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Divide and conquer? Size adjustment with
allometry and intermediate outcomes
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Abstract

Many trait measurements are size-dependent, and
while we often divide these traits by size before fitting
statistical models to control for the effect of size, this
approach does not account for allometry and the
intermediate outcome problem. We describe these
problems and outline potential solutions.
Huxley’s original study was on ontogenetic allometry—the
Adjusting for size in statistical analysis
Biologists measure traits of organisms, characterizing a
range of features including morphology, physiology and
behaviour. Many of these traits are size-dependent. For
example, larger animals eat more and larger plants
absorb more than smaller counterparts. However, when
size is not our trait of interest, we often want to know
values of focal traits after controlling for the effect of
size. An intuitive way to account for organismal size is
to divide a trait of interest by size (for example, the
amount of food consumed or nutrient absorbed
divided by mass or length). This method (hereafter
called the “division” method) generates size-adjusted
trait values, which can be used for statistical analyses.
Indeed, the use of the division method is prevalent in
the literature [1–4], but is it correct? The division
method poses two major problems because, first, we
assume a linear relationship between adjusted traits
and size and, second, an experimental treatment often
affects not only a trait of interest but also other
variables, such as size. Here, we deliberate on these
two problems and provide potential solutions.
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Allometric scaling of organismal traits
The power law (meaning non-linear) relationship
between body size and body parts is believed to have
been first described by the evolutionary biologist Julian
Huxley, (a grandson of “Darwin’s bulldog” Thomas Hux-
ley) on the basis of his study of claw size and body size
in fiddler crabs [5]. This non-linear relationship was later
termed “allometry” (meaning “different measure”) [6].

relationship between two traits while an organism is
growing [7]. This type of allometry is distinguished from
the two other types: evolutionary allometry and static
allometry [7]. Evolutionary allometry concerns between-
species variation in the relationship between traits (see [8]
for an in-depth review), whereas static allometry con-
cerns the relationship between two traits of mature
individuals from the same species. Here, we focus
mainly on static allometry.
Historically, allometric studies have focused on mor-

phological traits. However, physiological traits (such as
cellular and drug metabolism [9, 10]) and behavioural
traits (for instance, food consumption [2, 11]) also scale
allometrically with organismal size. Traits follow the
power law relationship described by Huxley [5], which is
expressed as:

y trait½ � ¼ axb
size½ �; ð1Þ

where y[trait] is the focal variable (trait), x[size] is the size
variable, and a and b are constants (parameters) esti-
mated from data (Fig. 1a). In order to linearize this non-
linear equation, we can take the natural logarithm of
both sides; thus, we get:

y ln traitð Þ½ � ¼ lnaþ bx ln sizeð Þ½ �; ð2Þ
where y[ln(trait)] is ln(y[trait]) and x[ln(size)] is ln(x[size]), and
ln is the loge transformation (see [12, 13] for discussions
of allometry and the log transformation).
Now consider an experimental study that compares

a size-dependent trait of two groups (for example,
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Fig. 1. Conceptual plots for allometric relationships. a Three different types of allometric relationships between food intake (a focal trait; on the y
axis) and size (on the x axis) with different exponents, b, and a fixed slope, a (Eq. 1); note that when b = 1, the relationship is linear. b When b is
close to 1 (b = 0.9), the relationship becomes nearly linear without log-transformation (dotted line). c, d Even when b is not close to 1 (b = 0.5),
whether the relationship is non-linear depends on how the data are distributed; the non-linear relationship in d could be much better approximated
by a linear line than that in c. e, f Notably, the same slopes (b = 0.5) can be estimated as having different slopes if not log-transformed due to having
different values for a, as in e, or being on different parts of a non-linear curve, as in f
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control vs. treatment; note that non-experimental
groups—such as males vs. females, or two natural
populations—could be also used). When we use the
division method to adjust for size in the analysis, we
use the following linear model:

y trait=size½ �i ¼ b0 þ b1x group½ �i þ ei; ð3Þ

where y[trait/size] is a variable derived from the focal trait
divided by size, x[group] is a “dummy variable”, which
takes the value 0 or 1 to indicate the presence or
absence of a particular effect in order to sort data in
mutually exclusive groups (for instance, 0 = control and
1 = experiment), b0 is the intercept, b1 is the slope (or in
this case, the difference between the control and experi-
mental group: experimental or treatment effect), e is the
residual (error) term (which represents deviations from
the regression line), and the subscript i indicates the ith

value (i = 1…n, n = sample size; this linear model, Eq. 3,
is equivalent to a t-test comparing the two groups).
However, this model is not ideal because the division
method (Eq. 3) creates a ratio variable (y[trait/size]), the
distributional properties of which may not meet an
important assumption of a linear model: the residuals
are normally distributed [1]. Furthermore, we are not
able to estimate the allometric scaling exponent b.
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We can improve Eq. 3 by fitting size as a predictor
variable because it avoids creating a ratio variable in the
response variable. Then, we have:

y trait½ �i ¼ b0 þ b1x group½ �i þ b2x size½ �i þ ei; ð4Þ

where b2 is the slope for size, and the other symbols are as
above. This approach is again common in the biological
literature. However, both Eq. 3 (the division method) and
Eq. 4 assume a linear relationship between a trait and size;
they ignore the allometric relationship shown in Eqs. 1
and 2. Therefore, a better statistical model would be to
linearize the equation by taking natural logs:

y ln traitð Þ½ �i ¼ b0 þ b1x group½ �i þ b2x ln sizeð Þ½ �i þ ei; ð5Þ

where b0 and b2 correspond to lna and b in Eq. 2,
respectively, and the other symbols are as above. It is
also notable that Eqs. 4 and 5 could produce comparable
results, depending on the exponent of the power law
relationship, b, and the distribution of trait data
(Fig. 1b–d). However, Eq. 4, like Eq. 3, could lead not
only to a spurious treatment effect, b1 [2], but also to
spurious interactions (which means that the control and
experimental groups have different slopes, b2 as described
in Fig. 1e, f ); see the next section for modeling the inter-
action (that is, different slopes). However, it turns out that
even Eq. 5 can provide an incorrect estimate of b1.

Experimental treatments and intermediate
outcomes
An experimental treatment is intended to change a focal
variable, but it often affects other unintended variables,
referred to as mediators or intermediate outcomes [14].
For example, maternal dietary conditions, such as dietary
restriction or over-nutrition, may influence offspring
size (x), as well as offspring food intake (the focal
a

Fig. 2. Two scenarios of the relationship among an experimental treatmen
a The treatment affects both x and y, and therefore x and y are correlated
b The treatment affects both x and y, and then x also affects y
trait; y) [2, 11]. If we know that offspring body mass
and offspring food intake are correlated, we may want
to account for the effect of offspring size when assessing
experimental effects on offspring food intake. However, as
both offspring body mass and food intake are measured
after the treatment has been applied (offspring body mass
cannot be measured before maternal diet is manipulated),
we do not know the chain of causation. Imagine two
scenarios. In scenario A, offspring body mass and food
intake are mechanistically linked, and the maternal
diet treatment subsequently affects both traits (direct
effects; Fig. 2a). Alternatively, in scenario B, the treat-
ment affects offspring body size (direct effect), which
then influences offspring food intake (indirect effect),
as well as a potential direct effect of the treatment on
offspring food intake (Fig. 2b).
In both scenarios, we would observe a treatment effect

in both x and y, but when we correct for x (as in Eq. 5),
the direct effect of the treatment on y could diminish,
disappear or even reverse (known as Lord’s paradox)
[15]. If scenario A is true, then correcting for x leads to
an underestimation of the direct treatment effect (b1 in
Eq. 5) on y (known as over-adjustment bias) [14, 16]. If
scenario B is true, then not correcting for x leads to an
overestimation of the direct effect on y (specifically,
direct effects plus indirect effects). Unfortunately, we are
unlikely to disentangle the two scenarios unless we have
prior knowledge of the mechanistic underpinnings of
these relationships. Furthermore, even if we know that
scenario B is true, we must assume that all subjects’ size
responds in the same way to the treatment (for example,
every subject gains 200 g) to obtain the correct b1 (the
direct effect) using Eq. 5, although this seems unlikely.
Therefore, it has been suggested that we should not add
an intermediate outcome (such as size) to the model
regardless of the scenarios [14], as follows:
b

t, a trait of interest (focal variable, y) and an intermediate outcome (x).
(dotted line with a double-headed arrow) but x does not affect y.
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y ln traitð Þ½ �i ¼ b0 þ b1x group½ �i þ ei; ð6Þ

where the symbols are as above. Then, at least we will
get the total (direct and indirect) effect on y as the
experimental effect, b1 (for further discussion of inter-
mediate outcomes and their problems see [14, 16–18]).
Importantly for our discussion here, this solution

means that we are unable to estimate the allometric
scaling component. Here we suggest a workaround using
a linear model [19] (see reference [20] for an example),
which can be written as:

y ln traitð Þ½ �i ¼ b0 þ b1x group½ �i þ b2x wgc ln sizeð Þð Þ½ �i þ ei; ð7Þ
where the subscript “wgc” stands for within-group
centering, which adjusts values (ln(size)) for two (or
more) different groups separately by setting respective
group means as zero (Fig. 3). Figure 3a visualizes what
such centering does to a size variable; the order of the
two transformations for x[wgc(ln(size))] (log first, then
center) is particularly important, as one cannot take the
logarithm of negative values. The within-group centering
separates the experimental effect on size (indirect effect),
so that the indirect effect is now absorbed into b1. With
this approach, we can model an allometric relationship,
a b

Fig. 3. Visualizations of within-group centering and z-transformation. a Wit
orange, experimental) with the same variances, and b within-group z-transf
although we cannot obtain a “size-corrected” experimental
effect (an unbiased direct effect, but see [21, 22] for a
potential issue and solution; Fig. 2). Note that the
estimates of b1 from Eqs. 6 and 7 are the same, as are the
estimates of b2 (that is, the allometric scaling exponent)
from Eqs. 5 and 7.
Another way to do such adjustment is through z-

transformation instead of centering, which scales
distributions of ln(size) for both the control and
experimental group to have the mean of 0 and standard
deviation of 1. These two methods (centering and z-
transformation) are equivalent when the variances of the
two groups are the same.
However, if slopes differ between the two groups

after z-transformation, it should be checked whether
the transformation caused the significant differences,
which may happen if the variances for ln(size) to
differ between the two groups. (Figure 3b; see below
for how to detect differences in slopes). The choice of
transformation to use (z-transformation or centering)
should not affect the experimental effect, but z-trans-
formation could lead to confusion if one is interested
in obtaining allometric parameters (a and b in Eqs. 1
and 2). Centering size on the log scale may also be
easier to interpret than z-transformation (the issue of
hin-group centering of a size variable with two groups (black, control;
ormation of a size variable with two groups with different variances
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different variances described above aside). However, z-
transformation has some advantages over centering
when applied normally to a predictor variable (meaning,
not within-group transformations). For example, z-trans-
formation can help another aspect of interpretation
because regression coefficients of continuous variables
become comparable (in that they are standardized beta
coefficients) [23].
Notably, we still assume that the variances for the

response variable are homogenous in this model (in fact,
this is true for all the models above). When this assump-
tion is not met (that is, the response variable, y, is
heteroscedastic), either we can model different variances
in the response between two groups, or we can use
“robust” statistical estimators, which take heterosce-
dasticity into account (for details on how, see [24]).
We suspect that when variance in body sizes between
two groups is different, it is likely that a trait of
interest is heteroscedastic.
Equations 5 and 7 only model a change in the inter-

cepts between two groups, which corresponds to a
change in ln(a) in Eq. 2 (Fig. 3a). It is possible that some
experimental treatments could affect the slope, which
corresponds to a change in the exponent b in Eqs. 1 and
2. Biologically, this parameter, b, is less likely to change
than a, at least for some allometric relationships (for an
example see reference [10]). Nonetheless, we should prob-
ably check for such a change. An equation that models
different slopes between two groups can be written as:

y ln traitð Þ½ �i ¼ b0 þ b1x group½ �i þ b2x wgc ln sizeð Þð Þ½ �i

þb3x group½ �ix wgc ln sizeð Þð Þ½ �i þ ei;

ð8Þ

where b3 is the difference in slopes between the control
and experimental groups, and x[group]x[wgc(ln(size))] is an
interaction term between x[group] and x[wgc(ln(size))] (Figs. 1
and 3). An example of implementing the above
procedures in the statistical environment R [25] is
provided in the Additional file 1. In this supplement, we
refer to the assumption that size is measured without
error in linear models such as Eqs. 4, 5, 7 and 8 [26, 27]
and also provide a solution to this problem when this
assumption is not met.

Divide and conquer? No, leave them alone!
We have described the two major shortcomings of the
division method, so far focusing on scenarios when we
use the ratio variable (for instance, dividing a focal trait
by size) as a response variable (y). However, it is just as
common to find the ratio variable being used as a
predictor variable (x). Among the many issues of using
ratios as predictors, there is one problem that is very
general and straightforward to describe [1]. When we
have two variables (or traits), A and B, their ratio is A/B.
The variable A/B fitted as a predictor can be considered
an interaction term, because A/B can be re-expressed as
AB−1 (compare it with x[group]x[wgc(ln(size))] in Eq. 8).
Therefore, we should also fit A and B−1 as predictors
(main effects), along with the interaction term (AB−1)
[1]. More generally, it is usually not advisable to create
and fit a derived variable (in other words, a variable
comprised of more than one variable, such as, A/B, AB2)
to a model. For linear modelling, raw measurements
or their direct transformations should be used to
control for confounding effects. Finally, because the
division method and other inappropriate modelling
procedures could lead to spuriously significant results
and/or biased effect size estimates [1, 2], correct
modelling practice is essential to avoid exacerbating
the current “reproducibility crisis” [28, 29].

Additional file

Additional file 1: Supplementary material. (PDF 320 kb)
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