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Abstract

Background: Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory
mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding
and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to
understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome
remodelling and post-translational modification of histones and co-regulators, which act together with transcription
factors to regulate gene expression in eukaryotes.

Results: Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A
gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions
between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for
how microstate probabilities change over time. We show that this framework has broad scope by providing new
insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded
chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5,
which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being
away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but,
away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far
from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To
begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems
that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems
operate independently.

Conclusions: As epigenomic data become increasingly available, we anticipate that gene function will come to be
represented by graphs, as gene structure has been represented by sequences, and that the methods introduced here
will provide a broader foundation for understanding how genes work.
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Background

A quantitative approach to analysing gene regulation in
terms of the interactions between transcription factors
(TFs) and DNA was first developed for A repressor in
Escherichia coli [1]. In the eubacterial context, TFs bind
and unbind from naked DNA and it was assumed that
these processes quickly reach thermodynamic equilib-
rium. Equilibrium statistical mechanics could then be
used to calculate the probability of DNA microstates,
or patterns of TF binding to DNA. The gene-regulation
function, which expresses the dependence of mRNA tran-
scription rate on the concentrations of the TFs, was then
calculated as an average over the microstate probabilities.
This equilibrium “thermodynamic formalism” has been
widely used to analyse gene regulation in eubacteria [2-6].

Eukaryotic genomes use several mechanisms that dissi-
pate energy. These include epigenetic mechanisms, such
as DNA methylation, nucleosome remodelling and post-
translational modification and demodification of histones,
transcription factors, transcriptional co-regulators and
components of the transcriptional machinery, like RNA
polymerase or Mediator. In each case, energy is expended
to operate the mechanism, through consumption of inter-
mediary metabolites such as ATP. Background metabolic
processes maintain the concentration of such metabolites,
thereby providing the free energy required away from
thermodynamic equilibrium.

Despite the presence of such non-equilibrium mech-
anisms, the thermodynamic formalism has been widely
used to analyse gene regulation in eukaryotes, includ-
ing yeast [7], flies [8-13] and human cells [14], and has
been extensively reviewed [15-19]. In most cases, non-
equilibrium mechanisms have not been incorporated in
these models. An exception has been work on nucleosome
positioning [18], for which the argument was made that
energy dissipation is used primarily to overcome energy
barriers, after which nucleosomes and transcription fac-
tors reach equilibrium in competing for DNA, thereby
allowing treatment within the thermodynamic formalism.
While initially successful, more recent experimental work
suggests that this does not fully explain nucleosome posi-
tioning and that it is important to take energy dissipation
into account [20,21]. Several other recent studies have also
begun to raise doubts about the validity of the equilibrium
assumption [22-24].

The biological significance of energy dissipation is
broadly understood; it is essential for life. Its deeper impli-
cations for the molecular context were first clarified by
John Hopfield in a seminal study [25]. He showed that if a
molecular mechanism operated at equilibrium, then there
was an absolute upper bound to how well it could carry
out certain information-processing tasks, such as achiev-
ing fidelity in mRNA or protein production. The source
of this upper bound was the property of detailed balance
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(discussed below), which is a fundamental physical con-
straint on equilibrium systems. To get beyond this upper
bound, it is essential to expend energy and to drive the
system away from equilibrium so that detailed balance no
longer holds. Hopfield put forward a kinetic proofreading
scheme, which he showed could achieve unlimited error
correction by expending sufficient energy. Subsequent
work has refined this scheme [26,27] but the limitation
in the capabilities of equilibrium mechanisms has been a
fundamental insight.

Despite this understanding, the significance of non-
equilibrium mechanisms in gene regulation remains
unclear. Energy must evidently be expended to pack DNA
into the nucleus and to organise chromatin mechan-
ically but it seems unlikely that evolution would not
also take advantage of energy dissipation for cellular
information processing. From a different perspective,
increasing amounts of epigenomic data are becoming
available through high-throughput experimental projects
[28-30]. Without being able to analyse rigorously the non-
equilibrium mechanisms that give rise to such data, it
seems unlikely that we will fully understand the epige-
nomic capabilities of eukaryotic DNA, whose role in both
development and evolution is of considerable interest
[31-33].

One of the barriers to progress here has been the
absence of a mathematical framework that can accom-
modate non-equilibrium mechanisms in gene regulation.
We have developed a graph-based, “linear framework”
for timescale separation in biochemical systems [34-38],
which is not limited to thermodynamic equilibrium. We
show here how this can be adapted to the non-equilibrium
mechanisms that are found in gene regulation. The frame-
work yields a stochastic master equation for the proba-
bilities of DNA microstates. An important feature of this
equation is that it is linear (hence, “linear framework”).
The non-linearities that are always present in biochemical
systems are accommodated through labels on the edges
of the graph, without the need for any approximation. If
a system is at equilibrium, the linear framework reduces
to the thermodynamic formalism. The framework offers
a chemist’s perspective in terms of reactions and rates in
place of a physicist’s perspective in terms of states and
free energies, and exploits graph theory to calculate the
steady-state probabilities of microstates.

The catalytic production of mRNA by RNA polymerase
is fundamentally irreversible and dissipative. In the ther-
modynamic formalism, the rate of mRNA expression is
treated as an average over the equilibrium states. With
the framework introduced here, the dissipative steps taken
by mRNA polymerase can be explicitly included in the
model, when required. What is not addressed here are
the dynamics of mRNAs and proteins and the resulting
important issue of gene expression noise [39,40]. This has
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only recently been analysed in the context of gene regu-
latory architecture [41,42]. It is possible to accommodate
the numbers of mRNA and protein molecules within a
graph-based framework but this requires infinite graphs
in contrast to the finite graphs used here. The question
of whether the graph-theoretic methods introduced here
can be extended to infinite graphs is very interesting but
lies outside the scope of the present paper.

We have three broad aims here. First, we want to
introduce the new framework and show that it can be
broadly applied to different types of problems in gene
regulation and chromatin organisation. We use it to anal-
yse systematically three very different ad hoc models:
of steroid-hormone responsive genes where detailed bal-
ance is still assumed, of inherently bounded chromatin
domains where dissipation is critical but no specific
gene is being regulated and of regulation of the yeast
PHOS gene where non-equilibrium nucleosome remod-
elling is explicitly included and detailed balance cannot
be assumed. Second, we show that the gene-regulation
function of PHOS is surprisingly complex. We are able
to explain this complexity as an inherent feature of
non-equilibrium systems, which arises from the depen-
dence on history away from equilibrium. The scope of
this complexity appears not to have been experimentally
explored and may reflect information-processing capa-
bilities that could not be achieved at equilibrium. Our
third aim is to begin the study of graphs that exhibit
reduced complexity. We formulate a graph-theoretic con-
cept of independence for non-equilibrium systems and
show that history-dependent complexity collapses when
systems operate independently of each other.

To make this paper broadly accessible, we begin with a
non-technical description of the framework, introducing
some key concepts and explaining how graph structures
provide useful qualitative insights. We then explain how
graphs are constructed in terms of specific biochemical
processes acting on DNA and chromatin. The quantitative
calculation of steady-state probabilities relies on previous
work, which is brought together in the next section to
make the paper as self-contained as possible. The remain-
ing sections work through the results described above.

Results

A graph-theoretic view of gene regulation

We offer in this section a non-technical account of the
linear framework as applied to gene regulation. The tech-
nical details are provided, along with references, in the
section on ‘Calculating microstate probabilities at steady
state’.

The framework starts with a labelled, directed graph
consisting of a collection of vertices with directed edges
between pairs of vertices and labels on the edges (Figure 1,
bottom). The graphs considered here have only finitely
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many vertices and the edges always go between distinct
vertices, so that there are no self-loops. It is further
assumed that each graph is connected, which means that,
given any two vertices, there is always a path of edges
between them, ignoring edge directions. A connected
graph is not in disjoint pieces.

The vertices of the graph correspond to microstates,
or snapshots of DNA and its accompanying proteins.
Figure 1 (top) shows the range of features that can
potentially be found in a microstate, including TFs, tran-
scriptional co-regulators, RNA polymerase, nucleosomes,
chromatin remodelling enzymes, DNA looping, vari-
ous forms of post-translational modification and DNA
methylation. The directed edges correspond to transi-
tions between microstates arising from biochemical reac-
tions taking place on chromatin, such as the binding and
unbinding of TFs or co-regulators or post-translational
modification or demodification of proteins bound to
DNA. Directed graphs of this kind are often found in the
literature as qualitative summaries of the behaviour of reg-
ulatory mechanisms. Such cartoons can be given a rigor-
ous mathematical basis through the methods introduced
here.

The labels on the edges supply quantitative information
in the form of effective rate constants for the correspond-
ing transitions. Each label has units of inverse time, as in
per second. The rate of some transitions, such as binding
events, can depend on the concentration of components
in solution around DNA. The labels can therefore be com-
pound expressions involving component concentrations
as well as kinetic parameters. In this way biochemical
non-linearity is accommodated in the labels. An impor-
tant feature of the framework is that the numerical values
of the parameters do not have to be known in advance.
They can be treated as symbols and many properties of the
system can be calculated in symbolic form. This permits
analysis without having to measure or estimate the actual
values of the parameters.

The level of granularity used for the microstates, and
the corresponding transitions, is a matter of choice. It
can range from coarse-grained descriptions of open and
closed chromatin to fine-grained descriptions of DNA
sequence, individual nucleosomes and specific histone
modifications. The choice depends on the context, the
available experimental methods and data and the bio-
logical questions being asked. The graph constitutes a
mathematical model of the system being studied and is
best thought of not as a description of reality but as a pre-
cise statement of the assumptions being made about that
reality — a hypothesis — from which rigorous deductions
can be made and experiments proposed [43].

Because there is only one molecule of DNA, the dynami-
cal behaviour of microstates has to be understood in terms
of probabilities. If we imagine watching DNA over time,



Ahsendorf et al. BMC Biology (2014) 12:102

Page 4 of 23

co-regulator

p mediator
Ac P
TFs

chromatin
remodellers

pP\P

3D chromatin
conformation
o= s

GTFs x’ AR

1 1T 1
Me Me Me Me

~. Ac, Me, P, Ub, ...
N
N
N
N

Figure 1 Microstates and graphs. A fragment of a graph is shown (below), with three vertices, i, j and k, and several labelled, directed edges.
Vertex i is expanded into a microstate, or snapshot of a DNA state (above), showing some of the features that can be represented (not to scale).
Here, a hypothetical promoter region of a gene is shown. Features include sequence-specific transcription factors bound to DNA (grey shapes),
additional recruited components, such as transcriptional co-regulators (orange shapes), general-purpose transcriptional machinery, such as
Mediator (yellow), general transcription factors (GTFs, blue-green) and RNA Pol Il (magenta), along with chromatin remodellers and enzymatic
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factors that modify the histone tails of nucleosomes (blue shapes). Potential post-translational modifications of transcription factors, co-regulators
and histone tails are shown by the corresponding symbols, along with DNA methylation. Distal enhancers may participate through 3D chromatin
conformation, such as DNA looping. CTD is the carboxy terminal domain of RNA Pol II. 3D, three dimensional; CTD, carboxy terminal domain; GTF,

general transcription factor; Pol, polymerase; Ac, acetylation; Me, methylation; P, phosphorylation; Ub, ubiquitination.

the microstates will fluctuate as transitions take place due
to random molecular events, such as binding or unbinding
of components. Let us denote the probability of the sys-
tem being in microstate i at time ¢ by u;(¢). The following
thought experiment may help to interpret this quantity.
Imagine a large number of copies of the system being cre-
ated in the identical starting condition at time 0, with the
same initial microstate and the same protein components
present in the surrounding solution at the same concen-
trations. As time progresses, the randomness of molecular
events will cause the different copies of the system to
diverge so that different microstates will be found in each
system copy. The proportion of copies in which microstate
i is found at time ¢ is an approximation for u;(¢) and this
approximation becomes more accurate as the number of

copies is increased. In other words, u;(t) measures how
often microstate i will be found at time ¢, were it possible
to repeatedly replay the system from its initial condition
at time 0.

Probabilities can appear difficult to reason with but the
graph-based framework offers a different way to think
about them which may be more familiar. The vertices of
the graph are regarded as chemical species with concen-
trations, the edges as chemical reactions and the labels
as rate constants. Each reaction has only a single sub-
strate and only a single product, like an isomerisation, so
the graph describes a kind of one-dimensional chemistry.
This macroscopic interpretation allows us to reason about
concentrations and reactions but gives the same results
as the microscopic interpretation in terms of probabilities



Ahsendorf et al. BMC Biology (2014) 12:102

and transitions. In other words, if we imagine placing
concentrations of matter at each vertex and allowing the
chemistry to work, then the change in concentrations over
time is identical to the change in probabilities over time.
The only thing we have to remember is that probabilities
add up to 1 — the system must be in some microstate —
so that the total concentration of matter at all vertices
should be kept at 1. Because the reactions only move mat-
ter between vertices, and neither create nor destroy it,
the total concentration remains the same over time (see
Equation 2 below), so we only need to make it 1 to begin
with.

It is easy to imagine that, no matter what initial con-
centrations of matter are distributed over the vertices,
the one-dimensional chemistry will eventually reach a
steady state, in which production and consumption of
each species are in balance and the concentration of
each species is unchanging. Such a steady state occurs
no matter what the structure of the graph. In a general
graph, the steady state can depend on the initial concen-
trations that were chosen at time 0, so that there is a
memory of these initial conditions (see the section ‘For-
mation of an inherently bounded chromatin domain’).
However, if the graph is strongly connected, such mem-
ory is lost and the steady state becomes independent
of the initial conditions and depends only on the struc-
ture of the graph. A strongly connected graph is one in
which any pair of vertices are connected, both ways, by
a path of consecutive edges that all point in the same
direction (Figure 2A). In effect, any two vertices can
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communicate with each other in both directions. Strong
connectivity depends only on the edges and not on the
labels.

A strongly connected graph can be arbitrarily large
and complicated but its one-dimensional chemistry is
particularly simple. The steady-state concentration of
each species can be calculated in terms of the edge
labels using certain sub-graphs called spanning trees (see
Equation 7 below). Among other things, this shows that
each microstate in a strongly connected graph has posi-
tive probability at steady state: if such a system is watched
over time, each microstate will appear at steady state,
even if that microstate had zero probability in the initial
condition.

A general graph, which is not strongly connected, breaks
up naturally into maximal strongly connected sub-graphs,
or strongly connected components (SCCs) (Figure 2B).
Once matter has left a SCC under one-dimensional chem-
istry, it can never return to it, for otherwise the SCC would
not be maximal. Hence, matter eventually accumulates
on those SCCs from which there is no escape, which are
the terminal SCCs. If a microstate is not in a terminal
SCC, its steady-state probability is zero: if the system is
watched over time, such microstates never appear in the
steady state, even if they had positive probability in the
initial condition. For the microstates that do lie in termi-
nal SCCs, their steady-state probability may or may not be
zero depending on the initial conditions. For instance, if
matter is only placed on the vertices of one terminal SCC,
it will remain there forever and cannot escape into any

Figure 2 Strongly connected graphs and components. Outlines of hypothetical graphs are shown, omitting some vertices and edges and all
labels. (A) A strongly connected graph in which any pair of vertices can be joined, both ways, by a path of contiguous edges in the same direction
(central motif). (B) A graph that is not strongly connected can always be decomposed into maximal strongly connected sub-graphs, called strongly
connected components (SCCs). The graph shown here has four SCCs demarcated by the dotted lines. In the macroscopic interpretation of
one-dimensional chemistry, matter can only flow in one direction between SCCs, so that it eventually accumulates only on the terminal SCCs
(marked with an asterisk). In the microscopic interpretation, microstates that are not in a terminal SCC have zero steady-state probability.
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other SCC, whose vertices will have zero probability at all
times.

A system that reaches thermodynamic equilibrium
always has a strongly connected graph. The property of
detailed balance, which must always hold at equilibrium,
requires that each edge in the graph has a correspond-
ing reverse edge, so that strong connectivity is guaran-
teed. If the labels on a pair of reversible edges are 4 and
b, then the ratio a/b is a thermodynamic quantity that
depends only on the free energy difference between the
two microstates (see Equation 6 below). The steady-state
probabilities depend only on these thermodynamic ratios
and can be calculated as products of the ratios along
paths in the graph, without the need for any spanning
trees (see Equation 5 below). This gives the same result as
equilibrium statistical mechanics. In this way, the frame-
work provides a generalisation of equilibrium statistical
mechanics for gene-regulation systems that are far from
equilibrium.

Constructing graphs to describe gene regulation

Linear framework graphs are constructed from labelled
edges, which arise from two kinds of transitions, as listed
below. The main restrictive assumptions concern the
interplay between mechanisms taking place in solution
around chromatin and those taking place on chromatin
itself. The basic approach is to assume that these can be
uncoupled from each other. More relaxed assumptions
can be made, using the methods of [35], but at the expense
of considerably increased complexity.

Binding transitions

These represent the binding of a component L to a
microstate (Figure 3A). The label is a = k[L], where k
is an on-rate and [L] is the free concentration of L. We
follow the thermodynamic formalism and assume, first,
that components are neither synthesised nor degraded
over the timescale of interest so that their total amounts
are conserved quantities and, second, that the depletion
of L can be ignored, so that the binding of a single
molecule of L does not appreciably change its free con-
centration, [L]. In other words, [L] & Liot. Non-specific
binding to DNA can significantly reduce the free con-
centration and if this is thought to jeopardise the no-
depletion assumption, a more elaborate analysis is needed
[36,44].

Components can also engage in interactions such as
oligomerisation. We again follow the thermodynamic for-
malism and assume that such reactions are fast compared
to binding reactions on DNA, so that they have reached
a rapid equilibrium. The label on the edge has the form
a = k[X], were k is an appropriate on-rate and X is
the component form that binds to DNA (Figure 3B).
[X] can be calculated in terms of the concentrations of
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the underlying components using the rapid equilibrium
assumption (Methods).

Non-binding transitions

These are transitions in which the edge label does not
contain a concentration term. They can arise from several
different types of biochemical process:

¢ unbinding reactions, in which a component that had
previously bound to form the source microstate
unbinds, with the off-rate as the label (Figure 3C);

e allosteric change, in which the conformational state
of DNA, or of a component or complex in the
microstate, is altered (Figure 3D);

e three-dimensional chromatin conformation change,
such as DNA looping, in which separate parts of a
microstate, such as a distal enhancer and a proximal
promoter, bind or unbind from each other
(Figure 3E), with the respective rate constants as the
labels;

® nucleosome assembly or disassembly, with the
nucleosomes treated, for example, as individual
entities (Figure 3F), so that the labels are the
aggregated overall rates of the assembly or
disassembly pathway;

e enzymatic activity, in which an enzyme, which is
assumed to be already bound in the source
microstate, undertakes a biochemical reaction that
alters the microstate, such as post-translational
modification or demodification of a histone, a
co-regulator or a transcription factor (Figure 3G, H),
or methylation or demethylation of DNA (Figure 3],
demethylation is not shown), with the enzyme
catalytic rate as the label;

e RNA polymerase activity, including transcription
initiation, open complex formation, promoter
clearance, elongation, pausing, etc.; Figure 3] shows
elongation as a single step following initiation but this
can be broken down to a finer granularity as required.

Numerical values for the parameters appearing in the
labels can sometimes be estimated from experimental
data [10,12,45]. One of the advantages of the frame-
work is that calculations can be undertaken with symbolic
parameters, without having to know numerical values in
advance.

Calculating microstate probabilities at steady state

The mathematical details of the linear framework were
developed in previous work [35-37], as reviewed in [38].
As this may not be familiar, and to keep this paper as
self-contained as possible, the material is summarised
here. Proofs of most of the assertions can be found
in [37]. A graph of the kind constructed above, as
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Methods. 3D, three dimensional; TF, transcription factor; Me, methylation; P, phosphorylation; Ub, ubiquitination.

polymerase elongation

in Figure 1, gives rise to a linear differential equation
that describes how the probabilities of each microstate
change in time. We first explain how this differential
equation arises and then show how microstate probabil-
ities can be calculated at steady state. The key formulas
for the microstate probabilities are Equation 5 at equi-
librium and Equation 7 away from equilibrium. We have

italicised mathematical concepts that may be unfamil-
iar and have provided a glossary to explain these in the
Methods.

Laplacian dynamics
Suppose we are given a graph G, as in Figure 4A, with
vertices indexed 1,. .., n. We typically use the index 1 for
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Note that vertices that are not in a terminal SCC (i.e,, vertices 1, 2 and 3) have zero entries in each basis vector. Any steady state, x*, can be expressed
as a linear combination of these basis vectors, as in Equation 9 SCC, strongly connected component.

the reference microstate with no TFs bound and choose  vertices are chemical species and the edges are chemical
the order of the other microstates arbitrarily. The notation  reactions, which convert source species to target species.
i j signifies the edge with label a from source vertex i The edge labels are rate constants for the correspond-
to target vertex j. A dynamics can be imposed on G intwo  ing reactions, assuming mass-action kinetics. Since each
equivalent ways. In the macroscopic interpretation, the  reaction is uni-molecular, with only one substrate and one
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product, this one-dimensional chemistry yields a linear
dynamics (Figure 4A),

jtx(t) = L(G) - x(1), (1)

where x(¢) is a column vector of species concentrations
and £(G) is an n x n matrix whose entries are labels, which
is called the Laplacian matrix of G.

Since the dynamics inter-converts between species and
neither creates matter nor destroys it, the total concentra-
tion does not change over time. The dynamics therefore
satisfies the conservation law

x1(8) + - -+ x4() = Utot - (2)

This corresponds to the columns of the Laplacian
matrix adding up to 0 (Figure 4A), so that 1¥ - £(G) = 0,
where 1 signifies the all-ones column vector and * denotes
the transpose operation, which turns a column vector into
a row vector.

In the microscopic interpretation, the vertices are
microstates, the edges are transitions between microstates
and the labels are infinitesimal transition rates for the cor-
responding edges. This means that, if i — j and At is a
time interval sufficiently small so that aAt < 1, then the
probability of taking the transition from state i to state
j is approximately aAt and the approximation gets bet-
ter as At gets smaller (see Equation 15 in the glossary).
This interpretation defines a continuous time, finite state
Markov process. A Markov process gives rise to a master
equation that describes how the microstate probabilities
change over time. This master equation is identical to
Equation 1, so that

jtu(t) = L(G) - u(t),

where u;(t) is the probability of occurrence of microstate i
at time ¢. The only difference with the macroscopic inter-
pretation is that probabilities must always add up to 1,
so that uy,y = 1 in Equation 2. Matrices of Laplacian
type often arise when master equations are used but the
underlying graph, from which the Laplacian can always be
derived, has not been exploited as we do here.

Steady states
In the macroscopic interpretation, no matter what graph
and what initial condition are chosen, the dynamics always
reaches a steady state, x*, in which production and con-
sumption of each species is exactly balanced, so that,
dx*/dt = 0. By Equation 1, x* is in the kernel of the
Laplacian matrix: x* € ker L(G).

A particularly important case arises when G is strongly
connected (Figures 2A and 4B) because the kernel of the
Laplacian is one dimensional:

dimker L(G) = 1. (3)
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In other words, there is a unique steady state, up to a
scalar multiple. Given a basis vector for the kernel, ,oG IS
ker £(G), it then follows from Equations 2 and 3 that the
steady-state probabilities are obtained by normalising the
entries of pG to its total amount, plG 4+ 4 pnG =1 pG,
so that

i P°
u _(l-pG>' (4)

Such a basis vector p@ can be constructed in one of two
ways, described next.

At thermodynamic equilibrium

If the graph represents a system that can reach thermody-
namic equilibrium, then detailed balance must be satisfied
[36]. This requires two conditions to hold. First, the graph

must be reversible: if the graph has an edge i 5 j, then it

must also have a reverse edge, j L4 i, corresponding to the
same underlying biochemical reaction working in reverse.
Note that reversible edges imply that the graph is strongly
connected. Second, in any steady state, x*, any such pair
of reversible edges must be independently at equilibrium,
with the forward flux in balance with the reverse flux, irre-
spective of any other edges involving i and j. Setting the
two fluxes to be in balance, it follows that xl* = (a/b)x}.

To determine ,ojG, choose any path of reversible edges
from vertex 1 to vertex j,

1o i, 2 1, .
==k~ ... = p=lpt1 =)
by by by—1 " by

and let ,ojG to be the corresponding product of label ratios,

G _ ap ap—1 a) ai
PG -GG e

It follows from detailed balance that xl’f = ijx’{, so that

x* = ApC¥ where A = x}. Hence, p“ provides the required
basis vector of ker £(G), from which probabilities can be
calculated using Equation 4. For this procedure to be con-
sistent, p© must be independent of the chosen path from
1 to j. This is ensured by the cycle condition, which is a
necessary consequence of detailed balance [36]. It is an
important feature of being at thermodynamic equilibrium
that history does not matter: any path to a microstate can
be used to determine its equilibrium probability.
Equation 5 is equivalent to the thermodynamic formal-

ism through van’t Hoff’s formula. If i £ jandj —b> i, then,
at thermodynamic equilibrium,

x;f (ﬂ) —AG ©)
= = ex s
x; b P RT
where AG is the free-energy difference between
microstates j and i, R is the molar Boltzmann constant
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and T is the absolute temperature. The product of label
ratios in Equation 5 is transformed, through the exponen-
tial function in Equation 6, into a sum of free energies,
which determines the free energy of microstate j relative
to that of the reference microstate 1. The denominator in
Equation 4 is then the partition function of equilibrium
statistical mechanics.

Thermodynamic equilibrium requires detailed balance
but a graph can satisfy detailed balance without being
at equilibrium. For instance, certain graph structures in
which each edge is reversible, such as a sequence structure
(Figure 5A) or, more generally, a tree structure (Figure 5B),
always satisfy detailed balance (Methods). In such a graph
the edges may involve dissipative mechanisms. However,
although an edge i % jis accompanied by a reverse edge
i 5 j, these edges may not arise from an underlying bio-
chemical reaction operating reversibly but from two sep-
arate dissipative reactions, such as phosphorylation and
dephosphorylation, each acting irreversibly. The ratio a/b
would no longer have a thermodynamic interpretation in
terms of a free energy difference, as in Equation 6.

Away from equilibrium

If the graph represents a system that is maintained away
from thermodynamic equilibrium, then detailed balance
may no longer hold. The graph may have irreversible
edges and Equation 5 no longer works. If the graph is
strongly connected, a basis vector of ker £(G) can be cal-
culated by the matrix-tree theorem, a proof of which is
given in the Appendix to [37]. This leads to the following
procedure. Let ©;(G) be the set of spanning trees of G that
are rooted at microstate j. Informally, a tree is a sub-graph
with no cycles, it is spanning if it reaches every vertex and
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it is rooted at vertex i if i has no outgoing edges in the
tree. Figure 4B gives examples of rooted spanning trees.
It is not difficult to see that a graph is strongly connected
if, and only if, it has a spanning tree rooted at each vertex
and that a spanning tree always has one less edge than the
number of vertices in G.

For a strongly connected graph, ,ojG may be calculated by
multiplying together the labels on the edges of each span-
ning tree rooted at j and adding up these products over all
such spanning trees:

o= 2

T€®;(G)

(7)

[] «
kSleT

Because a strongly connected graph has at least one
spanning tree rooted at each vertex, each entry in the
basis vector is positive, so that ij > 0 for each j. Hence,
by Equation 4, each microstate has positive steady-state
probability. The denominator in Equation 4 provides a
non-equilibrium partition function.

Non-strongly connected graphs

Graphs arising in gene regulation may not always be
strongly connected (see the section ‘Formation of an
inherently bounded chromatin domain’ and Figure 6C).
Steady-state probabilities for non-strongly connected
graphs can be calculated by considering the SCCs of G
(Figures 2B and 4C). The SCCs inherit connections from
the underlying graph but these connections can never
form a cycle, for otherwise the SCCs would collapse into
each other. It is therefore possible to identify terminal
SCCs, from which there are no outgoing connections. The
terminal SCCs yield steady states in the following way.

A 1 & 2 ———

T T
B 1
3 47,

[N 47' n-1 ‘7' n
5
5

N
AN

7

Figure 5 Graph structures satisfying detailed balance. Labels have been omitted for clarity. (A) A sequence of reversible edges, as considered
by Ong et al. [46]. (B) A tree of reversible edges. A tree is characterised by having no cycle of reversible edges and is an example of a general graph
structure that always satisfies detailed balance, irrespective of the kinds of edges in the graph and the labels on these edges (Methods).
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Let T1,..., Tt denote the terminal SCCs. Each T} is by
definition strongly connected, so that it has a basis vec-
tor pTk e ker L(Ty), as given by Equation 7. We can now
construct the vector p@f that agrees with pTk on those
microstates that lie in Ty and which is zero on all other
microstates (Figure 4C). The vectors oGk provide a basis
for the kernel of the Laplacian of G:

ker L(G) = <,0G’1, cees pG’t> . (8)

The dimension of the kernel is then £, the number of
terminal SCCs. Note that, if i is any microstate that is not in
a terminal SCC, then ,oiG K — 0 for each basis vector POk,

The ¢ basis vectors in ker £(G) are matched by ¢ conser-
vation laws. In contrast to Equation 2, which is the only
conservation law when ¢ = 1, the additional conservation
laws for ¢ > 1 depend on the structure of the graph.
These additional laws can be algorithmically calculated
from L(G).

Any steady state x* can be expressed as a linear combi-
nation of the basis vectors in Equation 8. If these vectors
are normalised to their respective totals, then, in the
resulting expression for x*,

G,1 Gt
. p< p®
X _Zl<1.va1)+“.+Zt(1.vat>7 )

the coefficients zi, ..
conservation laws.

.,z are the values taken by the ¢

Calculating gene expression

In the thermodynamic formalism, a rate of gene expres-
sion, g;, is assumed for each microstate i and the overall
rate is taken to be proportional to the average over the
steady-state microstate probabilities u}. This average is
given by

quul+ -+ guul. (10)

The same procedure is used for the examples studied
here but the linear framework can accommodate the irre-
versible dynamics of mRNA polymerase (initiation, open
complex formation, promoter escape, elongation, pausing,
etc.) [17,49,50], as shown in Figure 3]J. The dynamics of
mRNAs and proteins can also be coupled to gene regu-
lation within a graph-theoretic formalism [41]. However,
this leads to infinite graphs because the number of mRNA
or protein molecules may be unlimited.

Having summarised the linear framework and shown
how it generalises the thermodynamic formalism to non-
equilibrium contexts, we now discuss three applications
that demonstrate the framework’s scope.
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Regulation of steroid-hormone responsive genes

Ong et al. have put forward a theoretical framework
for gene induction [46], motivated by studies of steroid-
hormone receptors [51]. They use ad hoc methods, which
are independent of previous work on gene regulation.
We show here how their analysis can be generalised and
simplified within the linear framework.

Recent work on steroid-hormone sensitive genes has
revealed new co-regulators, such as the Ubiquitin conju-
gating enzyme, Ubc9, indicating the existence of multiple
steps in addition to hormone-receptor binding to DNA
[46]. Despite this additional complexity, gene-regulation
functions [16], which describe how rates of gene expres-
sion depend on hormone concentration, are well fitted
to Michaelis—Menten style functions, or first-order Hill
dose-response curves (FHDCs) in the language of Ong
et al., who use their theoretical framework to derive con-
ditions under which such FHDC:s arise.

They consider a sequence of reversible reactions
(Figure 5A), representing the behaviour of the promoter of
a hormone-sensitive gene. Such a sequence graph always
satisfies detailed balance (Methods). We consider the
more general case of an arbitrary graph G of reversible
edges that satisfies detailed balance. This might be, for
instance, a tree graph (Figure 5B), which also always satis-
fies detailed balance (Methods). If a general graph satisfies
detailed balance it may not necessarily reach thermo-
dynamic equilibrium and the edges of G may involve
dissipative mechanisms.

We assume that components R,U,Y1,...,Y, are
present and they can bind and unbind to form the
microstates of G. Y7, .. ., Y}, are background components
that can engage in protein—protein interactions among
themselves, so that their concentrations can appear in
labels of the form k®([Y;],...,[Y;]), where ® is some
function, as in Figure 3B. The no-depletion assump-
tion allows free concentrations to be replaced by total
concentrations, [Y;] XYt so that the labels in which
Y1,..., Y, occur are functions of rate constants and
total amounts, or “constants” R and U are titratable
components, which, crucially, are assumed to bind at most
once in each microstate. U corresponds to a co-regulator
like Ubc9, which does not engage in protein—protein
interactions, so that the corresponding label has the form
k'[U] (Figure 3A). R corresponds to the steroid-hormone
receptor, to which the steroid hormone S binds to form a
complex RS, which then binds DNA (Figure 3B with S = L
and R = M). The label on the corresponding edge has the
form k”[RS] where

Riot[S]

[RS]= Kg+(S]’

which is a FHDC as a function of [S].
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The main result is that, provided gene expression only
occurs from microstates in which both R and U are bound,
the average rate of gene expression, g([S]), as given by
Equation 10, is also a FHDC (Additional file 1A),

MglS]
Kg+[S] "

The constants Mg and Kg have clear interpretations
in terms of G. Mg is (evidently) the average rate of gene
expression at saturation (i.e., when [RS] = Ryot). Less obvi-
ously, Kg is Kg multiplied by the saturation probability
of those microstates in which R is not bound. Additional
file 1A gives the details of the proof and shows how
the formulas in Ong et al. emerge from Equation 11. It
also discusses how Ong et al. show, for the special case
of a sequence, that g([S]) remains a FHDC even if the
no-depletion assumption is dropped at a concentration
limiting step. Ong et al. also address other issues, such as
inhibitory reactions, which are not discussed here.

The framework introduced here generalises and clari-
fies the work of Ong et al., showing how formulas like
Equation 11 can be rigorously proved irrespective of the

g(Sh = (11)

Page 12 of 23

complexity of the underlying graph. The interpretation of
the parameters in Equation 11 is new but emerges easily
from our analysis (Additional file 1A). However, because
detailed balance is assumed, the consequences of being
away from equilibrium remain hidden, as we will see
subsequently.

Formation of an inherently bounded chromatin domain

Our next application is to a model of chromatin organ-
isation, with no explicit gene regulation. Hathaway et
al. recently showed how a bounded chromatin domain
could be nucleated in vivo and stably inherited as a
form of epigenetic memory [47]. To explain the dynam-
ics of such domains, they developed a mathematical
model based on a linear array of 257 nucleosomes [47,48].
This model is readily translated into our framework. We
considered nucleosome arrays with varying numbers of
sites n. We placed the nucleation site at the right-hand
end of our array (Figure 6A). This is essentially simi-
lar to the left-hand half of the array of 2n — 1 nucle-
osomes (for n = 129) considered by Hathaway et al.
The microstates correspond to array marking patterns,
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Figure 6 Formation of an inherently bounded chromatin domain [47,48]. (A) An array of nucleosomes is shown, with nucleation taking place
at the right-hand end. White nucleosomes are unmarked, black nucleosomes are marked and grey nucleosomes are either marked or unmarked.
Nucleation, at rate k+, is confined to the nucleation site; propagation, also at rate k+, allows a marked nucleosome to propagate the mark to one of
its two immediate (unmarked) neighbours; turnover, at rate k_, allows any marked nucleosome, including the nucleation site, to become unmarked.
(B) Directed graph for the model with three nucleosomes. Each microstate shows its marking pattern as a bit string with 0 denoting unmarked and
1 denoting marked. The microstates are enumerated by considering the bit string as a number in base 2 notation and adding 1. The edges
correspond to nucleation, propagation and turnover, as above. Labels have been omitted for clarity but an edge that increases, respectively
decreases, the number of bits has label k+, respectively k_. (C) On the left, an extension of the model to include mark stabilisation, with a stably
marked nucleosome shown in magenta. A stabilised mark is no longer subject to turnover. This leads to the non-strongly connected graph shown
on the right for an array of two nucleosomes, in which the digit 2 in the microstate description signifies a stabilised mark. Edges that change digit 1
to digit 2 have label k*, while the other edges are labelled as in (B). The strongly connected components (SCCs) are indicated by dotted outlines,
with the two terminal SCCs identified by an asterisk.




Ahsendorf et al. BMC Biology (2014) 12:102

of which there are 2”7, while the edges correspond to
mark nucleation, propagation and turnover (Figure 6A,B).
Propagation and turnover were assumed uniform at all
nucleosomes, at rates k+ and k_, respectively. However,
nucleation was limited to the nucleation site at rate k+,
so that some edges are not reversible. This irreversibil-
ity reflects the dissipative mechanism of histone mark-
ing and the non-equilibrium nature of the model. The
graph does not satisfy detailed balance but is strongly
connected.

Hathaway et al. used a Monte Carlo simulation to gener-
ate stochastically a succession of microstates, from which
steady-state probabilities were estimated as the frequen-
cies with which microstates appear. They found that, if
k+/k_ < 1.5, marking persisted in a stochastically fluctu-
ating but inherently bounded domain near the nucleation
site, reflecting what was found experimentally.

Monte Carlo simulation is an efficient method for study-
ing very large graphs: an array of 257 nucleosome has
a graph with approximately 10’7 microstates. However,
the linear framework provides mathematical access to
the steady-state probabilities for any array size and this
yields insights that are not easily found by simulation.
For instance, the ratio k+/k_ appears as a convenience
in the simulations [48]. However, for a nucleosome array
of n sites, the spanning trees in the corresponding graph
(Figure 6A) have 2" — 1 edges, each of which is labelled k+
or k_. Dividing Equation 7 by (k_)?"~1, it is evident that
the steady-state probabilities in Equation 4 depend only
on the ratio k+/k_ and not on the individual rates. The
importance of the ratio becomes readily apparent within
our framework.

More significantly, Hathaway et al. proposed a modifica-
tion to their model to explain the inherited stability of the
domain after the nucleating stimulus was removed. They
imposed a stabilisation of the nucleosome mark through
a transition to a hypothetical new marked state, whose
turnover was inhibited (Figure 6C, left). Each nucleosome
can now be in one of three states and the graph has 3"
microstates (Figure 6C, right, for n = 2). Because turnover
is prevented by the stabilised mark, the graph is no longer
strongly connected. If nucleation is stopped, as was done
in the simulation, then the resulting graph has two termi-
nal SCCs, each consisting of a single extreme microstate,
one in which the entire nucleosome array is unmarked
and the other in which the entire array is stably marked.
According to Equation 9, all other microstates have zero
steady-state probability.

Which of the two extreme microstates is reached in a
simulated trajectory depends on the microstate in which
nucleation is stopped. If some nucleosome has become
stably marked in that microstate, then it cannot become
unmarked, so the trajectory can only reach the completely
stably marked microstate. This is likely to happen once
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the inherently bounded domain is established, unless the
stabilisation rate, k*, is so low that no stable mark has
appeared. In their simulation, Hathaway et al. chose k* to
be low compared to propagation and turnover but not so
low that stable marks had not appeared by the time nucle-
ation was stopped. They concluded that the inherently
bounded domain was stably maintained in the absence of
the initial nucleating stimulus. Our analysis shows that
this conclusion is incorrect. Once nucleation is stopped,
the bounded domain becomes a transient phenomenon,
which eventually expands to fill the whole array. It is con-
ceivable that a bound on the domain size is maintained
for sufficiently long to still be biologically relevant. But
this places the stabilising rate k* in a double bind: it must
be sulfficiently high so as to stabilise the domain, yet suf-
ficiently low so as not to destroy its boundedness too
quickly. Such fine-tuning of rate constants is inherently
fragile and we think it is more likely that other mech-
anisms are at work to ensure stable inheritance of the
inherently bounded domain.

Our framework allows these conclusions to be reached
by elementary mathematical deductions, without the need
for the numerical simulations undertaken by Hathaway
et al.

Regulation of yeast PHO5

We now turn back to gene regulation and to one of the
very few models in which a non-equilibrium mechanism
has been rigorously analysed without assuming detailed
balance. Pho5 is an acid phosphatase in Saccharomyces
cerevisiae that is expressed under phosphate-starvation
conditions. Kim and O’Shea undertook a quantitative
analysis of PHOS regulation by the transcription factor
Pho4, using a construct detached from the phosphate-
response pathway [52] (Figure 7A).

To calculate the PHOS5 gene-regulation function, Kim
and O’Shea constructed a stochastic master equation
based on a graph of transitions between DNA states. They
pointed out that the nucleosomal transitions were dissi-
pative and in some cases irreversible under their assump-
tions, so that detailed balance could not be assumed.
Accordingly, they determined steady-state probabilities
using the Symbolic Math Toolbox in MATLAB.

Kim and O’Shea’s graph of transitions is readily trans-
lated into our linear framework (Figure 7B). They assumed
that the binding of Pho4 saturates according to a Hill
function, which can be accommodated in a similar way
to Figure 3B. The non-binding reactions correspond to
unbinding of Pho4 (Figure 3C), or to nucleosomal assem-
bly or disassembly (Figure 3F). The graph is strongly
connected, a point not mentioned by Kim and O’Shea, but
as noted above for Equation 7, this ensures that the steady-
state probability of each microstate is positive. They
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Figure 7 Regulation of yeast PHO5, adapted from Figures one and four b of [52]. (A) Schematic of the experimental set-up. A
doxycycline-inducible (Dox), YFP-tagged Pho4, modified to be constitutively active (SA1-4) and constitutively nuclear (PA6), stimulates expression of
CFP from a partial PHOS5 promoter, with three nucleosomes (-3, -2 and -1) and two Pho4 binding sites, a low-affinity exposed site between
nucleosomes -2 and -3 (UASp1) and a high-affinity site occluded by nucleosome -2 (UASp2). The TATA box is occluded by nucleosome -1. (B) The
labelled, directed graph of this system, showing the microstates (left) and the labels (bottom), in the notation used by Kim and O’Shea. Label a

) corresponds to Pho4 binding through a Hill function, which arises through the rapid equilibrium mechanism of Figure 3B. Labels b (/<EXp )
) correspond to Pho4 unbinding (Figure 3C) from, respectively, UASp1 and UASp2. Labels d (kremod) and e (kreass) correspond to
disassembly and assembly, respectively, of nucleosomes (Figure 3F), which introduce the non-equilibrium and irreversible features of the graph.
Nucleosome -3 has been ignored in the graph. For other features, see the cited paper CFP, cyan fluorescent protein; YFP, yellow fluorescent protein.
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assumed that PHOS5 is transcribed when there is no
nucleosome occluding the TATA box, so that, in the aver-
age in Equation 10, g; = 1 for the microstates 2, 3, 7, 8,
9 and 12 on the right in Figure 7B and g; = 0 for those
on the left. We used our own software written in the pro-
gramming language Python to enumerate the spanning
trees by a fast algorithm and then used the polynomial
algebra capabilities of Mathematica to calculate the
microstate probabilities and the gene-regulation func-
tion (Methods). This gave an identical result to Kim
and O’Shea’s MATLAB calculation (H Kim, personal
communication, January 2013). This strongly suggests
that what can be done for the yeast PHOS gene can

be systematically undertaken for other genes with non-
equilibrium features, with the solution now being under-
stood explicitly through Equation 7, without recourse to
MATLAB.

Having calculated the gene-regulation function using
our framework, we sought to compare it to the exper-
imental data acquired by Kim and O’Shea [52]. They
used their synthetic construct (Figure 7A, with details in
the caption) to measure the PHOS gene-regulation func-
tion. In response to doxycycline, individual cells expressed
Pho4-YFP, which was treated as the input to the gene-
regulation function, and this induced the expression of
CEFP from the Pho4-responsive promoter in the construct.
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CFP was treated as the output as a proxy for Pho5. By
using different doses of doxycycline to cover a range of
Pho4-YFP expression levels, the gene-regulation function
was assembled from single-cell measurements. Kim and
O’Shea also measured the gene-regulation function of five
other variant promoters, in which the low-affinity and
high-affinity sites for Pho4 binding were either exchanged
or removed.

Kim and O’Shea estimated the threshold and the max-
imum expression level of each variant by fitting their
experimental data to a Hill function, whose Hill coefficient
was found to be nearly 2 for all variants. They then fitted
the estimated threshold and maximum values to the calcu-
lated gene-regulation function for each variant and found
good agreement ([52], Figure 5). We were curious as to
how well the gene-regulation function itself would fit the
data. This is a more challenging question because the data
are noisy and the gene-regulation function is very compli-
cated (see below). To address this, we first smoothed the
data. We then used numerical optimisation to find excel-
lent quantitative fits to each variant individually (Figure 8,
red curves) but could only undertake a manual fit to all
variants collectively, which yielded the parameter values
in Equation 16 (Methods). The collective fit was consid-
erably poorer (Figure 8, black curves). While this broadly
confirms Kim and O’Shea’s more coarse-grained analysis,
it also suggests that the individual variants may exhibit
more nuanced behaviours, which are better described by
distinct parameter values.

History-dependent complexity away from equilibrium

Our analysis revealed further unexpected features of the
PHOS5 gene-regulation function. By Equation 7, each ,oiG
is a sum of distinct product terms (monomials) in the five
edge labels (Figure 7B), of the form

% i1 (,exp \i2 (znuc i3 i is
a(kassoc) (kdissoc) (kdissoc) (kremocl)4 (kreass) .

Here, « is a positive integer, which records the num-
ber of spanning trees having that product of labels, and
i1,...,i5 are non-negative integers. Because the graph
has 12 microstates, each spanning tree has 11 edges, so
that the total degree of each monomial is 11: i; + iy +
i3 + is + i5 = 11. By examination of the calculated
formulas, the maximal degree of k7, ., in which the con-
centration of Pho4 appears, is 8. Considering only those

monomials with this highest-order term, (k:ssoc)s, the
gene-regulation function looks like
4(kremod)z(kremod + kreass) (/(:SSOC)S +... (12)

4(kremod) (Kremod - Kreass)? (k:ssoc)s +..

The simplicity of these highest-order terms is deceptive,
however. The numerator of Equation 12 has 261 distinct
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monomials while the denominator has 500 distinct mono-
mials. Indeed, the graph in Figure 7B has 53,376 spanning
trees in total. We see that the calculated PHOS gene-
regulation function is very complicated — the full details
shown in Additional file 1C cover six pages — despite
the model having only two binding sites and two nucle-
osomes. Because Kim and O’Shea did not provide the
gene-regulation function in their original paper, these
features are revealed here for the first time.

The linear framework allows us to understand this
surprising explosion in complexity. At equilibrium,
Equation 5 shows that any single path to a microstate
can be used to calculate its steady-state probability. As a
physicist would say, free energy at equilibrium is a func-
tion of the microstate, not of the route through which
that microstate is reached. In marked contrast, away from
equilibrium, Equation 7 shows that every spanning tree
rooted at that microstate is required. In this case, all routes
to the microstate become relevant and microstate proba-
bilities depend in a more intricate way on the structure of
the graph. Equation 7 takes care of the bookkeeping. The
number of spanning trees increases very rapidly with the
size of a graph: the complete undirected graph on # ver-
tices (i.e., the graph in which there is an undirected edge
between each pair of distinct vertices) has #”~2 spanning
trees in total. This worse than exponential increase mani-
fests itself in the complexity of the PHOS gene-regulation
function.

It is important to appreciate, however, that it is not
the complexity or the size of a graph that is the domi-
nant factor in explaining the complexity found here. If we
imposed additional edges on the graph in Figure 7B so as
to make all the edges reversible, this would only make the
graph more complex. If we then imposed detailed balance,
which restricts the values of the parameters, the equilib-
rium probabilities would be given by Equation 5 rather
than Equation 7 and the gene-regulation function could
be written down in a few lines. The complexity uncovered
here depends crucially on being far from thermodynamic
equilibrium.

Additional study of PHOS5 has shown that nucleosomes
decouple the threshold for PHOS5 expression from its
dynamic range [53]. However, this kind of behaviour
can be recapitulated within the thermodynamic formal-
ism [54]. This suggests that the full implications of
non-equilibrium behaviour, as revealed by the complex-
ity of the PHOS gene-regulation function, have not yet
been uncovered experimentally. To suggest experimen-
tal options, we need ways to decompose the complexity
found in Additional file 1C and to attribute aspects of it to
specific biochemical mechanisms. Approximation meth-
ods may help in particular cases [55] but new ideas are
needed for addressing the complexity barrier systemati-
cally, to which we now turn.
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smoothed, normalised CFP, scaled to maximum level (blue) and probability of transcription (black)

10
normalised YFP (blue, black)

and the Methods. H, high affinity; L, low affinity; X, absent.

Figure 8 Experimental data and calculated gene-regulation functions of PHO5 variants. Each panel corresponds to one of the six variants, as
labelled in the top left with high affinity (H, blue), low affinity (L, magenta) or absent (X), using the microstate schematic from Figure 7B. Each panel
shows the smoothed and normalised experimental data for that variant scaled to its maximum expression level (blue points) and plotted as
normalised CFP for output against normalised YFP for input, overlaid with calculated gene-regulation functions for that variant (red and black
curves), plotted as probability of transcription against normalised YFP, which is assumed to be proportional to Pho4 concentration. The red curves
show individual fits to each variant, while the black curves show a collective fit to all variants simultaneously. Further details are provided in the text
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Graph independence leads to reduced complexity

Gene regulation often takes a modular form, with
repeated binding sites, reiterated motifs and multi-
ple enhancers [56,57]. The microstate probabilities and
the resulting gene-regulation function could become
extremely complicated, especially if the modules are oper-
ating far from equilibrium. There is, however, one context
in which simplification may be expected. This occurs
when modules operate independently of each other, so
that whatever takes place within one module does not
affect what takes place in any other module. For instance,
developmental genes are often regulated by multiple
enhancers, which sometimes appear to act independently
of each other [58].

Within the thermodynamic formalism, independence of
binding sites leads to multiplication of the correspond-
ing partition functions (described after Equation 6). For
instance, a transcription factor, 7, binding to a single site
on DNA has the partition function 1 + K[T], where K is
the association constant for binding. Suppose that there
are m repeated binding sites to which T binds and suppose
that each site has the same association constant. If these
bindings are independent of each other, then the parti-
tion function for the m-site system is obtained by simply
multiplying the one-site partition function m times, to
yield

1+ K[TH™. (13)
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On the other hand, if the sites are not independent, the
partition function takes the more complicated form

14+ a1 K[T] 4 ay(K[TD* + - - - + a1 (K[T])" !
+ am(K[T))™,

where ay, . . ., a,, can be arbitrary numbers. Evidently, the
partition function in Equation 13 is considerably less com-
plex and easier to understand. In the light of this result
for equilibrium systems, we wanted to find a generalisa-
tion in which the modules are no longer individual binding
sites but are represented by potentially complex graphs,
which may not be at thermodynamic equilibrium. Such
modules might correspond, for instance, to independent
enhancers.

We used the product graph construction to capture the
concept of independence. Let G and H be any two graphs
which represent two modules within a gene regulation
system. We make no assumptions about the graphs, which
do not have to be at equilibrium and do not have to be
strongly connected. The product graph G x H is con-
structed as follows (Figure 9). It has vertices (i, ), where
i is a vertex in G and j is a vertex in H. The vertices
are enumerated lexicographically, so that (;,j) < (7,)) if
either i < i’ ori = i and j < j'. For each labelled edge
i1 2 iy in G and for every vertex j in H, the labelled edge

(i) = (i2,)) is created in G x H. The retention of the
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same label a on these edges ensures that the transition
from (i1, ) to (i2,j) occurs independently of j and always at
the same rate, which captures the independence assump-
tion. Similarly, for each labelled edge j; % join H and

for every vertex i in G, the labelled edge (i, j1) L (i, )2) is
created in G x H. These are the only edges in G x H.

If the modules represented by G and H are operating
independently of each other, then the graph of the com-
bined system is given by G x H. What can be said about
the p&H in terms of p© and p'? When G and H are both
strongly connected, then G x H is also strongly connected
and a basis vector in the kernel of the Laplacian is given by

p&H = pG @ pH. (14)

This uses the Kronecker product of two vectors, x ® ¥,
defined by (x ® y)j = xiy; (Figure 9). If either G or
H are not strongly connected then G x H will not be
strongly connected. A basis for the Laplacian kernel of
G x H is then given by the Kronecker products p& @ p'/
between each pair of basis vectors from each respective
kernel. The precise product theorem is stated and proved
in Additional file 1B.

In the example in Figure 9, the product theorem yields
polynomials for the components of p@**! that have degree
3 in the labels. Since G x H is strongly connected, o</
can also be calculated using the matrix-tree formula in

graph G graph H

(o

"
pyY = be
) i = f
pg’ = ad+ ab

H _
. Py = €
p§ = ac

2 'TP3
a b 1 ‘4>e 2
f
1

Figure 9 The product graph construction. The corresponding basis vector in the respective Laplacian kernel is shown below each graph. For
legibility, the vertices of the product graph are denoted /,j, rather than (i, ). All three graphs are strongly connected. The basis vector for the
Laplacian kernel of graph G was calculated in Figure 4B, while that for graph H follows directly from Equation 7. The basis vector for the Laplacian
kernel of G x H is given by the Kronecker product formula in Equation 14, as described in the text.

graph G x H

c
2,2 'T> 3,2

GxH __
Py = bef

pE’lx;;I = bece
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GxH
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Equation 7. The resulting polynomials must have degree
5 because G x H has six vertices. However, each of the
polynomials from Equation 7 has the same scalar factor of
degree 2, given by

b(cte+f)+(e+f)(ctd+e+f)+talb+ct+d+e+f),

which can be divided out to give the much simpler
expressions in Figure 9. The basis vectors from the prod-
uct theorem are substantially less complicated, both in
degree and in the numbers of monomials, than those from
Equation 7.

This product theorem is important because it shows
that a system that is far from equilibrium may still have
simple expressions for its microstate probabilities. What
is required is that the system has independent modules
within it. This suggests a starting point for addressing the
complexity challenge identified above, as reviewed further
in the Discussion below.

Discussion

The equilibrium thermodynamic formalism has been
widely adopted and has been very effective, as reviewed in
[15-19]. The value of the new framework introduced here
rests on extending this to accommodate non-equilibrium,
dissipative mechanisms. Although life itself is fundamen-
tally dissipative — we are only at equilibrium when we are
dead — and the importance of dissipation has been broadly
understood at the molecular level [25], its significance for
gene regulation has remained elusive.

Recent work has started to reveal the limitations of equi-
librium assumptions. Gelles and colleagues, using single-
molecule methods on E. coli promoters, assert that ‘it may
be necessary to consider that transcription output is a
non-equilibrium phenomenon controlled by the kinetic
properties of the system, not simply its thermodynamics’
[22]. Lieb and colleagues, using a genome-wide com-
petition ChIP assay in yeast, show that thermodynamic
quantities are substantially less well correlated with gene
expression than kinetic quantities [23]. Reviewing these
and other developments, Larson and colleagues state that:
‘Currently, most quantitative theoretical models describe
transcriptional regulation as an equilibrium thermody-
namic phenomenon.... Here we explain how this descrip-
tion is fundamentally inconsistent with the canonical view
of gene regulation’ [24].

Despite these assertions, no specific information-
processing task has been identified that cannot be
achieved at equilibrium and for which non-equilibrium
mechanisms are essential. We can suggest three possibili-
ties where that might be the case.

First, the experimental construction of an inherently
bounded chromatin domain by Hathaway et al. relies
on irreversible, dissipative mechanisms. If their model is
forced to be at equilibrium by imposing reversibility of the
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edges, it can be readily seen that the inherently bounded
domain vanishes (Methods). This suggests that dissipation
is essential for maintaining a bounded chromatin domain.

Second, recent work indicates that nucleosome posi-
tioning may depend crucially on non-equilibrium mech-
anisms. It has been suggested that both the SWI/SNF
and ISWI/ACF chromatin remodelling complexes use an
ATP-dependent kinetic proofreading scheme to find the
correct nucleosomal substrates on which to act [59,60],
in a manner essentially identical to Hopfield’s original
scheme [61]. In contrast, as mentioned in the Background,
nucleosomes have been treated as competing with tran-
scription factors for binding to DNA within the ther-
modynamic formalism, ignoring the dissipative aspects
[18,62]. In support of this, Segal and Widom pointed out
that in vitro reconstitution experiments using purified
histones and genomic DNA, which would be expected
to reach equilibrium, reproduce many aspects of in vivo
nucleosome organisation. However, it has been a matter
of contention as to how closely in vivo nucleosome organ-
isation is matched in vitro. In attempting to resolve these
issues, Struhl and Segal [21] point to more recent work
[20] in which reconstitution with whole-cell extract and
ATP, presumably involving ATP-dependent nucleosome
remodellers, significantly improves in vitro recapitulation.
Genetic deletion of nucleosome remodellers also has dis-
tinctive effects on nucleosome organisation. Pugh and col-
leagues suggest, in contrast to Segal and Widom, that ‘the
active nucleosome organization in vivo may be at steady
state, under the continuous expense of energy, rather than
at equilibrium’ [20].

Third, we suggest that the combination of develop-
mental precision and evolutionary plasticity may require
non-equilibrium mechanisms. Experimental studies of
the early Drosophila embryo suggest that the precision
with which the hunchback gene is turned on and off in
individual cells, in response to the maternal morphogen
Bicoid, is close to the limits set by physics [63]. Neverthe-
less, the hunchback promoter varies considerably in the
numbers and the positions of Bicoid binding sites between
different species of Diptera [64], suggesting high evolu-
tionary plasticity. While it may be possible to construct
equilibrium mechanisms that achieve high precision, it
seems difficult to achieve plasticity also. We speculate that
non-equilibrium mechanisms may be essential to achieve
both.

The framework that we have introduced here pro-
vides the foundation from which to explore such pos-
sibilities systematically. It has revealed the profound
difference between equilibrium and non-equilibrium
mechanisms, prefigured in Hopfield’s earlier work [25],
but the remarkable complexity that we have uncovered
away from equilibrium presents a formidable challenge.
This complexity is fundamental because it arises from the
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underlying physics: history cannot be ignored away from
thermodynamic equilibrium. We see two strategies for
addressing this.

First, one strand of research within non-equilibrium sta-
tistical mechanics has sought to clarify the relationship
between thermodynamic forces and microscopic fluxes
within a graph-theoretic formalism [65] (further historical
connections are reviewed in [37]). More recent devel-
opments in non-equilibrium statistical mechanics [66,67]
may help to decompose the history-dependent complexity
into physically meaningful components, which may then
be experimentally accessible.

Second, from a mathematical perspective, our work
shows that the complexity is modulated by the structure
of the graph. Independence decreases the complexity, as
in Figure 9, as does equilibrium, as in Equation 5. It may
be reasonable to assume that some parts of a graph are
at equilibrium, with dissipation serving not to maintain
these microstates but, rather, to provide access to them
over energy barriers, as previously suggested by Segal and
Widom for nucleosome positioning [18], while other parts
of the graph are maintained far from equilibrium and yet
other parts may operate independently. If we could under-
stand how to partition graphs in this way and how such
partitioning simplified the steady-state probabilities, then
we might have a means to address the complexity prob-
lem. We plan to explore these strategies in subsequent
work. We anticipate that an inter-disciplinary approach,
combining biological experiments with physics and math-
ematics, will be essential to unravel how graph structure
gives rise to function in the context of gene regulation.

A flood of new information about nucleosome posi-
tions, histone marks and DNA methylation is emerging
from whole-genome projects such as ENCODE [28], the
NIH Roadmap Epigenomics Project [29] and the Euro-
pean BLUEPRINT project [30]. The thermodynamic for-
malism has been successfully applied to whole-genome
analysis at single-base pair resolution. The correspond-
ing graphs are even larger than those arising in Hathaway
et al’s study of bounded chromatin domains, with 1077
vertices, yet powerful dynamic programming methods
allow equilibrium probabilities to be estimated from data
[10,12]. Incorporating non-equilibrium mechanisms on a
whole-genome basis may be currently infeasible but sim-
ilar approximation methods could plausibly be applied
to individual genes, for which information may be avail-
able on how different molecular mechanisms interact,
allowing the structure of the graph to be exploited, as
suggested above, to reduce the complexity. We envisage,
in this way, that the function of individual genes will
come to be represented by mathematical graphs, just as
the structure of individual genes has been represented by
mathematical sequences. In contrast to sequences, graphs
encode dynamics and functionality and their structures
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will change with our assumptions and data. Our existing
sequence-based computational infrastructure may have to
evolve to an infrastructure in which such dynamic graphs
can be built, interrogated and analysed.

Methods
The experimental data discussed in this paper were
obtained solely from the literature.

Calculating labelling functions

Figure 3B shows a sequence-specific transcription factor
L that binds DNA only when also bound to a co-factor
M. The component form that binds to DNA (which was
called X in the main text) is LM. The rate constant for
the transition is proportional to the free concentration of
X = LM. This free concentration can be calculated by
assuming that the binding of L and M,

b
L+M=IM
c

has reached a rapid equilibrium, independently of the
binding of LM to DNA. In this case, b[L] [M] = c[LM], so
that

Mior = [M] + [LM] = [M] + (b/c)[L] [M]
=1+ (b/olLD[M] .

It follows that
(b/c)Mot[L] _ Miot[L]
1+ (B/OIL] — (¢/b)+I[L]
which gives the formula for ®([L]) shown in Figure 3B.
Rapid equilibrium amounts to a timescale separation,
which uncouples the dynamics of the interactions in solu-
tion from those on DNA. The rapid equilibrium equations
for more complicated interactions can often be formu-
lated in terms of the linear framework, which can then be
used to calculate [X].

[LM] = (b/o)[L] [M] =

Glossary of mathematical concepts

Markov process. A time-varying probability distribution
over a set of states in which the probability of reaching a
given state in the next time step depends only on the cur-
rent state. If time varies continuously then the next time
step is interpreted infinitesimally, by taking a small unit of
time, At, and letting this tend to zero. The Markov prop-
erty says that history does not matter in making the choice
of which state comes next in time. However, history may
be essential for determining the steady-state probabilities,
as happens when the system is far from thermodynamic
equilibrium.

Infinitesimal tranmsition rate. Suppose that i S jis a
labelled, directed edge in the graph. Treating the labels
as infinitesimal transition rates defines a continuous-time,
finite state Markov process, X(t), as follows: in any suffi-
ciently small unit of time, At, the conditional probability
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of microstate j occurring, given that microstate i has
occurred, is aAt, to first order in At. More formally,

. Pr(X(t+ Ap) =j|X(@) =)
lim =a

15
At—0 At (15)

With this notation, the probability of occurrence of
microstate { at time £, which was denoted u;(¢) in the main
text, is given by u;(¢) = Pr(X(¢) = i).

Master equation. The probability of being in microstate
i at time ¢t + At, u;(t + At), can be calculated in terms
of u;(¢) and the infinitesimal transition rate from j to i,
taking into account all microstates j that have an edge to
i. The resulting differential equation, obtained by letting
At — 0, which describes the forward evolution of prob-
abilities over time, is the master equation, or Kolmogorov
forward equation, of the Markov process [68]. The equiv-
alence between the master equation of X (¢) and Laplacian
dynamics is proved in ([37], Corollary 2).

Kernel. If M is an n X n matrix acting on column vectors
of size n, then the kernel of M, ker M, is the subspace of
column vectors that become zero when multiplied by M:
kerM = {v|M-v =0}

Strongly connected. In a graph G, vertex i is said to ulti-
mately reach vertex j, denoted i ~ j, if either i = j or there
is a path of directed edges from i to j:

i=i1—iy—> = iyl = iy =

Vertex i is said to be strongly connected to j if i ~» j and
j ~> i. Strong connectivity is an equivalence relation on the
vertices and the equivalence classes are called the SCCs of
G. A graph is strongly connected if it has only one SCC.
The graph in Figure 4B is strongly connected.
Cycle condition. If a graph describes a system that can
reach thermodynamic equilibrium then it must satisfy
detailed balance, as described in the main text. If detailed
balance holds, then, in any cycle of reversible edges, the
product of the labels going clockwise around the cycle
must equal the product of the labels going counterclock-
wise around the cycle. Conversely, if a graph has reversible
edges and the cycle conditions holds, then detailed bal-
ance is satisfied for any steady state of the graph. This is
proved in ([36], Supporting Information).
Sequence/tree of reversible edges. A graph consisting
of reversible edges, which are arranged in a sequence
(Figure 5A) or, more generally, in a tree structure
(Figure 5B), automatically satisfies detailed balance, irre-
spective of the edge labels. The argument for a sequence
was presented in [69] but is easily generalised to a tree.

. . , , . b,
Given a reversible edge, i A jandj — i, and a steady state
«*, the net flux through the reversible edge is ax; — b} If
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the reversible edge is a leaf of the tree structure then there
can be no net flux leaving the tree from that edge. Hence,
xf = (b/ a)xl’f. This reversible edge is therefore at equilib-
rium. This holds irrespective of the labels a and b. Arguing
in this way by induction from the leaves, each reversible
edge in the tree is independently at equilibrium, so that
detailed balance holds.

Rooted spanning trees. A spanning tree of a graph G is a

sub-graph that contains each vertex of G (spanning) and
that has no cycles when edge directions are ignored (tree).
A spanning tree is rooted at vertex j in G if j is the only ver-
tex with no outgoing edges. A graph is strongly connected
if, and only if, it has at least one rooted spanning tree at
each vertex ([37], Lemma 1). Figure 4B shows a strongly
connected graph, together with the spanning trees rooted
at each vertex.
Terminal strongly connected components. Let [j] denote
the SCC of G containing vertex j. In other words, [j] is the
equivalence class of vertex j under the relation of strong
connectivity, as defined above. The SCC [{] is said to pre-
cede [j], denoted [i] < [j], if either [i{] = [j] or some vertex in
[{] ultimately reaches some vertex in [j]: i’ ~ j where i’ €
[{] and j € [j]. Precedence defines a partial order on the
SCCs of the graph G. We can therefore speak of the termi-
nal SCCs, which are those that do not precede any other
SCC. The graph in Figure 4C has three SCCs of which two
are terminal (asterisks), while the graph in Figure 6C has
five SCCs of which two are terminal (asterisks).

Calculating the PHO5 gene-regulation function

The gene-regulation function of the PHOS5 example was
calculated using the matrix-tree formula in Equation 7
and is shown in full in Additional file 1C. Software for
enumerating spanning trees is available in packages like
MATLAB, Mathematica and Maple, but we found these
to be incapable of dealing with the large number of trees
that arise. We therefore implemented in Python the fast
algorithm developed by Takeaki Uno [70]. The resulting
program reads a text file containing a description of a
graph as a collection of labelled edges and, for each ver-
tex in the graph, writes a text file listing the spanning trees
rooted at that vertex. We also implemented an accom-
panying Mathematica notebook, which reads the graph
description and the spanning tree files and assembles each
,oiG as a polynomial function of the edge labels. The gene-
regulation function can then be calculated using stan-
dard Mathematica functions for manipulating polynomial
expressions. The Python program and the Mathematica
notebook are freely available from our web site [71].

Fitting to the experimental data of Kim and O’Shea

Kim and O’Shea constructed 12 promoter variants ([52],
Figure 3a). Six of these variants place a high affinity
(H), low affinity (L) or deleted (X) Pho4-binding site in
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the positions corresponding to UASpl and UASp2 in
Figure 7A. The remaining six variants use sites occluded
by nucleosome -3, which is not modelled in Figure 7, and
we did not analyse these variants. The wild-type promoter
in Figure 7 corresponds to variant LH.

We obtained the experimental data in the form of an
Excel spreadsheet [72]. This gives the raw fluorescence
values for YFP, CFP and RFP (yellow, cyan and red fluo-
rescent proteins, respectively) for about 400 to 500 cells
for each variant under different doxycycline concentra-
tions. The RFP was attached to a chromatin protein to
mark the nucleus and the RFP value was used to nor-
malise the YFP and CFP values on a per-cell basis to
control against imaging variations. We used a &7 moving
average to smooth the data and scaled each variant to its
maximum expression level for the plots shown in Figure 8.

Each of the six variants gives rise to a graph, which
uses the same labels as the wild type (Figure 7B). The
labels b and c are the rates of Pho4 dissociation from the
low-affinity and high-affinity sites, respectively. Kim and
O’Shea assumed that the Pho4 association rate, 4, is the
same for both sites. If the Pho4 binding sites are changed
in a variant, the labels b and ¢ occur on different edges of
the wild-type graph, while if a Pho4 binding site is deleted,
some vertices become inaccessible and the graph changes
from the 12-vertex wild-type graph to a graph with eight
vertices. We used the wild-type 12-vertex gene-regulation
function and a new eight-vertex gene-regulation function
calculated using Equation 7. We then changed the labels b
and c in these two gene-regulation functions, as required,
to generate the gene-regulation function for each of the
six variants (details in the accompanying Mathematica
notebook).

Kim and O’Shea assumed that the Pho4 association rate,
a, is a Hill function of Pho4 concentration given by

O k% . [Phod]?
assoc g2 4 [Pho4]?’

so that the gene-regulation functions depend on six
parameters:

K k5 kP

nuc
max’ Kdissoc? kdissoc’ Kremod and Kreass-

These have units of concentration, for K, and inverse
time, for the others. We followed Kim and O’Shea in
assuming that [Pho4] = « - nYFP, where nYFP is nor-
malised YFP. The constant of proportionality, «, is not
known but can be absorbed into the parameter K. We
therefore left K as a dimensional parameter having units
of concentration, and used nYFP as the input to the indi-
vidual gene-regulation functions. We de-dimensionalised
the remaining parameters by dividing each by k%,
thereby replacing each edge label x by x/k .., where x is
one of a, b, ¢, d, e, and reducing the number of parameters
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from six to five. The red curves in Figure 8 were obtained
by fitting each variant individually using the Levenberg—
Marquardt algorithm in Mathematica. We were unable to
do the same for a collective fit because the Levenberg—
Marquardt algorithm did not terminate. We therefore
used Mathematica to plot the gene-regulation function
overlaid against the corresponding smoothed experimen-
tal data for each variant and used the Manipulate capa-
bility to alter the values of the five parameters manually
and to assess the goodness of fit to all the variants visu-
ally. We found the following numerical parameter values
that yielded the collective fit shown in the black curves in
Figure 8,

exp nuc
K = 25, dissoc = 0.08, dissoc - 0.02
max max

) p (16)
remod _ ) 04 and "% = 0.0048.
fex *

max max

The Mathematica notebook in which these calculations
were undertaken is freely available from our web site
[71]. It provides the normalised experimental data, the
smoothed experimental data and the individual and col-
lective fits of the variant gene-regulation functions to the
corresponding data.

Imposing equilibrium on the Hodges—Crabtree model

As explained in the main text, to impose equilibrium is
to require that detailed balance holds. This means, first,
that all edges in the graph must be reversible and, sec-
ond, that the cycle condition (described in the glossary
above) is satisfied. The graph of microstates for an array
of three nucleosomes is shown in Figure 6B and we fol-
low the notation introduced there in which microstates
are denoted by bit strings, indicating whether (bit = 1) or
not (bit = 0) a nucleosome is marked. Edges only occur
between microstates that differ by a single bit, corre-
sponding to nucleation or mark propagation, when the
number of bits increases by 1 and the edge has label k+,
or to mark turnover, when the number of bits decreases
by 1 and the edge has label k_ (Figure 6A). Irreversibility
only arises for some of the latter edges, when an isolated
site, whose immediate neighbours are unmarked, loses its
mark (for instance, 5 — 1,3 — 1 and 6 — 2 in Figure 6B).

To impose reversibility, assume that reverse edges have
been introduced into the graph as needed, each with the
label k+. To check the cycle condition, choose any cycle
of reversible edges from a vertex j back to itself,

j=u=h= " =ig_1=Iin=]

In traversing this path, if an edge increases the number
of bits in the microstate by 1, then the label encountered
must be k+, while if an edge decreases the number of bits
by 1, then the label must be k_. Since the path is a cycle,
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the number of edges with label k4 must equal the number
of edges with label k_. Furthermore, for each edge with
label k+, respectively, k_, the reverse edge has label k_,
respectively, k+. But then the product of the labels going
clockwise around the cycle must equal the product of the
labels going counterclockwise around the cycle and the
cycle condition is satisfied. The graph therefore satisfies
detailed balance in any steady state.

Equilibrium probabilities can now be calculated using
Equation 5. Let K = k+/k_. Given a microstate j, let 8(j)
be the number of bits in j that are set to 1. It is easy to
construct a path of reversible edges from the reference
microstate 1 to microstate j with just 8(j) edges, each of
which increases the number of bits by 1. Hence, according
to Equation 5,

ij = KB,

If the number of sites in the array is #, then the partition
function is given by

i KPO,
j=1

However, there are (ﬂ'(qj)) microstates each having 8(j)

sites marked, so the partition function may be rewritten as
n n )

> (i)K’ =1 +K)"
i=1

Another way of seeing this is to note that, when equi-
librium is imposed, the system becomes identical to n
independent copies of the one-site system. The partition
function can then be calculated from the product for-
mula (Equation 14), which is a special case of the product
theorem proved in Additional file 1B. It now follows from
Equation 4 that the probability of microstate j is given by

KBD
1+ K"
We see from this that the probability of a microstate
depends only on the number of bits that are marked,
rather than which bits are marked and, consequently,

there can be no inherent bound on the size of the marked
domain.

Additional file

Additional file 1: (A) Calculation of the steroid-hormone
gene-regulation function. (B) Proof of the product theorem. (C) Details
of the PHO5 gene-regulation function.
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