
Guo et al. BMCMedical Informatics and DecisionMaking           (2020) 20:48 
https://doi.org/10.1186/s12911-020-1063-x

RESEARCH ARTICLE Open Access

An evaluation of time series summary
statistics as features for clinical prediction
tasks
Chonghui Guo1* , Menglin Lu1 and Jingfeng Chen1,2

Abstract

Background: Clinical prediction tasks such as patient mortality, length of hospital stay, and disease diagnosis are
highly important in critical care research. The existing studies for clinical prediction mainly used simple summary
statistics to summarize information from physiological time series. However, this lack of statistics leads to a lack of
information. In addition, using only maximum and minimum statistics to indicate patient features fails to provide an
adequate explanation. Few studies have evaluated which summary statistics best represent physiological time series.

Methods: In this paper, we summarize 14 statistics describing the characteristics of physiological time series,
including the central tendency, dispersion tendency, and distribution shape. Then, we evaluate the use of summary
statistics of physiological time series as features for three clinical prediction tasks. To find the combinations of statistics
that yield the best performances under different tasks, we use a cross-validation-based genetic algorithm to
approximate the optimal statistical combination.

Results: By experiments using the EHRs of 6,927 patients, we obtained prediction results based on both single
statistics and commonly used combinations of statistics under three clinical prediction tasks. Based on the results of
an embedded cross-validation genetic algorithm, we obtained 25 optimal sets of statistical combinations and then
tested their prediction results. By comparing the performances of prediction with single statistics and commonly used
combinations of statistics with quantitative analyses of the optimal statistical combinations, we found that some
statistics play central roles in patient representation and different prediction tasks have certain commonalities.

Conclusion: Through an in-depth analysis of the results, we found many practical reference points that can provide
guidance for subsequent related research. Statistics that indicate dispersion tendency, such as min, max, and range,
are more suitable for length of stay prediction tasks, and they also provide information for short-term mortality
prediction. Mean and quantiles that reflect the central tendency of physiological time series are more suitable for
mortality and disease prediction. Skewness and kurtosis perform poorly when used separately for prediction but can
be used as supplementary statistics to improve the overall prediction effect.
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Background
Clinical prediction tasks such as patient mortality and dis-
ease prediction are highly important for early disease pre-
vention and timely intervention [1, 2]. Patient mortality
prediction in intensive care units (ICUs) is a key applica-
tion for large-scale health data and plays an important role
in selecting interventions, planning care, and allocating
resources. Accurate assessment of mortality risk and early
identification of high-risk populations with poor prog-
noses followed by timely intervention are key in improving
patient outcomes. A preliminary disease diagnosis assists
doctors in making decisions. With the goal of accurately
predicting clinical outcomes, studies have proposedmeth-
ods that include scoring systems and machine learning
models [3, 4]. The scoring systems for mortality predic-
tion in widely clinical use include the Sepsis-relatedOrgan
Failure Assessment (SOFA) [3], the New Simplified Acute
Physiology Score (SAPSII) [5], and the Multiple Organ
Dysfunction Syndrome (MODS) [6]. However, most scor-
ing systems based on simple logistic regression for patient
mortality prediction have limited prediction performance.
With the development of machine learning and deep
learning models, studies have applied trained models to
clinical prediction tasks and achieve better performance
compared to earlier approaches [4, 7].
Feature extraction and patient representation are the

underlying premise for constructing prediction models;
consequently, these factors are important and affect the
prediction performance. An increasing number of mon-
itoring devices and laboratory tests in modern ICUs
collect multivariate time series data of varying lengths
from patients. Variable-length multivariate time series
means that more than one physical measurement will
be collected from a patient after admission to the ICU
and that the sampling frequency of each predictor dif-
fers within a given time window. Overall, patient data
consisting of physiological measurements have typical
characteristics, such as high resolution, varying lengths,
noisy values, and system bias, making the extraction of
the temporal features of time series challenging. Most
of the existing models select specific summary values
for each predictor over a given time period and con-
catenate them to form patient vectors. Statistics are a
form of summary values, and studies have shown that
summary statistics can reflect the characteristics of time
series. Moreover, they have advantages such as simple
extraction, high robustness and strong representativeness
[8–10]. The features of time series can be divided into
three aspects: central tendency, dispersion tendency and
distribution shape. The distribution and trends of time
series can be reflected by combining multiple summary
statistics, thus approximating the original data distribu-
tion and reducing the impact of noise on the prediction
results.

Existing studies based on machine learning models
have mainly used simple summary statistics to sum-
marize time series information, such as maximum and
minimum observations, as of physiological time series
features. However, this lack of more comprehensive sum-
mary statistics leads to a lack of information in phys-
iological time series. In addition, using only the maxi-
mum and minimum statistics to indicate patient features
fails to provide adequate explanations. Despite the like-
lihood that more comprehensive features would have
clinical implications, few existing studies have experimen-
tally evaluated which summary statistics can best repre-
sent physiological time series. In this paper, we report
an exhaustive set of results based on different combi-
nations of summary statistics used as features of phys-
iological time series for three clinical prediction tasks.
The contributions of this study are twofold: on the one
hand, we summarize and use 14 statistics as options
for physiological time series representation compared
with previous studies that used only a few statistics.
On the other hand, we experimentally evaluate the per-
formance of different summary statistics as features of
physiological time series for different prediction tasks
and obtain many conclusions that have practical impli-
cations and can provide guidance for subsequent related
research.
The remainder of this paper is arranged as follows. First,

we outline the related works. Second, we describe our
method and its details and then present the experiments
and results. Next, we discuss the results of the previ-
ous section. Finally, conclusions and future prospects are
provided in the last section.

Related works
Methods for representing physiological time series
The most common method for representing physiolog-
ical time series is to summarize the changing features
of data contained in predictors using summary features
and concatenate them as representative of a patient. Such
statistics are simple and easy to calculate and have wide
applications. Some studies also adopt the first measure-
ment of predictors as the characteristic value of time
series. The statistics used in some of the existing stud-
ies are listed in Table 1. From Table 1; these include
maximum, minimum and mean values, which are widely
used. One reason for their wide use is that these statis-
tics are easy to acquire. Another is that experts tend
to believe that the maximum and minimum observa-
tions reflect the normality or abnormality of the patient
index, while the mean value reflects the average fluctu-
ation range of the index over a period of time. A few
studies have attempted to characterize time series features
using statistics such as standard deviation, median and
skewness.
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Table 1 Statistics used in existing research works

No. Research works Min Max Mean First Others

1 Pollack M M, Patel K M, et al. (1996) [11] � �
2 Ribas V J, Lpez, et al. (2011) [12] �
3 Fialho A S, Cismondi F, et al. (2012) [13] �
4 Bosnjak A, Montilla G (2012) [14] � � � std

5 Wiens J, Horvitz E, et al. (2012) [15] � � � std

6 Eren Gultepe, Jeffrey P Green, et al. (2013) [16] � std, CV, median, IQR

7 Pirracchio R, Petersen M L, et al. (2015) [17] � �
8 Lee J, Maslove D M, et al. (2015) [18] � �
9 NM Arzeno, KA Lawson, et al. (2015) [19] � �
10 Lipton Z C, Kale D C, et al. (2015) [20] �
11 Lee J, Dubin J A, et al.(2016) [21] �
12 Awad A, Baderelden M, et al. (2017) [22] � �
13 Morid M A , Sheng O R L , et al.(2017) [23] � � � � median

14 Harutyunyan H, Khachatrian H, et al. (2017) [9] � � � � std, skew

15 Sherman E, Gurm H, et al. (2017) [24] � � �
16 Purushotham S, Meng C, et al. (2018) [10] � � �
17 Mayhew M B, Petersen B K, et al. (2018) [25] � � � std

In addition to the above studies, many studies have
attempted to fully understand the temporal trends hid-
den in multivariate time series data. Hug et al. considered
a comprehensive set of physiologic measurements and
manually defined a set of trend patterns [26]. McMil-
lan et al. used temporal pattern mining to discover time
series feature patterns [27]. Cohen et al. identified clini-
cally relevant patient physiological states from physiologic
measurements based on hierarchical clustering [28]. Yuan
et al. applied nonnegative matrix factorization to group
trends in a way that approximates patient pathophysio-
logic states [29]. Compared with these methods, patient
representation based on summary statistics is a simple
concept that is easy to calculate and can improve the
interpretability of the results. However, the above studies
based on summary statistics do not provide a clear reason
why only these statistics were selected. It can be surmised
that these choice were subjective and lack theoretical
and experimental support. In addition, relevant research
to determine which summary statistics can achieve the
best performances for physiological time series is lacking.
Therefore, the goals of this paper are to discover statis-
tics that yield important summary performances and thus
provide support for these studies and to improve model
prediction performance based on representations of these
summary statistics.

Feature selection methods
Datasets containing massive amounts of features can
reduce classification accuracy, raise the computational

cost and increase the risk of overfitting [30, 31]. Varying
length multivariate time series can be characterized by
multiple summary statistics; however, some statistics may
contain useless or redundant information, and some fea-
tures may be coupled. If representative features are not
selected, algorithm resources will be consumed, but accu-
rate classification results will not be obtained. Thus, it is
beneficial to use feature selection mechanisms not only
to identify the most representative features but also to
reduce the number of features. To select a suitable combi-
nation of important summary statistics, feature selection
is critical [32]. Previous works used three feature selection
categories: filter methods, wrapper methods and embed-
ded methods. Genetic algorithms are classically used for
feature selection and have wide applicability because they
can overcome the shortcomings of exhaustive methods
that have high time complexity. Additionally, the genetic
algorithm is a feature selection method of combinato-
rial optimization that can fully consider the relationships
between features and find the most suitable feature com-
binations. Many previous works have selected features
based on genetic algorithms and achieved satisfactory
results. Leardi R et al. first proposed that the genetic
algorithm can be a valuable tool for solving feature selec-
tion problems [33]. Mahdi Mohammadi et al. used a
genetic algorithm to identify the most significant features
of EEG signals and find their diagnostic value for depres-
sion [34]. Dino et al. combined a genetic algorithm with
gene expression data to classify gene expression data in
two steps [35]. Lei et al. proposed a new electrocardio-
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graph pattern recognition method by combining a genetic
algorithm with a support vector machine [36].

Method
Clinical prediction tasks include mortality, length of hos-
pital stay, and disease prediction. The distribution charac-
teristics of physiological time series are the manifestations
of physiological states, including dispersion tendency,
central tendency, and distribution shape, and these corre-
spond to multiple statistics. By comparing the effects of
different statistical combinations on different prediction
tasks, the commonalities and differences of the optimal
statistical combinations can be found, which can guide
subsequent prediction tasks. The premise for finding
the best combination of statistics is global search; how-
ever, global search is laborious and difficult in practice.
This paper considers a feature selection method based
on combinatorial optimization, that is, using the genetic
algorithm to find the best combinations of statistics.

Identification of the distribution features of physiological
time series
To characterize the time series distribution features of dif-
ferent predictors, it is critical to explore many different
aspects of the data distribution. Based on statistical theory
and existing research, this paper approximates the orig-
inal data distribution by analysing the central tendency,
the dispersion tendency and the distribution shape of each
predictor. The central tendency reflects the representa-
tive value of the general level of the data or the central
value, including statistics such as the mean, median, mode
and quantile. The dispersion tendency of the distribu-
tion reflects trends describing how far the data are from
the central value, including statistics such as maximum,
minimum, standard deviation, coefficient of variation,

range and interquartile range. The shape of the distribu-
tion reflects whether the distribution is symmetrical, the
degree of skewness and the flatness of the distribution,
including statistics such as skewness and kurtosis.
Figure 1 shows the temperature fluctuation of a patient

within 24 hours of admission to the ICU. The minimum
and maximum values reflect the range of temperature
change of the patients and can reflect the trend of the data
from the centre value. The mean value reflects the aver-
age temperature of the patients over 24 hours and can
reflect the degree to which the data distribution aggre-
gates to its centre value. Furthermore, the mode reflects
the temperature value that appears most frequently within
the 24 hours. The median reflects the average value, and
the quantile reflects values in a specific position. The
range and interquartile range reflect the degree of dif-
ference among the whole data distribution. The variance
and standard deviation reflect the dispersion degree of the
temperature distribution and the stability of the temper-
ature data: a larger variance indicates that the patient’s
temperature fluctuates widely, whichmay indicate that the
disease is more severe. The coefficient of variation also
reflects the degree of discreteness of the data. However,
the central tendency and the dispersion tendency of the
temperature distribution cannot reflect the order of tem-
perature measurements; therefore, the shape of the distri-
bution should be considered. The shape of the distribution
can reflect the evolution of the disease. Skewness can
reflect the symmetry of the data distribution. Generally,
the symmetry of the data distribution can be understood
as the stability of the temperature change. Both left and
right skewness can reflect changes in temperature. Kurto-
sis reflects sharpness of the peak and the peak degree of
the data distribution and reveals the fluctuation trend and
the patients’ physiologic state.

Fig. 1 Temperature fluctuation of a patient within 24 hours of admission to the ICU. The straight line represents the mean temperature within 24
hours
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The summary statistics used in this study included the
13 statistics mentioned above, namely, minimum (min),
maximum (min), mean, standard variation (std), median,
lower quartile (Q1), upper quartile (Q3), mode, range,
interquartile range (IQR), coefficient of variation (CV),
skewness (skew) and kurtosis (kurt). Based on previous
works, the first measurement (first) is also added.

Selection of best statistical combination based on the
genetic algorithm
To explore the impact of different combinations of
statistics on prediction performance and find the opti-
mal combination, we formalize the problem. Let V =
{V1,V2, · · · ,VP} represent a collection of P multivariate
time series. Series Vi consists of a multidimensional time
series of m variables, and the time series of each variable
j has nj observations. For a variable-length time series, nj
may differ for each variable j. Vi can be written as follows:

Vi = {Vijt}, j = 1, 2, · · · ,m; t = 1, 2, · · · , nj. (1)

The j-th component of the i-th time series, that is,
Vi,j = {Vij1,Vij2, · · · ,Vijnj}, is a univariate time series.
For every univariate time series Vij, the different vari-
ables have different dimensions (observations), but every
time series can be represented and transformed into L
summary statistics extracted from the time series. In this
paper, according to the 14 statistics mentioned, we set
L = 14.
Multiple clinical predictors with different sampling fre-

quencies from multiple patients are collected in the ICU.
Thus, V is a set of time series of varying length multi-
variate time series. Specifically, in Formula (1), P repre-
sents the number of patients, m corresponds to predictor
dimensions such as heart rate, blood pressure, tempera-
ture and other vital signs and laboratory predictors and t
is the time measurement point, and the length of t differs
for different predictor sampling frequencies. Thus, Vijt
denotes the t-thmeasurements of the j-th predictor in the
i-th patient. Because of the different sampling frequen-
cies of different predictors in different patients, the total
lengths of the vectors obtained by concatenating them
differ. We can summarize the measurements of different
variables by statistics of fixed numbers and concatenate
them to obtain vectors of the same length for patients. The
time series of patient i after extracting the time series fea-
tures using the L summary statistics can be expressed as
follows:

V ′
i = {Vijk}, j = 1, 2, · · · ,m; k = 1, 2, · · · , L. (2)

Note that different statistics have specific statistical
meanings. Some problems, such as information overlap,
may exist among the statistics. Not all the statistics may
perform well for prediction; thus, using all the statistics
directly to represent a patient will increase the modelling

complexity and can lead to overfitting. Let binary vari-
able xk denote whether statistic k is selected in the best
combination, that is,

xk =
{
0 , statistic k is not selected;
1 , statistic k is selected. (3)

Then, the selection vector X of the best combination of
statistics can be expressed as

X = (x1, x2, · · · , xL) , (4)

and thus, the representation of patient i after statistical
selection can finally be expressed as

V ′
i = {Vijk|xk �= 0}, j = 1, 2, · · · ,m; k = 1, 2, · · · , L.

(5)

To select the combination of statistics that best reflects
the physiological time series, we regard the selection
vector X as an unknown parameter and construct an
objective function to solve the optimization problem. The
optimal objective function can be written as follows:

max
X

E
(
yi, f

(
Vijk|xk �= 0

))
, i = 1, 2, · · · ,P;

j = 1, 2, · · · ,m; k = 1, 2, · · · , L,
(6)

where E is an evaluation function used to measure the
prediction performance; in this study, the area under
the receiver operating characteristic curve (AUROC) is
chosen in this paper. Here, yi is the true label of the
patient in different prediction tasks, and f is the predic-
tion model, which is the random forest algorithm in this
study. Because the objective function in Formula (6) can-
not be written using explicit expression levels, the simplest
and most direct way to find the optimal solution of X
is to adopt a global search strategy, that is, to find the
prediction effect of all statistical combinations and then
select the optimal combination. However, the time com-
plexity of this method is O (2n − 1), which has practical
limitations. The purpose of this paper is to evaluate which
statistical combination is most effective for time series
representation, and the final result of feature selection is
a combination of statistics (such as [minimum, maximum
and mean]). The optimal combination can be achieved by
chromosome coding in a genetic algorithm. The genetic
algorithm is a combinatorial optimization algorithm that
approximates a global search; it can fully consider the
relationships between features and find the most suitable
feature combination.
The parameter settings in the genetic algorithm are as

follows. (1) Coding and decoding: Because the selection
vector of summary statistics is a binary variable, we use
binary coding, and no decoding process is needed. (2)
Population: We select the size of the population as 20,
and the initial population is generated randomly. (3) Fit-
ness function: In this paper, we select the AUROC as the
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fitness function to select the feature subset with a better
classification effect. The fitness function corresponds to E
in Formula (6). (4) Genetic operators: We use the roulette
wheel selection scheme as the selection strategy, single
point crossover with a probability of 0.6 as the cross strat-
egy and uniform mutation with a probability of 0.1 as the
mutation strategy. (5) Termination condition: To deter-
mine the convergence of the algorithm adaptively during
the iteration process, the termination condition for the
genetic algorithm used in this paper combines the max-
imum genetic algebra with the stationary fitness value.
When the continuous fluctuation range of the fitness
value is less than the specified threshold or the genetic
algebra is larger than the specified algebra, the solution of
the algorithm is complete.
To avoid optimistically biased performance estimates

from conducting feature selection on the full dataset, we
refer to previous work by Ozcift and Gulten, who embed-
ded a genetic algorithm for feature selection into Bayesian
network classifier training using a nested cross-validation
approach [37]. The general flow of feature selection with
the genetic algorithm is given in Table 2. The feature
selection based on the genetic algorithm is embedded
in a 5-fold cross-validation. For each fold of test data, a
set of summary statistics will be obtained by the genetic
algorithm; thus, five groups of summary statistics will be
obtained under 5-fold cross-validation. Then, based on
the summary statistics of each group, the random forest
model is used for prediction, and the mean and standard
error of the metrics index is taken as the experimental
result.

Experiments and results
We explored the performances of different statistical com-
binations for different clinical prediction tasks, including
patient mortality, length of hospital stay and disease pre-
diction, and obtained the optimal statistical combination
based on a genetic algorithm. Then, we analysed the
results to find the commonalities and differences of the
optimal combinations under different tasks.

Dataset and preprocessing
We used the MIMIC-III dataset collected from a vari-
ety of ICUs between 2001 and 2012 [38]. MIMIC-III
is a large, freely available critical care database devel-
oped by the Laboratory for Computational Physiology
of Massachusetts Institute of Technology (MIT). The
database integrates deidentified, comprehensive, health-
related data of 58,976 admissions admitted to the ICU of
the Beth Israel Deaconess Medical Center (BIDMC) in
Boston, Massachusetts.
To reflect the universality of the results, we did not

target patients with a certain disease, but accepted all
patients. After removing duplicates, we obtained a total

Table 2 The general flow of feature selection by the genetic
algorithm

Divide data into k=5 folds

for k=1 to 5

Assign

A = test data (1 fold reserved for random forest)

B = train data (3 folds train for random forest)

C = validation data (1 fold validation for random forest)

Repeat for train and validation data

step 1: Encode features as binary chromosomes

step 2: Generate a population of 20 chromosomes randomly

step 3: Evaluate AUROC of random forest algorithm for step 2

step 4: Determine if termination conditions are met

if yes:

Terminate

else:

step 5.1: Apply Single point crossover with probability

of 0.6

step 5.2: Apply uniform mutation with probability of 0.1

step 5.3: Calculate AUROC of new chromosomes by

random forest and compare it with step 3

step 5.4: Select best chromosomes with highest fitness

step 5.5: Replace chromosomes with lowest fitness,

back to step 4

Train random forest with data (B+C) based on statistics obtained by

the genetic algorithm

Test random forest with data (A)

Calculate AUROC for fold k

End for

Calculate average AUROC for 5 folds

of 42,145 admission records; patients less than 15 years of
age were excluded. To prevent possible information leak-
age and to ensure similar experimental settings compared
with related works, we used only the first ICU admission
for each patient [39]. In the MIMIC-III database, bed-
side monitoring data, laboratory test data, input events
and output events all consist of time series with time
tags. The data for the predictors selected in this paper
came from three tables: chartevents, labevents and out-
putevents. Following the related research, we chose the
predictors used in SAPS II, as shown in Table 3 [10, 17, 21].
For each predictor, we used raw data instead of calculated
data. For example, we treated GCSVerbal, GCSMotor, and
GCSEyes from the Glasgow Coma Scale (GCS) score as
separate features. All the extracted predictors shown in
the table came from the first 24 hours after the patient was
admitted to the ICU.
Data preprocessing mainly included processing missing
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Table 3 Predictors used in the experiments

Feature Item ID Item Name Table

Glasgow
Coma Scale

184 GCSEyes chartevents

220739 Eye Opening chartevents

454 GCSMotor chartevents

223901 Motor Response chartevents

723 GCSVerbal chartevents

223900 Verbal Response chartevents

White Blood
Cells Count

51301 White Blood Cells labevents

51300 WBC Count labevents

Potassium
Level

50971 Potassium labevents

50822 Potassium, whole
Blood

labevents

Po2 50821 pO2 labevents

Serum
Bicarbonate
Level

50882 Bicarbonate labevents

Sodium
Level

50983 Sodium labevents

Urea
Nitrogen
(Bun)

51006 Urea Nitrogen labevents

Bilirubin,
Total

50885 Bilirubin, Total labevents

Temperature 678 Temperature_F chartevents

223761 Temperature_Fahrenheit chartevents

676 Temperature_C chartevents

223762 Temperature_Celsius chartevents

Urine
Output

40055 Urine Out Foley outputevents

FiO2 223835 Inspired O2 Fraction chartevents

190 FiO2 Set chartevents

Heart
Rate(HR)

211 Heart Rate chartevents

220045 Heart Rate chartevents

Systolic
Blood Pres-
sure(SBP)

220179 Noninvasive Systolic
Blood Pressure

chartevents

455 NBP[Systolic] chartevents

Age - - patients

Admission_Type - - admissions

values, noisy values and duplicate values. The missing
value processing process was divided into three aspects:
patients, predictors and statistics. We eliminated patients
missing more than 30% of their data and predictors miss-
ing more than 40%. Because the sampling frequency of
each predictor is different and the calculation of statistics
such as std, kurt and skew have requirements for sampling

frequency, some indicators with very low sampling fre-
quency led to the inability to calculate those statistics. We
eliminated the statistics in which themissing data rate was
greater than 20% under these indicators. Then, we used
mean interpolation to interpolate the remaining missing
values. Abnormal values were processed for each predic-
tor. The outliers were found and dealt with by the box-plot
combined with the clinical normal range of the different
predictors. For example, to protect information about sur-
viving patients older than 90 years old, the age of these
patients is recorded as 300 years old. Here, we replaced
it with the median value. In addition, duplicate records
were deleted, and inconsistent units were converted. For
the interval value, we chose the median value to represent
the predictor value of the time point. Ultimately, 6,927
admission records remained after preprocessing. Figure 2
shows the patient cohort selection inclusion criteria and
the data extraction process, and Table 4 shows the baseline
characteristics and outcome measure of our dataset. The
median age of the adult patients was 65 years, and 58.8%
of patients were male. In-hospital mortality was approx-
imately 19.5%, and the median length of stay in the ICU
was 4.7 days. We did not process non-time series predic-
tors such as age and sex. For the time series predictors,
we calculated 14 statistics, including min, max, mean, std,
median, Q1, Q3, mode, range, IQR, CV, skew, kurt and
the first measurement of each predictor from the first 24
hours after admission to the ICU.

Clinical prediction tasks
The clinical prediction tasks selected in the experiment
included patient mortality, length of hospital stay, and dis-
ease prediction. Mortality prediction is a primary patient
outcome, including short-term, in-hospital and long-term
mortality. In the experiment, whether the patient died
within 72 hours after entering the ICU was selected as
the short-term mortality label, and the 30-day and 1-
year mortality rates were used as the long-term mortality
label. The length of the hospital stay of an admission can
be defined as the time interval between admission and
discharge; we calculated the length of hospital stay for
each admission in hours. When a patient is discharged,
there will be multiple diagnosis, which are represented by
the ICD(international statistical classification of disease)-
9 diagnosis codes. We followed [10] and divided all
the ICD-9 codes into 20 diagnostic groups; each diag-
nostic group had similar diseases (e.g. respiratory sys-
tem diagnosis). Thus, the task of disease prediction is
transformed into the task of predicting the ICD-9 code
groups.

Experimental design
For the three prediction outcomes, we approximated a
global search to obtain the best combination of statistics
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Fig. 2 Patient cohort selection inclusion criteria and data extraction process. Adult patients at their first hospital admission with a low missing data
rate were selected as the patient cohort, and then, the clinical data of these patients, such as cohort demography, vital signs, and laboratory
examinations, were extracted

using a genetic algorithm. To improve the generalizabil-
ity of the statistical combinations obtained by the genetic
algorithm, we embedded the genetic algorithm in a cross-
validation procedure, as shown in Table 2. For each data
fold, we obtain a set of optimal statistical combinations
(i.e., fivefold cross-validation yields 5 sets of statistical
combinations). To reduce the effect of randomly par-
titioning the data during cross-validation, we repeated
the entire process five times, selecting different random
seeds for dividing the data each time. For the 25 sets
of statistical combinations obtained under each predic-
tion task, on the one hand, we compared their prediction
performance with the combination of statistic commonly
used in previous studies, and on the other hand, we
conducted an in-depth analysis of these combinations.
Then, we constructed two indexes to quantify the impor-
tance of different statistics used for prediction (see the
Discussion section). The most important statistics were
found by comparing the commonalities and differences of
the optimal combination of statistics under different pre-
diction tasks. As performance measures, we choose the
AUROC and the area under the precision-recall curve
(AUPRC) for the classification tasks and Mean Squared
Error (MSE) for the regression tasks. AUROC andAUPRC
evaluate the discrimination ability of the model, namely,
the ability to assign higher severity scores to patients

who died in the hospital compared with those who did
not. The higher the AUROC and the AUPRC are, the
better the model is. We calculated the mean and stan-
dard error of AUROC, AUPRC and MSE scores based on
cross-validation as the final result.
All the experiments in this paper were programmed in

the Python language, using Spyder 3.6 on a PC equipped
with an Intel (R) Core (TM) i7-6700 CPU@ 3.40 GHz pro-
cessor. The iterations of the genetic algorithm were termi-
nated when the fluctuation in the fitness value became less
than δ = 10−3 for 50 consecutive iterations or when the
total number of iterations exceeded 200. The crossover
probability was set to 0.6, the mutation probability of
the genetic algorithm was set to 0.1, and the size of the
population was set to 20.

Results
We report the results under different prediction tasks sep-
arately. For each prediction task, we list the prediction
results based on a single statistic, commonly used com-
binations of statistics, and the optimal combinations of
statistics obtained by the genetic algorithm.

Results of mortality prediction
Patient mortality prediction tasks are divided into short-
term, in-hospital, and long-term mortality prediction by
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Table 4 Baseline characteristic and mortality outcome measures. Categorical variables are presented as counts (%), and continuous
variables are presented as medians [inter-quartile range Q1-Q3]

Overall Died in the hospital Survived in the hospital

General
Admissions 6927 1350 5577
Age 65.0 [53.0,77.0] 71.0 [58.0,81.0] 64.0 [52.0,75.0]
Gender (Female) 2853 (41.2%) 602 (44.6%) 2251 (40.4%)
First SOFA 6.0 [4.0,8.0] 8.0 [5.0,11.0] 5.0 [4.0,8.0]
First SAPS 21.0 [18.0,25.0] 24.0 [21.0,28.0] 21.0 [18.0,24.0]
First SAPS II 41.0 [32.0,52.0] 53.0 [44.0,64.0] 39.0 [31.0,49.0]

Origin
Elective 1269 (18.3%) 64 (4.7%) 1205 (21.6%)
Emergency 5463 (78.9%) 1237 (91.6%) 4226 (75.8%)
Urgent 195 (2.8%) 49 (3.6%) 146 (2.6%)

Site
MICU 1974 (28.5%) 600 (44.4%) 1374 (24.6%)
SICU 1359 (19.6%) 266 (19.7%) 1093 (19.6%)
CCU 660 (9.5%) 163 (12.1%) 497 (8.9%)
CSRU 1599 (23.1%) 98 (7.3%) 1501 (26.9%)
TSICU 1335 (19.3%) 223 (16.5%) 1112 (19.9%)

Lab Results
HR (BPM) 88.0 [76.0,102.0] 92.0 [78.0,109.0] 87.0 [76.0,100.0]
NBP (MMHG) 113.0 [100.0,130.0] 109.0 [95.0,127.0] 114.0 [101.0,129.0]
RR (CPM) 20.56 [17.71-23.88] 20.78 [17.90-24.19] 20.31 [17.57-23.53]
NA (MMOL/L) 139.0 [137.0,142.0] 140.0 [136.0,143.0] 139.0 [137.0,142.0]
K (MMOL/L) 4.1 [3.8,4.6] 4.2 [3.7,4.7] 4.1 [3.8,4.6]
HCO3 (MMOL/L) 23.0 [19.0,25.0] 21.0 [17.0,24.0] 23.0 [20.0,26.0]
WBC (103/MM3) 11.7 [8.2,16.1] 12.3 [7.5,17.8] 11.7 [8.4,15.8]
P/F Ratio 235.13 [227.10-235.13] 235.13 [207.50-235.23] 235.13 [235.13-235.13]
Ht (%) 28.40 [25.00-32.30] 27.90 [24.40-31.70] 29.10 [25.80-32.70]
Urea (mmol/l) 77.79 [46.35-120.52] 70.27 [34.77-94.43] 104.25 [60.69-140.53]
Bilirubin (mg/dl) 1.00 [0.50-2.36] 1.25 [0.50-2.88] 0.88 [0.45-1.66]

Outcomes
ICU LOS (days) 4.7 [2.4,10.5] 5.7 [2.7,11.7] 4.5 [2.3,10.2]
ICU Death (%) 1129 (16.3%) 1129 (83.6%) -
Hospital Death (%) 1350 (19.5%) 1350 (100%) -

survival time. In the experiment, the mortality of patients
at 72 hours, in-hospital, 30 days and 1 year were predicted
based solely on patients data collected within 24 hours
after they entered the ICU. A single statistic can directly
reflect the prediction effect. Table 5 shows the AUROC
and AUPRC of the 14 selected statistics applied separately
for the four mortality prediction tasks. When using a sin-
gle statistic for mortality prediction, mean, median and
Q3 achieved the best results under different prediction
tasks. In other words, the statistic that reflects the concen-
trated trend of the physiological time series achieved the
best and near-best prediction results on the mortality pre-
diction task whether in the short or long term prediction.
In addition, for short-termmortality prediction, the effect
of the max statistic is also significantly greater, which is a
statistic that reflects dispersion trends. It is not difficult
to understand that if the short-termmortality is predicted

using the data of patients 24 hours after entering the ICU,
the values that will be significantly related to the pre-
dictive label are the degrees of fluctuation of the patient
predictors. If the predictors are relatively stable, patient
state can also be considered relatively stable. In contrast,
large fluctuations are considered to indicate an unstable
patient condition; such patients have a higher mortality
rate. For the long-term prediction, the average levels of
the predictors at a certain stage are closely related to the
prediction results over extended periods. If the predictor
remain at a consistently abnormal level, the mortality rate
is higher over longer time spans.
Table 6 provides the results of mortality prediction by

the commonly used combinations of statistics including
[mean], [first], [min, max], [min, max, min] and [min,
max, mean, std]. Using a single statistic to represent phys-
iological time series obviously leads to information loss
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Table 5 Performance of mortality prediction by a single statistic

Statistic AUROC AUPRC AUROC AUPRC

72-hour in-hospital

min 0.8113±0.0023 0.1974±0.0040 0.7869±0.0028 0.4627±0.0073
max 0.8310±0.0034 0.2178±0.0081 0.8101±0.0013 0.4826±0.0035
range 0.7789±0.0077 0.1782±0.0065 0.7622±0.0014 0.4188±0.0048
mean 0.8517±0.0033 0.2282±0.0071 0.8248±0.0016 0.5128±0.0050
std 0.7671±0.0017 0.1625±0.0026 0.7585±0.0014 0.4096±0.0072
CV 0.7739±0.0033 0.1495±0.0054 0.7545±0.0015 0.4046±0.0037
median 0.8498±0.0048 0.2191±0.0061 0.8234±0.0017 0.5091±0.0041
Q1 0.8330±0.0034 0.2042±0.0044 0.8085±0.0013 0.4918±0.0027
Q3 0.8467±0.0010 0.2224±0.0089 0.8233±0.0020 0.5094±0.0036
IQR 0.7463±0.0064 0.1287±0.0043 0.7447±0.0021 0.3854±0.0031
mode 0.8395±0.0014 0.1995±0.0023 0.4804±0.0059
skew 0.6886±0.0039 0.0890±0.0018 0.7074±0.0008 0.3418±0.0027
kurt 0.6492±0.0118 0.0840±0.0042 0.6908±0.0018 0.3301±0.0025
first 0.7206±0.0054 0.1115±0.0025 0.7366±0.0017 0.3665±0.0014

30-day 1-year
min 0.7508±0.0015 0.5126±0.0043 0.7674±0.0009 0.7203±0.0026
max 0.7671±0.0028 0.5237±0.0063 0.7790±0.0021 0.7289±0.0033
range 0.7590±0.0018 0.5211±0.0059 0.7597±0.0013 0.7070±0.0028
mean 0.7716±0.0033 0.5314±0.0049 0.7838±0.0017 0.7324±0.0034
std 0.7609±0.0027 0.5239±0.0053 0.7608±0.0033 0.7087±0.0049
CV 0.7482±0.0025 0.5188±0.0033 0.7526±0.0011 0.6991±0.0022
median 0.7675±0.0022 0.5319±0.0042 0.7789±0.0021 0.7279±0.0039
Q1 0.7632±0.0027 0.5274±0.0047 0.7739±0.0017 0.7247±0.0023
Q3 0.7757±0.0025 0.5368±0.0032 0.7808±0.0020 0.7310±0.0034
IQR 0.7533±0.0037 0.5212±0.0024 0.7505±0.0016 0.6956±0.0016
mode 0.7611±0.0022 0.5280±0.0066 0.7700±0.0022 0.7205±0.0023
skew 0.7304±0.0020 0.5020±0.0033 0.7233±0.0023 0.6728±0.0054
kurt 0.7210±0.0025 0.5017±0.0065 0.7196±0.0015 0.6781±0.0024
first 0.7597±0.0036 0.5281±0.0069 0.7561±0.0018 0.7031±0.0028

and affects the prediction effect. Although the mean per-
forms best as a single statistic, its prediction effect is
worse than the prediction effect from combining mul-
tiple statistics. The first measurement, which has been
used in previous studies, performed the worst; there-
fore, if only one statistic is used, the first value should

not be applied, revealing irrationality in some previous
studies. For the different prediction tasks (short-term, in-
hospital and long-term mortality), [min, max], [min, max,
mean], and [min, max, mean, std] top the list. [min, max,
mean] performs best for 72-hour short-term mortality
and in-hospital mortality prediction, which shows that the

Table 6 Performance of mortality prediction by commonly used combinations of statistics

Statistic AUROC AUPRC AUROC AUPRC

72-hour in-hospital
mean 0.8517±0.0033 0.2282±0.0071 0.8248±0.0016 0.5128±0.0050
first 0.7206±0.0054 0.1115±0.0025 0.7366±0.0017 0.3665±0.0014
min, max 0.8590±0.0042 0.2558±0.0080 0.8308±0.0021 0.5289±0.0042
min, max, mean 0.8607±0.0021 0.2494±0.0031 0.8310±0.0012 0.5297±0.0030
min, max, mean, std 0.8589±0.0022 0.2498±0.0058 0.8282±0.0005 0.5262±0.0020

30-day 1-year
mean 0.7716±0.0033 0.5314±0.0049 0.7838±0.0017 0.7324±0.0034
first 0.7597±0.0036 0.5281±0.0069 0.7561±0.0018 0.7031±0.0028
min, max 0.7760±0.0021 0.5351±0.0031 0.7844±0.0011 0.7298±0.0020
min, max, mean 0.7734±0.0017 0.5353±0.0041 0.7840±0.0022 0.7330±0.0049
min, max, mean, std 0.7770±0.0016 0.5430±0.0058 0.7872±0.0020 0.7391±0.0030
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combination of dispersion and central tendency is better.
It is further demonstrated that for short-term prediction,
statistics that reflect the dispersion tendency have a bet-
ter representation effect and can reveal fluctuations in
the patient’s physiological state. For longer-termmortality
prediction tasks (such as 30-day and 1-year), the addition
of the std statistic enriches the physiological time series
fluctuation information. Even knowing the min, max and
mean value of the physiological time series, it is difficult
for these statistics to reflect violent fluctuations in the
patient’s physiological state. Long-term prediction causes
a reduction in the time dependence of the prediction;
thus, more information needs to be added to achieve good
results.
Tables 7, 8, 9, 10 presents the optimal ten combina-

tions of statistics obtained by the genetic algorithm and
their performances for short-term, in-hospital and long-
termmortality prediction. As shown, the prediction effect
of the optimal combination of statistics obtained by the
genetic algorithm is rarely weaker than the prediction
effect of the commonly used combinations of statistics.
As the prediction interval is extended, the prediction
performance decreases, which indicates that predicting
long-term mortality based only on data collected within
24 hours after patient entering the ICU not ideal. For
short-term mortality prediction tasks, Q1 and Q3 appear
more frequently. And the statistics that show dispersion
tendency also appear frequently, such as min, max and
so on. Skew and kurt, two statistics that describe the
shape of the time series distribution and are often ignored,
appear quite frequently and reflect the role of these two
statistics in supplementing the other available informa-
tion. Under longer-termmortality prediction tasks, mean,
Q1 and Q3, which are concentrated statistics, also achieve
better results. Combining statistics such as min, max, and
mean can better characterize the distribution of phys-
iological time series. In addition, the commonly used

combinations of statistics such as [min, max] and [min,
max, mean, std] also achieve good prediction results
on both in-hospital and long-term mortality prediction
tasks. In other words, this paper used experiments to
demonstrate why the existing studies chose these particu-
lar statistical combinations to represent physiological time
series.

Results of length of hospital stay
Table 11 shows the performance of a single statistic for
length of hospital stay prediction. A certain level of cor-
relation exists between the length of hospital stay and
mortality prediction. Generally, patients with higher mor-
tality have more severe symptoms; consequently, their
hospital stays are relatively long. Consistent with mortal-
ity prediction, range works best when based on a single
statistic. At the same time, std, CV, and IQR, which reflect
the dispersion tendency, have better effects. In addition to
indicating the dispersion tendency, the better performing
statistics also constitute crossover features, just as range =
max−min. Therefore, the importance of cross features is
self-evident.
Table 12 shows the performances of commonly used

combinations of statistics for predicting length of hospi-
tal stay. [min, max, mean, std] corresponds to the smallest
MSE and the best prediction performance. Table 13 shows
the optimal ten combinations of statistics obtained by the
genetic algorithm and their prediction performances for
length of hospital stay prediction. The effect of the com-
binations of statistics obtained by the genetic algorithm
is superior to the effect of the common combinations of
statistics. Range appears in each group, illustrating the
validity of this statistic for predicting the length of hos-
pital stay of patients. A larger range indicates an unstable
condition, and patients with unstable conditions will nat-
urally be hospitalized longer. In contrast, statistics such as
the mean, which reflects the central tendency, appear less

Table 7 The optimal ten combinations of statistics obtained by the genetic algorithm and their prediction performance for 72-hour
mortality prediction

Combination AUROC AUPRC

min, max, mean, median, Q1, IQR, kurt 0.8627±0.0023 0.2493±0.0114

min, max, CV, Q1, Q3, IQR, kurt 0.8620±0.0027 0.2398±0.0028

min, max, range, mean, Q1, Q3, IQR, skew 0.8609±0.0041 0.2427±0.0072

min, max, mean, std, Q3 0.8609±0.0022 0.2471±0.0031

min, std, median, Q1, Q3, skew 0.8607±0.0041 0.2444±0.0074

min, max, mean 0.8607±0.0021 0.2494±0.0031

max, mean, Q1, Q3, IQR, kurt 0.8606±0.0056 0.2455±0.0102

min, mean, std, median, Q1, Q3 0.8605±0.0025 0.2485±0.0060

min, max, range, mean, CV, Q1, Q3, kurt 0.8604±0.0023 0.2454±0.0050

min, max, mean, CV, median, Q1, Q3, IQR, kurt 0.8603±0.0033 0.2433±0.0102
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Table 8 The optimal ten combinations of statistics obtained by the genetic algorithm and their prediction performances for
in-hospital mortality prediction

Combination AUROC AUPRC

min, max, range, median 0.8316±0.0015 0.5308±0.0042

min, max, mean 0.8310±0.0012 0.5297±0.0030

min, max 0.8308±0.0021 0.5289±0.0042

min, max, CV, Q1, Q3, kurt, first 0.8285±0.0012 0.5268±0.0046

max, range, Q1, IQR, mean 0.8280±0.0012 0.5236±0.0027

range, mean, std, median, Q1, Q3 0.8267±0.0008 0.5225±0.0025

min, std, Q1, Q3, skew, first 0.8261±0.0014 0.5234±0.0025

range, mean, std, median, Q1, Q3 0.8257±0.0014 0.5216±0.0034

min, mean, std, IQR, Q1, kurt 0.8254±0.0014 0.5198±0.0041

min, range, std, median, Q3, skew, first 0.8253±0.0017 0.5225±0.0034

Table 9 The optimal ten combinations of statistics obtained by the genetic algorithm and their prediction performances for 30-day
mortality prediction

Combination AUROC AUPRC

min, max, mean, CV, skew, first 0.7780±0.0028 0.5351±0.0061

min, max, mean, std 0.7770±0.0016 0.5430±0.0058

mean, std, CV, Q1, min, skew 0.7749±0.0027 0.5338±0.0058

min, max, std, CV, Q1, Q3, kurt 0.7746±0.0015 0.5311±0.0061

min, range, std, Q1, Q3, skew, kurt, first 0.7742±0.0015 0.5368±0.0027

min, range, Q3, skew 0.7741±0.0020 0.5348±0.0048

max, IQR, kurt 0.7740±0.0011 0.5332±0.0049

min, range, mean, Q3, IQR 0.7735±0.0015 0.5334±0.0045

min, max, CV, skew, first 0.7732±0.0040 0.5296±0.0083

min, max, Q1, Q3, skew 0.7731±0.0015 0.5328±0.0036

Table 10 The optimal ten combinations of statistics obtained by the genetic algorithm and their prediction performance for 1-year
mortality prediction

Combination AUROC AUPRC

max, mean, std, Q1, kurt 0.7876±0.0014 0.7408±0.0026

min, max, mean, std 0.7872±0.0020 0.7391±0.0030

range, mean, std, mode 0.7852±0.0020 0.7290±0.0021

std, CV, Q1, Q3, skew, kurt 0.7846±0.0031 0.7299±0.0047

min, max, range, Q1, skew, kurt 0.7846±0.0024 0.7347±0.0024

range, CV, Q1, Q3, mode, skew, kurt 0.7834±0.0012 0.7293±0.0031

mean, std, Q1, Q3, skew, first 0.7831±0.0010 0.7276±0.0013

range, median, Q3, mode, first 0.7823±0.0015 0.7263±0.0023

range, mean, CV, Q3, skew 0.7821±0.0012 0.7275±0.0019

max, range, mean, std, CV, median 0.7819±0.0013 0.7258±0.0016
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Table 11 Performances of single statistics for predicting length
of hospital stay

Statistic MSE

min 59562.72±309.59

max 54602.26±296.81

range 47071.82±273.31

mean 58583.26±395.47

std 48985.76±321.89

CV 50047.97±336.91

median 59286.18±397.62

Q1 59449.26±330.22

Q3 58534.13±363.85

IQR 51209.18±269.86

mode 60160.49±351.09

skew 58055.02±333.20

kurt 57259.82±178.34

first 61832.78±246.62

frequently. When predicting the length of hospital stay,
the stability of the patient’s condition is the most impor-
tant factor; thus, statistics that indicate the dispersion
tendencies of time series function better.

Results of disease prediction
We treat disease prediction as a multilabel classification
task and calculate the AUROC and AUPRC. Table 14
shows the performances of single statistics for disease pre-
diction. On this task, a comparison of the results shows
that the mean, median, Q1, Q3 and other statistics that
reflect centralized trends have the best effect. In contrast,
the effects of statistics that reflect the dispersion tendency
are not very good. The performances of skew and kurt,
which reflect the shape of the time series distribution, are
the worst. This result shows that if only one statistic is
used for patient disease prediction, the shape of the dis-
tribution is unimportant; the level of the value is more
important.
The corresponding prediction performances of com-

binations of multiple statistics are shown in Table 15.

Table 12 Performances of commonly used combinations of
statistics for predicting length of hospital stay

Combination MSE

mean 58583.26±395.47

first 61832.78±246.62

min, max 48969.03±508.88

min, max, mean 49890.57±383.63

min, max, mean, std 46459.67±181.91

Table 13 The optimal ten combinations of statistics obtained by
the genetic algorithm and their prediction performances for
predicting length of hospital stay

Combination MSE

min, max, range, std, CV, Q1, Q3, kurt, first 43827.77±227.26

min, max, range, CV, median, skew, kurt 43854.10±405.73

min, max, range, CV, median, Q3, skew 43854.53±297.85

max, range, mean, std, kurt 43868.48±314.05

range, CV, Q3, kurt, first 43879.73±302.22

min, range, CV, Q3, IQR, skew, kurt, first 43985.47±313.01

min, range, CV, Q3, skew, kurt, first 44200.31±188.89

min, range, CV, IQR, skew, first 44308.55±276.67

max, range, mean, std, Q1, IQR, skew, kurt, first 44318.11±323.34

min, max, range, mean, std, median, Q1, Q3, IQR, skew 44334.44±301.66

Among the five commonly used combinations, it is sur-
prising that the single mean statistic works best—even
better than combinations of multiple statistics. From
the optimal ten combinations obtained by the genetic
algorithm shown in Table 16, we can see that the
mean statistic appears in almost all the combinations,
indicating its core role in disease prediction. Furthermore,
min, max, and range are evenly distributed among the
multiple combinations. We speculate that these metrics
provide good auxiliary data for disease prediction; how-
ever, using these statistics alone does not result in good
prediction.
In summary, through the analysis of the prediction per-

formances of different prediction tasks based on single
statistics, commonly used combinations of statistics, and

Table 14 Performances of single statistics for disease prediction

statistic AUROC AUPRC

min 0.6460±0.0097 0.4416±0.0131

max 0.6494±0.0108 0.4431±0.0086

range 0.6371±0.0097 0.4208±0.0134

mean 0.6602±0.0080 0.4470±0.0124

std 0.6271±0.0162 0.4230±0.0153

CV 0.6173±0.0127 0.4094±0.0152

median 0.6506±0.0073 0.4454±0.0110

Q1 0.6503±0.0124 0.4396±0.0121

Q3 0.6561±0.0070 0.4457±0.0070

IQR 0.6174±0.0142 0.4211±0.0106

mode 0.6369±0.0128 0.4364±0.0138

skew 0.5893±0.0159 0.3945±0.0110

kurt 0.5915±0.0082 0.3923±0.0111

first 0.6486±0.0158 0.4393±0.0082
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Table 15 Performances of commonly used combinations of
statistics for disease prediction

Combination AUROC AUPRC

mean 0.6602±0.0080 0.4470±0.0124

first 0.6486±0.0158 0.4393±0.0082

min, max 0.6558±0.0179 0.4488±0.0079

min, max, mean 0.6477±0.0126 0.4462±0.0169

min, max, mean, std 0.6578±0.0169 0.4483±0.0096

approximately optimal combinations of statistics obtained
by the genetic algorithm, we discovered many interesting
and clinically significant phenomena. We have indirectly
demonstrated the rationality of using various combina-
tions of statistics that were applied in previous research.
Additionally, we found the statistics that are extremely
important in clinical prediction tasks, which can provide
guidance for future research.

Discussion
In the experiments, we used a genetic algorithm to obtain
combinations with approximately optimal prediction
results for different prediction tasks. Taking 72-hour mor-
tality prediction as an example, the 5-fold cross-validation
genetic algorithm was repeated 5 times to obtain 25
groups of combinations. Each group corresponds to mul-
tiple statistics, and the prediction performance varies
among the different combinations. Which statistics
appear most frequently and which statistics will achieve
better prediction results are meaningful research ques-
tions. In the previous chapter, we performed a rough
analysis. In this chapter, we quantitatively analyse the fre-
quency of each statistic in the optimal combinations and
the mean values of indexes under different tasks. Since we

chose random forest as the classifier in the experiments,
it is necessary to verify the performances of other classi-
fiers based on the obtained statistics. So we also discuss
this issue.
Tables 17, 18, and 19 show the results of each

statistic regarding patient mortality, length of hos-
pital stay and disease prediction, respectively. Fre-
quency represents the number of occurrences of a
statistic in the 25 combinations, and Mean_AUROC
and Mean_AUPRC represent the average AUROC and
AUPRC for all the combinations in which the statistic
appears.
In the mortality prediction task, the statistics with the

highest frequency for 72-hour short-term mortality pre-
diction are min, max, Q1 and Q3. The mean_AUROC and
mean_AUPRC values corresponding to median and Q1
are high, while first are low. Statistics that embody the
dispersion tendency, such as min and max, play a central
role in short-term mortality prediction, while statistics
such as first are more irrelevant to patients’ physiological
status information. For the in-hospital mortality predic-
tion task, min and std occurred most frequently, and
min and max achieved the highest Mean_AUROC and
Mean_AUPRC, respectively. For the long-term mortality
prediction task, min, std, and kurt performed best. Kur-
tosis and skew measures have rarely been used in pre-
vious studies to measure the shapes of physiological
time series distributions. However, the experiments in
this paper show that these two statistics provide sup-
plementary information and should not be discarded.
Apart from this lack, we can clearly see that the statis-
tics widely used in previous studies have indeed played a
better role in predicting mortality. When predicting the
length of hospital stay, range appears most often, and
its effect is the best. In the disease prediction task, the
most frequent occurrence is std, but the measures that

Table 16 The optimal ten combinations of statistics obtained by the genetic algorithm and their prediction performances for disease
prediction

Combination AUROC AUPRC

max, mean, Q3, IQR, first 0.6610±0.0088 0.4455±0.0127

max, mean, std, Q1, IQR, mode, first 0.6585±0.0119 0.4483±0.0104

min, range, std, median, Q3, mode, skew, first 0.6581±0.0132 0.4462±0.0123

range, mean, std, mode 0.6569±0.0096 0.4450±0.0131

max, std, CV, Q3, IQR, kurt, first 0.6568±0.0100 0.4430±0.0106

max, range, mean, std, CV, median 0.6565±0.0115 0.4442±0.0080

range, mean, std, CV, Q1, IQR, skew, first 0.6563±0.0068 0.4435±0.0100

min, max, mean, std, CV, Q1, IQR, kurt 0.6553±0.0141 0.4429±0.0105

range, mean, std, median, Q1, Q3 0.6546±0.0116 0.4556±0.0113

min, mean, std, median, mode 0.6540±0.0137 0.4546±0.0106
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Table 17 Quantitative analysis results of each statistic for mortality prediction

Statistic Frequency Mean_AUROC Mean_AUPRC Frequency Mean_AUROC Mean_AUPRC

72-hour In-hosp
min 22 0.8598 0.2447 14 0.8262 0.5221
max 22 0.8597 0.2446 12 0.8264 0.5222
range 7 0.8592 0.2429 8 0.8258 0.5215
mean 17 0.8598 0.2453 12 0.8253 0.5197
std 10 0.8594 0.2459 14 0.8245 0.5195
CV 9 0.8596 0.2433 8 0.8242 0.5187
median 5 0.8605 0.2461 13 0.8249 0.5205
Q1 20 0.8599 0.2440 11 0.8255 0.5208
Q3 20 0.8597 0.2438 13 0.8249 0.5201
IQR 12 0.8599 0.2443 9 0.8245 0.5191
mode 3 0.8592 0.2463 7 0.8235 0.5179
skew 5 0.8596 0.2429 13 0.8241 0.5192
kurt 14 0.8598 0.2443 12 0.8244 0.5180
first 3 0.8584 0.2429 11 0.8248 0.5192

30-day 1-year
min 17 0.7726 0.5323 5 0.7830 0.7311
max 14 0.7721 0.5305 13 0.7819 0.7280
range 12 0.7710 0.5306 12 0.7817 0.7269
mean 14 0.7718 0.5312 16 0.7819 0.7274
std 12 0.7722 0.5314 17 0.7820 0.7272
CV 12 0.7719 0.5305 12 0.7813 0.7258
median 10 0.7704 0.5289 7 0.7810 0.7259
Q1 14 0.7712 0.5302 15 0.7819 0.7275
Q3 12 0.7715 0.5305 10 0.7816 0.7262
IQR 11 0.7708 0.5298 8 0.7802 0.7242
mode 12 0.7699 0.5285 10 0.7814 0.7262
skew 17 0.7717 0.5308 13 0.7815 0.7264
kurt 10 0.7718 0.5301 9 0.7827 0.7291
first 9 0.7718 0.5309 10 0.7809 0.7253

perform the best are statistics that reflect the central
tendency.
To verify whether the combinations of statistics

obtained in this paper can also obtain good prediction
results using other classifiers, we select logistic regres-
sion, SVM and decision tree. We compare the predic-
tion performance of the optimal combination of statis-
tics and the commonly used combinations of statistics
under different prediction tasks by multiple classifiers.
Tables 20, 21, 22 and 23 show the results of the 72-
hour, in-hospital, 30-day, and 1-year mortality predic-
tion, respectively. Tables 24 and 25 show the results
of the length of hospital stay and the disease group
prediction.
In the task of mortality prediction, regardless of short-

term, in-hospital or long-term prediction, from a hori-
zontal perspective, the decision tree has a poor prediction
effect. The performance of SVM is similar to random for-
est, but the time complexity is high. Logistic regression
is usually able to achieve higher AUPRC. The time com-
plexity of the random forest is low, and it can obtain

Table 18 Quantitative analysis results of each statistic for
predicting length of hospital stay

Statistic Frequency Mean_MSE

min 15 44758.80

max 14 44706.94

range 18 44440.71

mean 12 44979.37

std 11 44800.35

CV 14 44770.15

median 10 44894.44

Q1 11 45090.02

Q3 15 44772.27

IQR 11 44770.07

mode 7 45325.18

skew 16 44670.12

kurt 14 44678.53

first 13 44771.67
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Table 19 Quantitative analysis results of each statistic for disease
prediction

Statistic Frequency Mean_AUROC Mean_AUPRC

min 6 0.6541 0.4447

max 14 0.6544 0.4443

range 13 0.6542 0.4464

mean 13 0.6550 0.4464

std 16 0.6547 0.4454

CV 9 0.6541 0.4434

median 11 0.6538 0.4476

Q1 13 0.6539 0.4459

Q3 11 0.6543 0.4467

IQR 10 0.6550 0.4436

mode 9 0.6539 0.4450

skew 8 0.6534 0.4435

kurt 8 0.6532 0.4441

first 11 0.6541 0.4451

the best prediction effect in most cases compared to
other classifiers. This is why we choose the random for-
est as the classifier at the stage of calculating the fitness
value by the genetic algorithm. Vertically, patient repre-
sentation based on the best combination of statistics has
achieved the best prediction results in most cases com-
pared to the commonly used combinations of statistics.
A single statistic such as mean and first is less effec-
tive than the combination of multiple statistics. In the
cases where the optimal combination of statistics does
not achieve the optimal effect, the combination of [min,
max, mean, std] has achieved the optimal effect many
times. On the one hand, it shows that the statistical com-
binations obtained by random forest and the analysis of
effective statistics are also applicable to other classifiers.
On the other hand, it also reflects the scientific nature

of the commonly used combinations of statistics such as
[min, max, mean, std].
In the length of stay prediction task, the MSE of ran-

dom forest is much smaller than the MSE of logistic
regression. The MSE corresponding to the optimal com-
bination is smaller than the commonly used combina-
tion, and much smaller than the MSE corresponding to
a single statistic. In the disease prediction task, the opti-
mal combination of statistics only performs best when
the random forest is used as a classifier. When logistic
regression and decision tree are used as classifiers, the
performance based on a single statistic ’mean’ is the best.
Although the optimal combination of statistics do not
achieve the best prediction effect, in the results of ran-
dom forest, we can also find that the effect of mean and
optimal combination of statistics is not much different.
It is also consistent with the conclusion that the statis-
tic ’mean’ plays an important role in disease prediction.
In general, the effective statistical combinations based on
random forest in this paper can also achieve better pre-
diction results when selecting other classifiers. It shows
that the discussion of effective statistics under different
prediction tasks in this paper has a strong generalization
ability.

Conclusion
In this paper, we summarized 14 statistics that describe
the characteristics of physiological time series, of which
three involve aspects of the central tendency, dispersion
tendency, and distribution shape. Then, we evaluated the
performances of these summary statistics of physiolog-
ical time series as features for clinical prediction tasks,
including patient mortality, length of hospital stay and
disease prediction. We performed experiment on patient
representations based on both single statistics and com-
monly used combinations of statistics. To find the combi-
nations of statistics with the best prediction performances

Table 20 Performance of 72-hour mortality prediction by multiple classifiers

Combination AUROC AUPRC AUROC AUPRC

Logistic regression Random forest
mean 0.8356±0.0014 0.2277±0.0037 0.8517±0.0033 0.2282±0.0071
first 0.7147±0.0030 0.1440±0.0031 0.7206±0.0054 0.1115±0.0025
min, max 0.8374±0.0019 0.2395±0.0031 0.8590±0.0042 0.2558±0.0080
min, max, mean 0.8475±0.0023 0.2469±0.0044 0.8607±0.0021 0.2494±0.0031
min, max, mean, std 0.8484±0.0022 0.2506±0.0065 0.8589±0.0022 0.2498±0.0058
min, max, mean, median, Q1, IQR, kurt 0.8426±0.0029 0.2377±0.0039 0.8627±0.0023 0.2493±0.0114

SVM Decision tree
mean 0.8307±0.0031 0.2191±0.0080 0.6050±0.0164 0.0778±0.0066
first 0.6950±0.0082 0.1147±0.0074 0.5356±0.0163 0.0572±0.0050
min, max 0.8345±0.0031 0.2163±0.0041 0.5972±0.0112 0.0795±0.0052
min, max, mean 0.8372±0.0042 0.2158±0.0035 0.6040±0.0165 0.0835±0.0082
min, max, mean, std 0.8331±0.0043 0.2196±0.0088 0.5895±0.0118 0.0752±0.0054
min, max, mean, median, Q1, IQR, kurt 0.8377±0.0023 0.2275±0.0058 0.5952±0.0121 0.0777±0.0058
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Table 21 Performance of in-hospital mortality prediction by multiple classifiers

Combination AUROC AUPRC AUROC AUPRC

Logistic regression Random forest
mean 0.8122±0.0040 0.5147±0.0021 0.8248±0.0016 0.5128±0.0050
first 0.7354±0.0033 0.4019±0.0022 0.7366±0.0017 0.3665±0.0014
min, max 0.8277±0.0041 0.5328±0.0020 0.8308±0.0021 0.5289±0.0042
min, max, mean 0.8301±0.0034 0.5365±0.0016 0.8310±0.0012 0.5297±0.0030
min, max, mean, std 0.8315±0.0018 0.5416±0.0010 0.8282±0.0005 0.5262±0.0020
min, max, range, median 0.8330±0.0022 0.5429±0.0013 0.8316±0.0015 0.5308±0.0042

SVM Decision tree
mean 0.7997±0.0018 0.5121±0.0037 0.6163±0.0014 0.2652±0.0012
first 0.7190±0.0029 0.3779±0.0023 0.5797±0.0039 0.2359±0.0031
min, max 0.8056±0.0026 0.5237±0.0018 0.6243±0.0039 0.2724±0.0024
min, max, mean 0.8124±0.0026 0.5377±0.0026 0.6256±0.0015 0.2739±0.0024
min, max, mean, std 0.8165±0.0019 0.5424±0.0017 0.6241±0.0041 0.2719±0.0027
min, max, range, median 0.8186±0.0026 0.5446±0.0015 0.6337±0.0030 0.2800±0.0024

Table 22 Performance of 30-day mortality prediction by multiple classifiers

Combination AUROC AUPRC AUROC AUPRC

Logistic regression Random forest
mean 0.7257±0.0024 0.5118±0.0005 0.7716±0.0033 0.5314±0.0049
first 0.7321±0.0029 0.5139±0.0027 0.7597±0.0036 0.5281±0.0069
min, max 0.7376±0.0022 0.5140±0.0018 0.7760±0.0021 0.5351±0.0031
min, max, mean 0.7380±0.0035 0.5148±0.0038 0.7734±0.0017 0.5353±0.0041
min, max, mean, std 0.7404±0.0017 0.5184±0.0034 0.7770±0.0016 0.5430±0.0058
min, max, mean, CV, skew, first 0.7403±0.0041 0.5178±0.0045 0.7780±0.0028 0.5351±0.0061

SVM Decision tree
mean 0.7322±0.0015 0.5162±0.0013 0.5778±0.0029 0.3550±0.0010
first 0.7164±0.0012 0.5055±0.0046 0.5102±0.0035 0.3069±0.0018
min, max 0.7282±0.0011 0.5034±0.0041 0.5566±0.0010 0.3444±0.0048
min, max, mean 0.7395±0.0033 0.5121±0.0046 0.5756±0.0034 0.3536±0.0012
min, max, mean, std 0.7218±0.0024 0.5039±0.0013 0.5867±0.0003 0.3619±0.0005
min, max, mean, CV, skew, first 0.7454±0.0015 0.5271±0.0035 0.5831±0.0026 0.3592±0.0024

Table 23 Performance of 1-year mortality prediction by multiple classifiers

Combination AUROC AUPRC AUROC AUPRC

Logistic regression Random forest
mean 0.7704±0.0025 0.7398±0.0030 0.7838±0.0017 0.7324±0.0034
first 0.7505±0.0043 0.7171±0.0024 0.7561±0.0018 0.7031±0.0028
min, max 0.7759±0.0036 0.7404±0.0046 0.7844±0.0011 0.7298±0.0020
min, max, mean 0.7776±0.0033 0.7413±0.0015 0.7840±0.0022 0.7330±0.0049
min, max, mean, std 0.7899±0.0024 0.7534±0.0040 0.7872±0.0020 0.7391±0.0030
max, mean, std, Q1, kurt 0.7998±0.0007 0.7642±0.0028 0.7876±0.0014 0.7408±0.0026

SVM Decision tree
mean 0.7996±0.0015 0.7634±0.0018 0.6367±0.0019 0.5653±0.0037
first 0.7694±0.0024 0.7343±0.0026 0.6218±0.0006 0.5495±0.0024
min, max 0.7923±0.0024 0.7552±0.0024 0.6368±0.0026 0.5654±0.0013
min, max, mean 0.7959±0.0023 0.7607±0.0021 0.6375±0.0030 0.5658±0.0014
min, max, mean, std 0.7978±0.0019 0.7619±0.0017 0.6409±0.0028 0.5689±0.0023
max, mean, std, Q1, kurt 0.8090±0.0013 0.7734±0.0007 0.6370±0.0018 0.5654±0.0028
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Table 24 Performance of length of hospital stay prediction by multiple classifiers

Combination Logistic regression Random forest

mean 87295.21±136.38 58583.26±395.47

first 85075.99±141.76 61832.78±246.62

min, max 83285.19±248.05 48969.03±508.88

min, max, mean 81878.83±348.28 49890.57±383.63

min, max, mean, std 80245.68±234.80 46459.67±181.91

min, max, range, std, CV, Q1, Q3, kurt, first 75391.36±642.39 43827.77±227.26

under different tasks (limited by the high time complex-
ity of global search), we used a cross-validation-integrated
with a genetic algorithm to obtain the combinations of
statistics with approximately optimal performances. A
quantitative analysis was performed on each statistic in
the optimal combinations. Through in-depth analysis of
the experimental results, we have reached the following
conclusions: (1) As the prediction time becomes longer,
the prediction performance becomes increasingly worse.
Using data acquired only within 24 hours after the patient
entered the ICU was insufficient to make reasonable
long-term mortality prediction. (2) Statistics that reflect
centralized trends, such as mean and median, play an
important role in almost all mortality prediction tasks.
(3) For short-term mortality prediction, statistics that
show dispersion tendency are also representative, such
as min, and max. Cross-features such as range may con-
tain more information. (4) For the length of hospital stay
prediction task, the statistics that reflect the dispersion
tendency perform better. The length of hospital stay is
closely related to the stability of the patient’s physiological
state: unstable patients have a higher probability of stay-
ing longer. (5) For the disease prediction task, statistics
that reflect the centralized trend, such as the mean, make
larger contributions to the prediction result. The mean
represents the average level of different predictors is sig-

nificantly correlated with judgements concerning whether
the patient’s condition is due to a specific disease. (6)
Commonly used combinations of statistics such as [min,
max, mean] and [min, max, mean, std] achieve good pre-
diction results in most cases; thus, these experiments help
to verify the rationality of previous research. (7) Skew and
kurt, which reflect the shape of a distribution, perform
poorly when used individually as features for prediction, but
they appear frequently in the optimal combinations, indi-
cating that they canplay a role as supplemental information.
Although we evaluated the effect of statistics of physio-

logical time series under different prediction tasks, some
limitations still exist. This paper considers the central ten-
dency, dispersion tendency and distribution shape when
choosing statistical features but does not fully consider
latent characteristics, such as periodicity. Moreover, due
to limitations in the sampling frequencies of some of the
clinical predictors, the analysis of kurt and skew, which
describe shape of a distribution, was insufficient. Fur-
thermore, these experiments were applied only to patient
mortality, length of hospital stay and disease prediction.
Research on other clinical tasks still needs to be per-
formed. In future work, we plan to correct the deficiencies
of this study and design a more suitable patient represen-
tation method andmodel to improve the results of clinical
task prediction.

Table 25 Performance of disease prediction by multiple classifiers

Combination AUROC AUPRC AUROC AUPRC

Logistic regression Random forest
mean 0.6537±0.0073 0.5251±0.0053 0.6602±0.0080 0.4470±0.0124
first 0.6229±0.0055 0.4932±0.0069 0.6486±0.0158 0.4393±0.0082
min, max 0.6395±0.0054 0.5053±0.0055 0.6558±0.0179 0.4488±0.0079
min, max, mean 0.6509±0.0123 0.5203±0.0115 0.6477±0.0126 0.4462±0.0169
min, max, mean, std 0.6483±0.0084 0.5153±0.0077 0.6578±0.0169 0.4483±0.0096
max, mean, Q3, IQR, first 0.6521±0.0081 0.5262±0.0077 0.6610±0.0088 0.4455±0.0127

SVM Decision tree
mean 0.6407±0.0109 0.4399±0.0120 0.5267±0.0032 0.3329±0.0030
first 0.6370±0.0083 0.4281±0.0087 0.5203±0.0079 0.3291±0.0053
min, max 0.6399±0.0067 0.4293±0.0069 0.4983±0.0109 0.3020±0.0021
min, max, mean 0.6407±0.0109 0.4407±0.0099 0.5196±0.0110 0.3203±0.0063
min, max, mean, std 0.6437±0.0054 0.4426±0.0064 0.5234±0.0070 0.3281±0.0083
max, mean, Q3, IQR, first 0.6401±0.0115 0.4374±0.0073 0.5201±0.0119 0.3266±0.0086
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