sequence is represented by a higher number of
reads in another species B from the same study. This
procedure relies on the following assumptions: (1) con-
tamination is likely to derive from messenger RNAs
(mRNAs) that are at high concentration in the source
species (both because these are more likely to contamin-
ate and because successfully assembling a transcript re-
quires sufficient read coverage); (2) contaminating
molecules are expected to be found in lower quantities
in the contaminated sample than in their sample of ori-
gin; (3) the ratio between levels of contaminator and
contaminated sample should hold regardless of the ori-
gin of cross contamination (e.g. tissue/RNA contamin-
ation at the bench, mixed tag during double PCR,
contaminations during manufacturer’s proprietary proto-
cols), the determination of which is not the focus here
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(but see [9]). It is therefore expected that reads from
contaminating nucleic acids will be found at much lower
levels in the contaminated sample than in the contami-
nating source.

Here we present CroCo, a cross contamination detec-
tion and removal tool based on these expectations,
which expands on preliminary pipelines used in two
independent recent studies [15, 16]. CroCo uses
sequence read files and assembled transcriptomes from
each sample included in a given sequencing project in-
volving multiple species. First, a BLASTN step across all
pairwise transcriptomes defines a list of transcripts sus-
piciously similar (at the nucleotide level) across samples.
By default, two transcripts in two different samples that
are > 95% similar over a fragment of > 40 nucleotides are
considered suspicious. This criterion is valid as long as
the genetic distances between all species are sufficiently
high (see below). All assembled transcriptome files are
then concatenated into a reference metatranscriptome
for subsequent estimations of their expression levels. For
a given suspicious transcript, CroCo quantifies its ex-
pression level N (in transcripts per million, TPM — see
[17]) in reads from each sample. A transcript present in
the assembly from sample A but expressed in another
sample at a higher level (that passes a user-defined
threshold) is considered a contaminant. CroCo performs
this comparison for all suspicious transcripts from all
samples. Given three user-defined parameters corre-
sponding to (1) a fold difference value (X, default =2);
(2) a high expression level (Y, default =300 TPM); and
(3) a low expression level (Z, default=0.2 TPM), and
where Nf is the expression level in the focal sample and
Na is the expression level in alien samples, it then classi-
fies transcripts from the original transcriptome assem-
blies into the following five categories:

— Clean (Nf> XNa)

Cross contamination (Nf< Na/X)

Dubious (Na/X < Nf < XNa)

— Over expressed (N > Y for at least three samples)
Low coverage (N < Z in all samples)

Analyses of six recent sequencing projects

We selected six datasets to be used as proof of concept
for the cross contamination detection strategy imple-
mented in CroCo (Additional file 1: Table S1). Note that
the two datasets published in the context of the present
study have been entirely processed by different authors
in different labs; hence, they were analysed as two separ-
ate datasets. Transcriptomes from dataset C were assem-
bled as described elsewhere [18]. Transcriptomes from
dataset D were assembled using SOAPdenovo-Trans
[19], and transcriptomes from dataset E were assembled
using Trimmomatic [20] and Trinity v2.1.1 [21]. CroCo
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was used with default parameters (-f 2 -c 0.2 -d 300),
and the results of these analyses are shown in Fig. 1.

Impact of cross contamination on phylogenomics

In order to test the impact of cross contamination at a
phylogenomic scale, we retrieved the 114 genes from a
previous study [22], from which we kept only Pleurobra-
chia species sequences. To these 114 reduced alignments
we added the raw ctenophore transcriptomic data from
that study (i.e. dataset A, for which the cross contamin-
ation network is shown in Fig. 2a) using Forty-Two
(available at https://bitbucket.org/dbaurain/42/). We
then used SCaFoS [23] to concatenate the 114 com-
pleted alignments into a supermatrix, selecting the lon-
gest sequence if several sequences were present for a
given species. We used RAXML [24] with the LG + T4 +
F model of sequence evolution to infer phylogenetic re-
lationships among ctenophores (Fig. 2b). We then used
CroCo (using default parameters) to clean the raw tran-
scriptomic data, and we retained all transcripts cate-
gorised as clean. We re-used the protocol described
above to incorporate the cleaned data into the 114
genes, concatenated them and inferred a second cleaned
phylogenetic tree of ctenophores (Fig. 2c).

Example of cross contamination in a single-gene
phylogeny

To exemplify the ability of CroCo to detect cross con-
taminations and their possible dramatic impact on gene
phylogeny reconstruction, we arbitrarily selected a con-
taminated transcript from dataset A (i.e. transcript
‘sb|373879" from the Vallicula wmultiformis transcrip-
tome) and we used USEARCH [25] to extract homolo-
gous sequences from other transcriptomes from the
same experiment (the parameters are as follows:
—usearch_global —id 0.6 —maxhits 10000 —maxaccepts
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10000 —maxrejects 10000). All sequences were then
aligned with Clustal Omega [26] as implemented in
SeaView [27] using default settings; the phylogenetic re-
lationships between these transcripts were inferred by
running 100 maximum likelihood searches under the
LG +I'4 + F model and 100 bootstraps with RAXML. Se-
quences were coloured according to their categorisation
by CroCo (the parameters used were as follows: —tool B
—fold-threshold 2 —minimum-coverage 0.2). The results
are presented in Additional file 1: Figure S1.

Cross contamination simulation experiments

Simulation of divergent transcriptomes

In order to test the accuracy of our procedure as well as
to compare the behaviour of the different mapping/
quantifying tools with closely related samples, we selected
one reference transcriptome for subsequent simulations
(Austrognathia sp. from dataset F; 31,529 transcripts). The
abundance of each transcript was estimated in transcripts
per million (TPM) using RSEM-Bowtie [28]. Based on this
reference transcriptome, we simulated 10 divergent tran-
scriptomes (of 31,529 transcripts each) using a Python
script which randomly mutates nucleotides at a specified
rate (divergence level ranging from 1 to 10%). The abun-
dance of each divergent transcript is directly derived from
the reference transcriptome. For each level of divergence,
we worked on a pair of species including the reference
and a divergent transcriptome.

Estimating effective contamination probabilities

To explain the cross contamination simulation pro-
cedure, we now focus on one such pair: the reference
transcriptome and the 10% divergent transcriptome
(hereafter ‘ref’ and ‘div10; respectively). A given tran-
script originating from sample A which is transferred
into sample B has a given probability to be effectively

Transcripts %

(Moroz et al. 2014)

(Simion et al. 2017)

Low coverage %

Fig. 1 Pervasive cross contaminations observed in recent transcriptomic datasets from six different labs. For each transcriptome, three columns
indicate the percentage of transcripts categorised as low coverage (grey bars), dubious (orange bars) and cross contamination (red bars) as detected by
CroCo (using default parameters). For the content of each dataset, see Additional file 1: Table S1; references [16, 22, 34, 41]

Dubious % H Cross contamination %

(This study) (Finet et al. 2010) (This study) (Laumer et al. 2015)
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Fig. 2 Dramatic effect of cross contaminations on reconstructing ctenophore relationships using a phylogenomic dataset. a Cross contamination
network for dataset A as reconstructed by CroCo. Nodes and links represent transcriptomes and cross contaminations, respectively. Only transcripts strictly
categorised as cross contaminants are taken into account here. Node sizes are proportional to the number of times the node is the source of cross
contamination, and node colours represent the percentage of contaminated transcripts in the transcriptome. For clarity, weak links, defined as less than 2%
of the strongest link in the network, are not shown. b, ¢ Ctenophore phylogenetic relationships reconstructed with 114 genes using (b)
untreated transcriptomes and (c) transcriptomes cleaned using CroCo (see details in Methods). In (b) the placement of lineages highlighted in orange
disrupts the monophyly of the clade ‘Lobata’ (here represented by Mnemiopsis leidyi and Bolinopsis infundibulum). With the cleaned dataset (c), the same
lineages, in blue, are placed in agreement with recent studies of ctenophore relationships [16, 31-33]. The two dotted arrows and their corresponding
numbers indicate two major cross contamination events that can be observed on the cross contamination network (a)
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sequenced and assembled into a contaminating tran-
script in the transcriptome of sample B. For a given
transcript, this probability should depend on the
number of copies transferred (i.e. mRNAs) and thus
on its abundance in sample A. These ‘effective con-
tamination probabilities’ have been estimated by gen-
erating a virtual pool of one million mRNAs from the
‘divl0’ transcriptome (based on the TPM of each
transcript) in which we randomly sampled 10,000
mRNAs (corresponding to about 7300 unique tran-
scripts). These transferred transcripts were added to
the ‘ref’ transcriptome, and then 20 million reads
were simulated from this contaminated transcriptome
(as detailed in the following section). With a BLAST
approach, we estimated how many of these trans-
ferred transcripts were recovered after transcriptome
assembly with Trinity v2.4. The ‘effective contamin-
ation probabilities’ ranged from 48.3% (for the tran-
scripts transferred in one copy) to 93.3% (more than
10 copies). Overall, about half of the transferred tran-
scripts are recovered in the contaminated assembly.

Simulating cross contamination

These contamination probabilities were used to accur-
ately simulate biologically realistic unidirectional con-
taminations from ‘divl0’ to ‘ref’. Contamination was
simulated by sampling 10,000 mRNAs from the pool of
one million mRNAs of the ‘div10’ transcriptome. These
10,000 mRNAs correspond to N; unique transcripts, of
which only N, (about 3600) will be effective contami-
nants based on their number of transferred copies and
the corresponding contamination probability. The con-
taminated transcriptome thus comprises the 31,529 ref-
erence transcripts plus the N, contaminating ‘div10’
transcripts. We performed the same procedure for a
weaker contamination level, with an initial sampling of
1000 mRNAs. As we modelled contamination from one
pool of one million mRNAs to another pool of one mil-
lion mRNAs, each contaminating transcript was
assigned a TPM corresponding to the number of copies
in which it had been transferred. For each sample (‘ref’
contaminated and ‘div10’), 20 million paired-end reads
were then simulated with the R package polyester [29]
with a uniform error of 0.5% (following [30]). The num-
ber of simulated reads for each transcript was directly
based on its TPM. For each divergence level (n = 10) and
contamination strength (n =2), CroCo was run with the
three mapping tools (RapMap, Kallisto and Bowtie)
using default parameters. The results are shown in
Additional file 1: Figure S3.

Benchmarking CroCo with biological data
We categorised dataset E transcripts with CroCo (default
settings) and then incorporated all transcripts into
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reference alignments maintained and updated by author
HP and including taxonomic sampling corresponding to
dataset E (see [13]), using the Forty-Two software package
(https://bitbucket.org/dbaurain/42/downloads/). The taxo-
nomic sampling already present in these alignments
allowed us to determine the true origin of every transcript,
which we compared to CroCo categorisation in order to
evaluate its accuracy. The results of this comparison be-
tween manual and automated detection of cross contam-
ination are shown in Additional file 1: Figure S2.

Results

Detecting cross contamination in six transcriptomic
datasets

We used CroCo on six recent RNA-seq datasets, includ-
ing two of our own, as a proof of concept (see details in
Methods and Additional file 1: Table S1). These datasets
correspond to the sampling of several different species
spanning the diversity of a given group (e.g. Metazoa,
Ctenophora, Platyhelminthes, Streptophyta). Within a
given project, the mRNA of each species was sequenced
by a single group of authors and hence potentially han-
dled at the same place. We found that all of them were
affected by cross contaminations and, more worryingly,
that these cross contaminations can reach dramatic
levels (i.e. almost 30% of all transcripts in one species,
see Fig. 1). Sequencing experiments differ greatly in their
levels of contamination (compare the highly cross con-
taminated datasets A and C with the cleaner datasets B
and E in Fig. 1). The level of cross contamination also
varies (sometimes greatly) between samples within each
experiment, as is obvious when comparing Euplokamis
dunlapae and Mertensiidae sp. in dataset A or Lampea
pancerina and Liriope tetraphylla in dataset B (Fig. 1).
This is consistent with some cross contamination stem-
ming from experimental mishandling which is expected
to result in preferential cross contamination patterns
(i.e. only certain samples contaminate or are contami-
nated). These patterns can be easily observed on cross
contamination network graphs rendered by CroCo
which can be used to trace back the likely experimental
step(s) at the origin of cross contamination event(s) (see
Fig. 2a).

Gene phylogeny in the presence of cross contamination

In order to illustrate both the problems caused by
cross contaminations for phylogenetic studies and the
ability of CroCo to detect them, we built a single-
gene tree based on ctenophore (comb jellies) se-
quences from dataset A [22] prior to CroCo use. We
then used CroCo to detect cross contaminations and
correspondingly annotated the sequences in the tree
(Additional file 1: Figure S1). Multiple cross contami-
nations clearly hampered the interpretation of the
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correct evolutionary history of this gene, but they
were all detected by our procedure (i.e. none of them
was categorised as clean). After their removal, we
could reconstruct a gene phylogeny that is congruent
with expected relationships between these ctenophore
species (see Additional file 1: Figure S1 and [31-33]).
This example shows the evident effect that un-
detected cross contamination can have when inter-
preting single-gene phylogenies.

Evaluating the accuracy of CroCo

To further illustrate the accuracy of our approach, we
used cross contaminations that have been previously iden-
tified as a reference [13]. Indeed, the potential negative
impact of cross contaminations on phylogenomic infer-
ence has been studied using a previously published dataset
[34] by comparing trees obtained before and after manual
removal of contaminants. We thus evaluated CroCo’s abil-
ity to detect cross contaminants. Across all species, CroCo
was able to detect 97.2% of the cross contaminations that
have been identified manually (i.e. 174 out of 179 cases)
while wrongly discarding < 1% of correct sequences (i.e. 6
out of 629 transcripts, see Additional file 1: Figure S2). We
also evaluated CroCo’s accuracy by analysing simulated
datasets with cross contaminations between transcrip-
tomes that we made increasingly divergent from each
other (from 1 to 10% divergence). We show that CroCo is
able to detect 100% of cross contamination cases when
samples display more than 2% average divergence in nu-
cleotide sequences (Additional file1l: Figure S3). In
addition, regardless of the choice of mapping strategy and
sample divergence levels, less than 0.04% of clean tran-
scripts were erroneously categorised as contaminant.

CroCo as a cleaning tool for phylogenomics

As previously shown, cross contamination can be deleteri-
ous even at a phylogenomic scale where data quantity
might be expected to be sufficient to overcome the errone-
ous signal from contaminants [13]. This happens because
some cross contaminations are not random (see preferen-
tial cross contamination patterns in Fig. 2a and Additional
file 1: Figures S4—S8) and can therefore create an additive
non-phylogenetic signal that is reinforced as more and
more genes are added (a case of systematic error). To as-
sess the benefits of CroCo for phylogenomic analyses, we
compared results from the supermatrix of 114 genes from
the heavily contaminated ctenophore species of dataset A
(Figs. 1 and 2a and Additional file 1: Figure S1) before and
after cross contamination cleaning (see Methods). In the
ctenophore tree reconstructed with raw transcriptomic
data (Fig. 2b), the Lobata species Bolinopsis infundibulum
is placed close to Mertensiidae sp., while the other repre-
sentative of Lobata, Mnemiopsis leidyi, branches together
with platyctenids (Vallicula and Coeloplana), both with
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maximal support. These relationships are at odds with
ctenophore relationships previously derived from single-
marker molecular phylogenies as well as with morphology
[16, 31-33]. One of these problematic relationships has
been recovered with maximal support in four recent stud-
ies based on dataset A [22, 35-37]. These two major
incongruences match the two largest cross contamination
events detected by CroCo in this dataset (events 1 and 2
marked in Fig. 2b, respectively corresponding to 27,475
and 46,473 cross contaminated transcripts; see black thick
arrows in Fig. 2a). When we used only transcriptomic data
categorised as clean by CroCo, we recovered a phylogeny
congruent with the current understanding of ctenophore
evolution (Fig. 2c), notably with the two Lobata species
grouped together. This confirms cross contamination as a
potential source of systematic error in phylogenomics.

Discussion

A quantitative tool to classify transcripts

CroCo has been designed to detect cross contamination
in transcriptomes assembled from RNA-seq data of sam-
ples that were either multiplexed during sequencing or,
more generally, handled by the same people or at the
same location. Although we found evidence for system-
atic and pervasive cross contamination events, under-
standing CroCo’s strategy is important in order to
interpret its categories correctly. Our approach is quan-
titative and relies solely on differential transcript quanti-
fication patterns to determine the origin of a given
transcript. This allows CroCo to be reference-free and
portable to any transcriptomic dataset, but it also ren-
ders its results sensitive to the accuracy of quantification
estimates and to the user-defined parameters for
categorisation.

The quality of both reads and transcriptome assem-
blies is important to maximise the accuracy of expres-
sion level estimates. For example, it is expected that
transcriptome redundancy such as natural transcript var-
iants might create false positive results, since they likely
display different expression levels. Additionally, issues
during transcriptome assembly might result in chimaeric
transcripts that cannot be handled appropriately by
CroCo. Data quality variation might explain most of the
varying percentage of ‘low coverage’ transcripts in differ-
ent datasets. The variation between dataset D (i.e. 454-
based) to the others (i.e. Illumina-based) in that regard
is certainly due to the sequencing technology used. Note
that even considering that 454 pyrosequencing data are
less adequate than Illumina data to quantify transcripts,
this did not hamper CroCo from accurately detecting
more than 97% of validated cross contamination cases.
Overall, low coverage sequences usually correspond
either to genuine transcripts with low expression or to
bad quality mapping which may result from low-quality
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reads or inappropriate mapping strategies. On the other
hand, transcripts categorised as ‘over expressed’ were
found at low frequency in every transcriptome of every
dataset. These transcripts typically correspond to riboso-
mal RNA sequences or common external contamina-
tions, such as bacterial transcripts.

CroCo parameterisation

Read mapping strategies and their implementation are
an ongoing research area, leading us to implement three
methods for transcript quantification in CroCo: Bowtie
[38], Kallisto [39] and RapMap [40], which rely, respect-
ively, on alignment, pseudo-alignment and quasi-
mapping approaches. Using RapMap for transcript quan-
tification yielded the most accurate results when analys-
ing simulated cross contaminated datasets (Additional
file 1: Figure S3). We thus set RapMap as the default
quantification tool in CroCo, and advise the user that
Bowtie should not be used for between-sample nucleo-
tide divergence of less than 3%.

CroCo uses three parameters (see Implementation)
to govern the categorisation of transcripts which can
all be set by the user. If the ‘fold difference’ X param-
eter value is set low, CroCo will categorise more
transcripts as either clean or as cross contaminated,
whereas higher values will increase the number of du-
bious transcripts. The parameter Y is a quantification
threshold above which a transcript is considered to
be highly expressed. If a given transcript exceeds that
threshold in three or more samples, which represents
an unexpected and suspicious pattern, CroCo will cat-
egorise it as ‘over expressed’. Lastly, the parameter Z
is the quantification level threshold under which a
transcript is considered rare. A transcript found to be
rare in every sample under study will be categorised
as ‘low coverage, under the rationale that our quanti-
tative approach lacks power to confidently determine
their true source dataset. Setting a combination of a
high fold difference value, a low over expression
threshold and a high low coverage threshold will re-
sult in high confidence cross contaminated and clean
transcript assignments at the price of discarding a lar-
ger amount of data (see Additional file 1: Table S2).
The CroCo user manual provides additional recom-
mendations for setting these three values.

Caveats when using CroCo

CroCo is designed to identify transcripts that conform
to the expected profile of cross contaminations, but the
user must use this information carefully. First, different
decisions may be made on how to interpret or use the
output depending on whether, for example, the user
wants to avoid any possibility of cross contamination
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versus minimising the chance of discarding useful
information.

There are three inherent limits to the approach imple-
mented in CroCo. First, the expression level is expected
to correlate with the quantity of input biological mater-
ial. This implies that CroCo will not be able to detect
cross contamination that occurred before any normalisa-
tion of the cDNA libraries under study. This also advo-
cates for preferring sequencing data that allow more
accurate estimates of transcript quantification (e.g. pre-
ferring Illumina data over 454 pyrosequencing).

A second obvious limitation is that if the species from
which a given contamination originated is not included
as input for CroCo, it will never be detected. Since a ma-
jority of cross contamination events can happen at a se-
quencing facility [9], we highlight the need for improved
transparency in multiplexed taxon sampling from both
researchers and sequencing service providers.

The third limitation is that the organisms under
study must not be too closely related: the more
closely related the samples are, the more difficult it
will be to identify cross contamination. The method
will fail when handling samples from individuals of a
single species (e.g. comparing human samples). This
limitation could be somewhat alleviated by setting
more stringent values for parameters governing the
BLAST step that determines the list of suspicious
transcripts (see the user manual for additional recom-
mendations). Even distinct species, if too closely
related, share transcripts which, even if not identical,
are likely to have similar numbers of matching reads.
CroCo would place such transcripts in the ‘dubious’
category. If a true transcript in sample A’ is expressed
at a lower level than a very similar transcript in sam-
ple ‘B; then it could theoretically be incorrectly classi-
fied as a cross contaminant. This outcome is most
likely in cases when the sample size is small (less reli-
able expression quantification), when analysing two
very closely related organisms (which is not recom-
mended), and/or using an inaccurate mapping strat-
egy. The higher amount of cross contamination
observed in dataset C (Fig. 1) comprising closely
related species might be a sign of over-estimation of
cross contamination. Nevertheless, CroCo results on sim-
ulated cross contaminated datasets are reassuring regard-
ing the capability of our tool for appropriately handling
even closely related samples (Additional file 1: Figure S3),
provided that their average genetic divergence is > 2%.
Overall, the user needs to be aware of the limitations of
the method in order to use it appropriately.

Conclusions
Our results suggest cross contamination is a common
issue in comparative molecular biology. Besides being
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detrimental for phylogenetic inference, it is clear that
cross contamination can be massive enough to generate
genome-scale impacts in comparative analysis of mo-
lecular data. It can also potentially adversely affect
species delimitation, bias population genomic metrics,
mimic other sources of incongruence between gene phy-
logenies (e.g. gene duplication, horizontal gene transfer,
incomplete lineage sorting) or impact estimates of
gene content. CroCo is a database-independent multi-
platform tool that has been designed to be as easy to
use as possible and that efficiently and accurately de-
tects and removes cross contamination in assembled
transcriptomes.

Availability and requirements
Project name: CroCo
Project home page: http://gitlab.mbb.univ-montp2.fr/mbb/
CroCo
Operating system(s): Platform independent
Programming language: Bash
Other requirements: R (optional); Docker (optional)
License: GNU GPL
Any restrictions to use by non-academics: none
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Acknowledgements

The authors thank Ferdinand Marlétaz for data sharing and transcriptome
assembly. We also thank Nicolas Galtier for fruitful advice, as well as many
ISEM lab members for software testing.

Funding

PS was supported by the Agence Nationale de la Recherche (ANR) (TED,
ANR-13-BSV2-0011-01). MT was supported by a Biotechnology and Biological
Sciences Research Council grant (BB/H006966/1, dataset E) and the European
Research Council (ERC-2012-AdG 322790). HP was supported by the French
Laboratory of Excellence project entitled TULIP (ANR-10-LABX-41, ANR-11-
IDEX-0002-02). MM was supported by the Institut Universitaire de France
(Junior Membership 2009-2014)

Availability of data and materials

The datasets generated and/or analysed during the current study are
available in the NCBI Sequence Read Archive (SRA) depository at https://
www.ncbi.nlm.nih.gov/sra. CroCo is freely available and can be downloaded
with the following command (without <>): <http:/gitlab.mbb.univ-montp2.fr/
mbb/CroCo>. It can be used as a command line application on a personal
computer or on the Galaxy platform. Our tool is compatible with Linux,
MacOSX and Windows.

Page 8 of 9

Authors’ contributions

MT, MM, HP and PS designed the cross contamination detection procedure.
MT, KB and PS implemented the procedure in CroCo. KB and PS wrote the
program, and JV wrote utility scripts and wrappers. MT and JR provided
sequencing data and assembled transcriptomes. PS ran CroCo analyses. CF
implemented and ran cross contamination simulations. HP and PS validated
CroCo results with previously detected cross contaminations and re-analysed
a contaminated ctenophore phylogenomic dataset. MT and PS drafted the
manuscript. All authors contributed to the editing of the manuscript. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Institut des Sciences de I'Evolution (ISEM), UMR 5554, CNRS, IRD, EPHE,
Université de Montpellier, Montpellier, France. “Max Plank Institute of
Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden,
Germany. 3Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS),
Evolution Paris-Seine (UMR7138), Case 05, 7 Quai St Bernard, 75005 Paris,
France. “Centre de Théorisation et de Modélisation de la Biodiversité, Station
d’Ecologie Théorique et Expérimentale, UMR CNRS 5321, Moulis 09200,
France. SDépartemem de Biochimie, Centre Robert-Cedergren, Université de
Montréal, Montréal H3C 3J7, Québec, Canada. ®Centre for Life's Origins and
Evolution, Department of Genetics Evolution and Environment, University
College London, Darwin Building, Gower Street, London WCTE 6BT, UK.

Received: 17 August 2017 Accepted: 11 January 2018
Published online: 05 March 2018

References

1. Longo MS, O'Neill MJ, O'Neill RJ. Abundant human DNA contamination
identified in non-primate genome databases. PLoS One. 2011;6:216410.

2. Lusk RW. Diverse and widespread contamination evident in the unmapped
depths of high throughput sequencing data. PLoS One. 2014,9:e110808.

3. Merchant S, Wood DE, Salzberg SL. Unexpected cross-species
contamination in genome sequencing projects. Peer). 2014;2:e675.

4. Bergmann EA, Chen B-J, Arora K, Vacic V, Zody MC. Conpair: concordance
and contamination estimator for matched tumor-normal pairs. Bioinforma
Oxf Engl. 2016;32:3196-8.

5. Lafond-Lapalme J, Duceppe M-O, Wang S, Moffett P, Mimee B. A new
method for decontamination of de novo transcriptomes using a hierarchical
clustering algorithm. Bioinformatics. 2017;33:1293-300.

6. Edgar RC. UNCROSS: filtering of high-frequency cross-talk in 165 amplicon
reads. bioRxiv. 2016. https://doi.org/10.1101/088666.

7. Borner J, Burmester T. Parasite infection of public databases: a data mining
approach to identify apicomplexan contaminations in animal genome and
transcriptome assemblies. BMC Genomics. 2017;18:100.

8. Fort A, Panousis NI, Garieri M, Antonarakis SE, Lappalainen T, Dermitzakis ET,
et al. MBV: a method to solve sample mislabeling and detect technical bias
in large combined genotype and sequencing assay datasets. Bioinformatics.
https://academic.oup.com/bioinformatics/article-abstract/33/12/1895/
2982050. Accessed 9 May 2017.

9. Ballenghien M, Faivre N, Galtier N. Patterns of cross-contamination in a
multispecies population genomic project: detection, quantification, impact,
and solutions. BMC Biol. 2017;15:25. http://wwuw.ncbi.nlm.nih.gov/pmc/
articles/PMC5370491/. Accessed 9 May 2017.

10. Kumar S, Jones M, Koutsovoulos G, Clarke M, Blaxter M. Blobology: exploring
raw genome data for contaminants, symbionts and parasites using taxon-
annotated GC-coverage plots. Front Genet 4. 2013. https://doi.org/10.3389/
fgene.2013.00237.


http://gitlab.mbb.univ-montp2.fr/mbb/CroCo
http://gitlab.mbb.univ-montp2.fr/mbb/CroCo
dx.doi.org/10.1186/s12915-018-0486-7
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://gitlab.mbb.univ-montp2.fr/mbb/CroCo
http://gitlab.mbb.univ-montp2.fr/mbb/CroCo
https://doi.org/10.1101/088666
https://academic.oup.com/bioinformatics/article-abstract/33/12/1895/2982050
https://academic.oup.com/bioinformatics/article-abstract/33/12/1895/2982050
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370491/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370491/
https://doi.org/10.3389/fgene.2013.00237
https://doi.org/10.3389/fgene.2013.00237

Simion et al. BVIC Biology (2018) 16:28

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34,

Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont
TO. Anvi'o: an advanced analysis and visualization platform for ‘omics data.
Peer). 2015;3:¢1319. https;//doi.org/10.7717/peerj.1319.

Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Worheide
G, Baurain D. Resolving difficult phylogenetic questions: why more
sequences are not enough. PLoS Biol. 2011;9:21000602. https://doi.org/10.
1371/journal.pbio.1000602.

Laurin-Lemay S, Brinkmann H, Philippe H. Origin of land plants revisited
in the light of sequence contamination and missing data. Curr Biol.
2012;22:R593-4. https://doi.org/10.1016/j.cub.2012.06.013.

Struck TH. The impact of paralogy on phylogenomic studies — a case
study on annelid relationships. PLoS One. 2013;8:262892. https://doi.org/
10.1371/journal pone.0062892.

Egger B, Lapraz F, Tomiczek B, Miiller S, Dessimoz C, Girstmair J, et al.
A transcriptomic-phylogenomic analysis of the evolutionary relationships
of flatworms. Curr Biol CB. 2015;25:1347-53.

Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Franco AD, et al.
A large and consistent phylogenomic dataset supports sponges as the
sister group to all other animals. Curr Biol. 2017,27:958-67.

Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using
RNA-seq data: RPKM measure is inconsistent among samples. Theory
Biosci. 2012;131:281-5.

Brandl H, Moon H, Vila-Farré M, Liu S-Y, Henry 1, Rink JC. PlanMine — a
mineable resource of planarian biology and biodiversity. Nucleic Acids Res.
2016;44:D764-73. https;//doi.org/10.1093/nar/gkv1148.

Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-Trans: de
novo transcriptome assembly with short RNA-Seq reads. Bioinformatics.
2014;30:1660-6.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for lllumina
sequence data. Bioinformatics. 2014;30:2114-20.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit |, et al. Full-
length transcriptome assembly from RNA-Seq data without a reference
genome. Nat Biotechnol. 2011;29:644-52.

Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya
IS, et al. The ctenophore genome and the evolutionary origins of
neural systems. Nature. 2014;510:109-14.

Roure B, Rodriguez-Ezpeleta N, Philippe H. SCaFoS: a tool for Selection,
Concatenation and Fusion of Sequences for phylogenomics. BMC Evol Biol.
2007;7:52.

Stamatakis A. RAXML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics. 2014;30:1312-3.

Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26:2460-1.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable
generation of high-quality protein multiple sequence alignments using
Clustal Omega. Mol Syst Biol. 2011;7:539.

Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical
user interface for sequence alignment and phylogenetic tree building. Mol
Biol Evol. 2010,27:221-4.

Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Frazee AC, Jaffe AE, Langmead B, Leek JT. Polyester: simulating RNA-seq
datasets with differential transcript expression. Bioinformatics. 2015;31:
2778-84.

Schirmer M, D'’Amore R, ljaz UZ, Hall N, Quince C. lllumina error profiles:
resolving fine-scale variation in metagenomic sequencing data. BMC
Bioinformatics. 2016;17:125.

Podar M, Haddock SHD, Sogin ML, Harbison GR. A molecular
phylogenetic framework for the phylum Ctenophora using 185 rRNA
genes. Mol Phylogenet Evol. 2001;21:218-30.

Simion P. Ctenophores : from their position in the metazoan tree
(phylogenomic approach) to their taxonomical diversity (molecular
phylogeny and compared anatomy) [Internet] [Theses]. Université Pierre et
Marie Curie - Paris VI; 2014. https://telarchives-ouvertes fr/tel-01165014.
Simion P, Bekkouche N, Jager M, Quéinnec E, Manuel M. Exploring the
potential of small RNA subunit and ITS sequences for resolving
phylogenetic relationships within the phylum Ctenophora. Zool Jena Ger.
2015118:102-14.

Finet C, Timme RE, Delwiche CF, Marlétaz F. Multigene phylogeny of the
green lineage reveals the origin and diversification of land plants. Curr Biol.
2010;20:2217-22.

35.

36.

37.

38.

39.

40.

Page 9 of 9

Whelan NV, Kocot KM, Moroz LL, Halanych KM. Error, signal, and the
placement of Ctenophora sister to all other animals. Proc Natl Acad Sci.
2015,112:5773-8.

Shen X-X, Hittinger CT, Rokas A. Contentious relationships in phylogenomic
studies can be driven by a handful of genes. Nat Ecol Evol. 2017;1:126.
Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz
LL, Halanych KM. Ctenophore relationships and their placement as the sister
group to all other animals. Nat Ecol Evol. 2017;1:1737. https://doi.org/10.
1038/541559-017-0331-3.

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10:R25.

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol. 2016;34:525-7.

Srivastava A, Sarkar H, Gupta N, Patro R. RapMap: a rapid, sensitive and
accurate tool for mapping RNA-seq reads to transcriptomes. Bioinforma Oxf
Engl. 2016;32:1192-200.

Laumer CE, Bekkouche N, Kerbl A, Goetz F, Neves RC, Sarensen MV, Kristensen
RM, Hejnol A, Dunn CW, Giribet G, Worsaae K. Spiralian phylogeny informs the
evolution of microscopic lineages. Curr Biol. 2015;25(15):2000-6.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



https://doi.org/10.7717/peerj.1319
https://doi.org/10.1371/journal.pbio.1000602
https://doi.org/10.1371/journal.pbio.1000602
https://doi.org/10.1016/j.cub.2012.06.013
https://doi.org/10.1371/journal.pone.0062892
https://doi.org/10.1371/journal.pone.0062892
https://doi.org/10.1093/nar/gkv1148
https://tel.archives-ouvertes.fr/tel-01165014
https://doi.org/10.1038/s41559-017-0331-3
https://doi.org/10.1038/s41559-017-0331-3

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Methods
	Analyses of six recent sequencing projects
	Impact of cross contamination on phylogenomics
	Example of cross contamination in a single-gene phylogeny
	Cross contamination simulation experiments
	Simulation of divergent transcriptomes
	Estimating effective contamination probabilities
	Simulating cross contamination
	Benchmarking CroCo with biological data


	Results
	Detecting cross contamination in six transcriptomic datasets
	Gene phylogeny in the presence of cross contamination
	Evaluating the accuracy of CroCo
	CroCo as a cleaning tool for phylogenomics

	Discussion
	A quantitative tool to classify transcripts
	CroCo parameterisation
	Caveats when using CroCo

	Conclusions
	Availability and requirements
	Additional file
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

